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Abstract

A fast and direct combination of techniques for simultaneous mycotoxin and phytoalexin identification in peanut skin and
kernel is described. Silica Plate Imprinting Laser Desorption/Ionization Mass Spectrometry Imaging (SPILDI-MSI) is a powerful
technique that exhibits great advantages, such as solvent-free and matrix-free characteristics, as well as no sample
preparation or separation steps. It also permits accurate identification of mycotoxins and phytoalexins with unique
fingerprint profiles in just a few seconds. Results are expressed as chemical images of the 4 identified types of aflatoxins (B1,
B2, G1 and G2) and a stilbenoid (resveratrol). Also, SPILDI-MSI allows the comparison between the spatial distribution of
aflatoxins and resveratrol found in kernel and skin. This novel application has proven to be useful for instantaneous
qualitative assessment of aflatoxins and stilbenoids both in the peanut skin and kernel and offers precise tracking of fungal
contamination in nuts and other foodstuffs.
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Introduction

Mycotoxins have been more closely monitored in the past

decades due to their harsh effects observed in humans and

animals; potent toxic effects in humans and animals have been

related to these molecules, such as cytotoxicity, carcinogenicity,

mutagenicity, neurotoxicity, hepatotoxicity, immunosuppressive,

and estrogenic effects [1–4]. As to their occurrence, aflatoxins and

ochratoxins are produced mainly by Aspergillus sp., fumonisins,

trichothecenes and zearalenone by Fusarium sp., patulin by

Penicillium sp., and ergot alkaloids, produced in the sclerotia of

Claviceps sp. [5]. Furthermore, these compounds have great

financial impact. From an economic point of view, mycotoxins

cause money loss to producers, processors and also consumers of

food and feeds. Significant reduction in foreign exchange is also an

issue, as exported products are rejected in other countries due to

the presence of these molecules [5–7]. In peanuts (Arachis hypogaea

L.), Aspergillus sp. correspond to the main class of fungi that are

associated to aflatoxin contamination, producing the types B1, B2,

G1 and G2 [8].

Phytoalexins, more specifically stilbenoids, are molecules that

help monitor fungal contamination [9]. They are secondary

metabolites of nuts, produced in response to infections, injuries

and/or other suffered attacks [10]. Many of these species are

oxidation products derived from resveratrol, a phenolic compound

that exhibits great antioxidant potential, especially in humans,

with many potential applications for the treatment of several

diseases such as cancer and cardiopathies in the past few years

[11–14]. In plants, it is believed that an increased phytoalexin

production is directly related to the defensive response of the

vegetable, and this may also correspond to lower levels of

aflatoxins [10].

Traditional analytical methods for assessing mycotoxins and

phytoalexins include many steps of sample preparation, as liquid-

liquid extraction (LLE), supercritical fluid extraction (SFE), solid

phase extraction (SPE) and solid phase microextraction (SPME)

[10,15–21]. After these procedures, the sample is then subjected

to a separation and detection system for identification and/or

quantification. Generally, thin-layer chromatography (TLC),

high-pressure liquid chromatography (HPLC), gas chromatogra-

phy (GC) and liquid chromatography (LC) coupled to mass

spectrometry (MS) detector are the most used approaches

[11,17,22–26]. For these time-consuming characteristics, faster

and more effective methods for high-throughput screening of

mycotoxins and stilbenes in foodstuffs are necessary.

New approaches have already been developed in this field.

Matrix-assisted laser desorption/ionization (MALDI) coupled with

Time-of-Flight (TOF) analyzer has been successfully employed in

aflatoxin screening [27]. This technique uses an energy-absorbent

molecule (matrix), which is mixed with the sample or applied

directly over it to assist laser ionization. Due to their characteristic

structure, stilbenes have also been employed as MALDI matrices

[28]. Within the most common configurations, apart from

MALDI-TOF, there has recently been an increasing interest in

instruments with Mass Spectrometry Imaging (MSI) [29]. This

modern and interesting approach provides spatial distribution of

compounds with intensities of a given ion on a coordinate system
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Figure 1. Detailed workflow of the SPILDI-MSI experiments for compound identification in peanut skin and kernel. Cross-sections of
the kernel and the skin are imprinted in a TLC plate and then sent for MSI analysis.
doi:10.1371/journal.pone.0090901.g001

Figure 2. Example of SPILDI-Mass spectrometry images of the peanut skin: aflatoxins B1, B2, G1 and G2 are noted in their
characteristic spatial distributions. Positive ion mode.
doi:10.1371/journal.pone.0090901.g002
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and its relative position in a physical sample, creating a sample

image based on the specific molecular information measured [29].

Another recent analytical trend is the sorptive tape extraction

(STE), in which a sorbent surface is used for molecular

imprisonment and posterior instrumental analysis [30]. This

technique requires little sample preparation and no derivatization

or liquid extractions. The STE principle was used as the basis for

our procedure of sample preparation for subsequent LDI-MSI

analysis, where a silica gel plate for TLC was used as a sorptive

tape-like support for the imprinting of samples, in a slightly

modified methodology as the ones described in previous works

[31,32].

The aim of this work is to provide, for the first time, a new

method for direct and simultaneous screening of aflatoxins and a

stilbenoid (resveratrol) in peanuts (Arachis hypogaea L.) skin and

kernel using SPI as a sorptive tape-like extraction method followed

by LDI-MSI. A silica gel (60 Å) plate is used as a molecular

trapping surface for the samples. The greatest advantage

associated to these methods is that they do not require

chromatographic separation or many steps of sample preparation.

This is also the first work that assesses both health hazardous and

beneficial compounds to humans in a single sample, at the same

time.

Materials and Methods

Reagents and Standards
Methanol and acetonitrile were HPLC grade (.98%), pur-

chased from J.T. Baker (Xastoloc, Mexico). Aflatoxins and

resveratrol standards were purchased from Sigma-Aldrich Co.

(St. Louis, MO, USA).

Peanut samples
Commercially available raw peanut bags were purchased from

grocery stores in Campinas, Brazil. The bags were properly stored

in a cabinet, free from light and at 25uC. Samples were utilized

after 1 year from the expiration date.

Sample preparation
Skin was removed from kernel and thin transversal sections of

peanuts were cut with a stainless steel blade to obtain thin slices

(,1 mm) of the sample. SPILDI experiments were carried out by

pressing the samples against two silica 60 TLC plates (Merck,

Darmstadt, Germany) for five minutes. Preliminary tests with 1, 5,

10 and 15 minutes were performed; no signal improvements were

observed with pressing times higher than 5 minutes (data not

shown). Plates were then sent to analysis with no matrix coating. A

representation of the analytical workflow is depicted in Figure 1.

Standards were prepared as 1 mg/mL solutions in MeOH:H2O

(50:50). 2 mL of each standard solution were directly spotted in the

TLC plate and then sent to analysis under the same MS conditions

as the samples.

Mass spectrometry imaging
Samples were analyzed in a MALDI-LTQ-XL instrument

(Thermo Scientific, California, USA) with imaging feature. The

instrument uses an ultraviolet nitrogen laser. Typical conditions

for data acquisition were as follows: 20 mJ laser power, 100 mm

raster step size with laser spot size of 50 mm (factory default setting)

and 30–50 normalized collision energy for collision-induced

dissociation (CID) when performing MS/MS reactions. All

mycotoxins data were acquired in the positive ion mode and

resveratrol was analyzed in the negative ion mode (both at the m/z

range of 100–500).

Figure 3. Sample SPILDI-Mass spectrometry images of the peanut kernel: aflatoxins B1, B2, G1 and G2 are noted in their
characteristic spatial distributions. Positive ion mode.
doi:10.1371/journal.pone.0090901.g003
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Data workup
The obtained MS/MS spectral data from standards and

samples were submitted to structural analysis with Mass Frontier

software (v. 6.0, Thermo Scientific, California, USA). The

inputted structures are analyzed using algorithms and database

information to produce fragment possibilities, which are then

compared to the MS/MS spectra to assist in compound

identification. Chemical images were treated with ImageQuest

software (Thermo Scientific, California, USA) and all intensities

were normalized according to the total ion current.

Results

As the experiments were conducted with the skin and the

kernel of peanuts, the spatial distribution of the different

aflatoxins are compared in both regions as chemical images in

Figure 4. MS/MS spectra of aflatoxins (A) B1 and (B) B2. The characteristic fragments identified with Mass Frontier are identified along with
the respective signals. Positive ion mode.
doi:10.1371/journal.pone.0090901.g004

Figure 5. MS/MS spectra of aflatoxins (A) G1 and (B) G2. The characteristic fragments identified with Mass Frontier are identified
along with the respective signals. Positive ion mode.
doi:10.1371/journal.pone.0090901.g005
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Figures 2 (skin) and 3 (kernel). It was possible to observe that all

types of aflatoxins were present even deeply into the internal

regions of the kernel. CID was performed for the [M+H]+

species for identification of the different aflatoxin types, with

MS/MS data presented in Figures 4 and 5 and also organized in

Table 1. These data were analyzed using Mass Frontier software

for fragmentation processes; they were also supported by the

comparison with the MS/MS fragmentation pattern of the

standards, as seen in Figure S1. Two-dimensional distributions

on the surfaces of skin and kernel were collected directly via

MS/MS of the characterized [M+H]+ species, with results

plotted as follows: Aflatoxin B1 (AFB1, m/z 313), Aflatoxin B2

(AFB2, m/z 315), Aflatoxin G1 (AFG1, m/z 329) and Aflatoxin

G2 (AFG2, m/z 331).

MSI was also utilized to assess resveratrol, evaluating its spatial

distribution using the same methodology as for the aflatoxins. The

stilbenoid-derivative was also identified in the negative ion mode

by MS/MS at resveratrol as [M2H]2 (m/z 227) with character-

istic fragments, as elucidated in Figure 6. Figure 7 presents (A) the

molecular structure of resveratrol and the spatial distribution of

these compounds both in the (B) skin and (C) in the kernel of

peanuts.

Discussion

This novel approach on aflatoxin and phytoalexin detection

directly on peanut surface has proven to be a fast and reproducible

method. Without extensive sample preparation steps and no

organic solvent employment, this technique shows great compro-

mise with green chemistry trends [33]. Furthermore, this also

avoids analyte losses in extraction and clean-up phases [34].

The use of MSI to identify both toxic and benefitial molecules in

the same sample run is an effective and simpler approach. The

possibility of identifying the colocalization of the targeted

molecules directly from the sample surface is very interesting

and may be appealing in terms of quality control and assurance.

Tandem mass spectrometry also provides accurate structural

information for the analyzed molecules, especially when compared

to chemical standards. The use of MS/MS as the main

identification tool for small molecules is largely described as a

Table 1. Identified species and their CID products for structural elucidation.

Compound Precursor ion R Product ions

Aflatoxins [M+H]+ CID fragments

m/z m/z

B1 313 295, 285, 271, 269, 255, 243

B2 315 297, 287, 271, 259, 254, 245

G1 329 311, 301, 285

G2 331 313, 303, 287, 291

Stilbene [M2H]2 CID fragments

m/z m/z

Resveratrol 227 185, 159, 157, 145

doi:10.1371/journal.pone.0090901.t001

Figure 6. MS/MS spectrum of the compound identified as resveratrol at m/z 227 [M2H]2 and the characteristic product ions.
Negative ion mode.
doi:10.1371/journal.pone.0090901.g006
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very useful and reliable approach [35,36] and the use of a linear-

trap quadrupole for these purposes is also feasible and compatible

with this application, and is especially a well-established routine

with MSI [37–40]. To the extent of this work, structural

elucidation of the targeted molecules was supported by software-

predicted molecular fragmentation. Mass Frontier is an expert

system where CID products and fragmentation mechanisms can

be modeled. To do so, it uses MS databases as well as algorithm

calculations to propose fragmentation pathways and final product

ions [41]. For this work, aflatoxin structures were proposed based

on the matches between all obtained MS/MS experimental data

and the calculated Mass Frontier fragments. To support even

further the given information, structures of the product ions are

presented in the sample spectra from Figures 4 and 5. For

resveratrol, the same principles have been applied, and the results

are plotted in Figure 6. This reinforces the high specificity of our

methodology, where MS information is given with a high level of

certainty.

Aflatoxin analysis is extremely relevant in terms of public health,

as they are known for their carcinogenic effects and hepatotoxicity

[42]. For the first time, the spatial distribution of these molecules is

reported with information obtained directly from the skin and the

kernel of peanuts, as illustrated by Figure 1. Interestingly, these

mycotoxins present higher density towards the extremities of the

skin and a more thorough distribution in the kernel. The analyzed

phytoalexin, resveratrol, is a phenolic-derived compound. As well

as an important role in plant defenses [10], this molecule is also

important for human health and nutrition [43].

The overall amount of time dedicated to all analytical steps

altogether (sample preparation, plate imprinting, instrumental

analysis and data interpretation) can take as long as 15 minutes.

This makes the presented approach a very fast and viable

alternative for compound assessment directly from sample surface,

with minimum sample preparation steps.

In summary, this work has demonstrated an effective analytical

approach using SPILDI-MSI for direct assessment of aflatoxins

and phytoalexins in peanut samples that has proven to be a simple

and accurate strategy. This can be especially interesting for

product treatment and toxin-removal processes, since it is possible

to see that aflatoxins are not only present on the skin surface, but

also in the more internal parts of the kernel.

Supporting Information

Figure S1 MS/MS spectra of the standard solutions of:
(A) AFB1, (B) AFB2, (C) AFG1, (D) AFG2 and (E)
resveratrol. Aflatoxins were analyzed in the positive ion mode

and resveratrol in the negative ion mode.

(TIF)
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