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Abstract

Computational analyses of functions of gene sets obtained in microarray analyses or by topical database searches are
increasingly important in biology. To understand their functions, the sets are usually mapped to Gene Ontology knowledge
bases by means of over-representation analysis (ORA). Its result represents the specific knowledge of the functionality of the
gene set. However, the specific ontology typically consists of many terms and relationships, hindering the understanding of
the ‘main story’. We developed a methodology to identify a comprehensibly small number of GO terms as ‘‘headlines’’ of
the specific ontology allowing to understand all central aspects of the roles of the involved genes. The Functional
Abstraction method finds a set of headlines that is specific enough to cover all details of a specific ontology and is abstract
enough for human comprehension. This method exceeds the classical approaches at ORA abstraction and by focusing on
information rather than decorrelation of GO terms, it directly targets human comprehension. Functional abstraction
provides, with a maximum of certainty, information value, coverage and conciseness, a representation of the biological
functions in a gene set plays a role. This is the necessary means to interpret complex Gene Ontology results thus
strengthening the role of functional genomics in biomarker and drug discovery.
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Introduction

The computational analysis of complex biological pathways has

become an increasingly important part of biology. To reveal

interaction networks of complex traits and diseases from sets of

genes obtained from microarray analyses, proteomic research or

thematic literature searches, the knowledge captured in cell

biological ontologies is exploited. The gold-standard in this field

is the Gene Ontology (GO; http://www.geneontology.org/) [1]

where the major biological processes, cellular components or

molecular functions of the genes respectively gene products are

described by a controlled vocabulary (GO terms) [2]. A

characterization of a gene set is obtained by statistical means

identifying GO terms that are overrepresented in the gene list, i.e.,

annotated to the gene list more often than expected by chance

[3,4].

However, the intended comprehension of main processes and

interaction networks characterizing a gene set is often impeded by

the complexity of the results of such an over-representation

analysis (ORA) (Figure 1). A complete representation of the

knowledge about the gene set’s function as result of an ORA is

contained in a specific ontology, which is a directed acyclic graph

(DAG, knowledge representation graph). Such a specific ontology

often contains hundreds of significant terms and therefore fails to

provide a comprehensible selection of relevant information on the

functionality of the given gene set. Therefore, an abstraction

method is needed. Classical approaches, i.e., choosing most

significant or most specialized terms, provided only narrowed

views on the functions represented in a gene set. Other approaches

were focused on the decorrelation of GO terms [5].

The proposed methodology of functional abstraction aims at

identifying a small number of GO terms (headlines) that confer the

‘‘big picture’’ of the biological functions of the genes in a set of

genes. Its main goal was providing an informative representation

that covers the different aspects of biological functions of a gene set

at a human-understandable level [6].

Methods

Selection of Gene Sets
To demonstrate this knowledge discovery method on a real-life

example, a set of genes which are known to be associated with a

specific research topic is selected. Such a topical set of genes

causally associated with hearing impairment [7] was retrieved

mainly (n = 104 genes) from the ‘‘Hereditary Hearing Loss

Homepage’’ at http://hereditaryhearingloss.org on September

20, 2013. The causal genotype phenotype associations in that data

base correspond to the recommendations of the GENDEAF study

group at http://hereditaryhearingloss.org/main.aspx?c = .

HHH&n=86638. Additional genes (n = 6) were obtained from

[8] and from the Deafness Gene Mutation Database at http://

hearing.harvard.edu/db/genelist.htm, and further genes (n = 9)

were added from a recently actualized review [9]. The complete

set of n=119 genes (Table 1) is referred to as the Hereditary

Hearing Impairment (HHI) gene set intended as a didactical

example with therefore few genes in comparison to previous
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methodologically similar analyses (e.g., 410 genes in a topical set of

pain genes [10], 231 genes in the microarray derived expression

pattern of the olfactory bulb [11]).

Gene Over-representation Analysis (ORA)
Subcategories of biological functions in which the genes of the

example set are involved were identified by means of ORA [3]

using the web-based GeneTrail [12] tool at http://genetrail.bioinf.

uni-sb.de/. This compared the GO terms annotated to the

expressed genes with the occurrence of terms among the set of all

human genes. The significance of a GO term associated with the

present list of genes was determined by means of a hypergeometric

test that annotates the resulting GO terms with p-values.

Subsequently, a correction for multiple testing was applied and

only terms with a p-value lower than preset threshold tp were

considered as significant. For the HHI gene set, the threshold tp,

was set at 0.01 (similarly as elsewhere used [5]) and corrected for

multiple testing according to Bonferroni, which resulted in a

significant term set (for definitions, see Table 2).

ORA provided a representation of what is known (knowledge

representation) about the roles of the genes in an organism. The

significant term set may derive specific ontologies starting from

either of the three possible root terms, i.e., ‘‘biological process’’,

‘‘cellular component’’ or ‘‘molecular function’’ [1]. In each specific

ontology the terms are arranged in a polyhierarchy starting at the

root, with the broadest definition, and specializing toward the

leaves, with the narrowest definition (details). For the present

analysis, ‘‘biological process’’ was chosen (Figure 1). This consists

of one or more ordered assemblies of molecular functions

involving chemical or physical transformations, such as cell growth

and maintenance or signal transduction [1].

The resulting specific ontology contained 48 significant terms,

with the most detailed descriptions of the role of HHI gene set

specified in seven leaves (Figure 1). A path from the root term to a

particular detail, narrowing the definitions of the terms from

universal to specific, is called ‘‘taxonomy’’ (Figure 1). For example

the path ‘‘biological process’’, ‘‘multicellular organismal process’’,

‘‘system process’’, ‘‘neurological system process’’, ‘‘cognition’’,

‘‘sensory perception’’, ‘‘equilibrioception’’ is the taxonomy for the

detail ‘‘equilibrioception’’.

Abstraction of ORA Results
With typical sets of several hundred genes the resulting specific

ontologies typically also contain 100 and more significant terms

[10,11]. Even for the present small HHI gene set of 119 genes and

using restrictive multiple testing correction, the specific ontology

contained approximately 50 significant terms. Identifying a

manageable amount of terms as ‘‘headlines’’ of the ‘‘main

story’’ will in the following be referred to as an abstraction of the

specific ontology.

Figure 1. ORA results and functional areas obtained with the CLASSIC abstraction methods. Graphical representation of the specific
ontology showing the polyhierarchy of functional annotations (GO terms) assigned to HHI gene set (G= 119, Table 1) and forming a directed acyclic
graph (DAG). The figure was generated with the GeneTrail web-based analysis tool [12]. Significant GO terms were identified using ORA, which
resulted in 71 terms at a significance level of p = 1.0 ? 1022 and Bonferroni a correction (grey ellipses in which the observed number of member
genes, the expected number of genes by chance and the p-value of the significance of the deviation from the expectations (Fisher’s exact test) are
annotated). The CLASSIC p-value approach to the interpretation of ORA results is the selection of headline terms along descending statistical
significance. When setting the p-value threshold at p= 10220, eight headlines resulted (red ellipses). The CLASSIC detail approach is the selection of
the leaves of each ontology, which with the present ORA parameters resulted in seven details (blue ellipses plus ‘‘sensory perception of sound, the
latter colored red since also selected by the p-value method).
doi:10.1371/journal.pone.0090191.g001

Functional Abstraction of ORA Results
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As quality criteria for understandable and informative subsets

(abstractions) of significant GO terms (headlines) of a specific

ontology, four dimensions were predefined, i.e., certainty,

coverage, information value and conciseness.

Firstly, certainty requires that terms should be relevant for the

gene set. For a term Ti in the significant term set, the certainty

measure was defined as Cert(Ti) = p(there is a Term with smaller P-

Value) = (#(Tk with p-value,pval(Ti)))/nT, where nT denotes the

number of significant GO terms annotated to the given set of

genes. This reflects how safe it is to assume that the term Ti

describes the gene set, with numerical values in the interval [0,1].

The certainty of the whole abstraction is the average certainty of

all headlines in this abstraction.

Secondly, coverage requires the headlines to incorporate all the

details of a specific ontology in the abstraction. A term T, which is

not the root, covers a term Td, if there is a path (in the direction

from root to leaf) in the specific ontology from T to Td. The

coverage of an abstraction can be measured as the percentage of

covered details in the ontology.

Thirdly, the information value requires that the identified

headlines should be as informative as possible. To capture this

dimension, the (partial) Shannon information of a term Ti in the

significant term set was calculated. For each Ti, its gene frequency

(probability) can be calculated: pi = nG(Ti)/nG, where nG(Ti) denotes

the number of genes of a set annotated to a term Ti and nG denotes

the total number of genes in the set. In information theory the

(Shannon-) information or entropy of a probability distribution

Table 1. The hereditary hearing impairment (HHI) example data set, consisting of G= 119 genes (for names and functional
explanations, see http://www.genenames.org/or Table S1, HearingGenes119.xlsx) taken mainly from the Hereditary Hearing Loss
Homepage at http://hereditaryhearingloss.org [7] on September 20, 2013 (104 genes) and completed from the Deafness Gene
Mutation Database at http://hearing.harvard.edu/db/genelist.htm, and two publications, i.e., [8] and [9] with its last revision dating
from January 3, 2013 (http://www.ncbi.nlm.nih.gov/books/NBK1434/).

ACTG1 CLRN1 DFNB31 FAM189A2 HARS2 LRTOMT MYO15A PCDH15 SLC17A8 TMC1

AGAP2 COCH DFNB59 FOXI1 HGF MARVELD2 MYO1A PDZD7 SLC26A4 TMIE

ATP2B2 COL11A1 DIABLO GIPC3 HSD17B4 MIR96 MYO1C POU3F4 SLC26A5 TMPRSS3

BSND COL11A2 DIAPH1 GJA1 ILDR1 MITF MYO1F POU4F3 SMPX TMPRSS5

CABP2 COL2A1 DIAPH3 GJB1 KCNE1 MSRB3 MYO3A PRPS1 SNAI2 TPRN

CCDC50 COL4A3 DSPP GJB2 KCNJ10 MT-RNR1 MYO6 PTGS1 SOX10 TRIOBP

CDH23 COL4A4 EDN3 GJB3 KCNQ1 MT-TE MYO7A PTPRQ SOX2 TRMU

CEACAM16 COL4A5 EDNRB GJB6 KCNQ4 MT-TK NDP RDX STRC USH1C

CHD7 COL9A1 ESPN GPR98 KIAA1199 MT-TL1 NF2 SEMA3E TCOF1 USH1G

CIB2 COL9A2 ESRRB GPSM2 LARS2 MT-TS1 OTOA SERPINB6 TECTA USH2A

CLDN14 CRYM EYA1 GRHL2 LHFPL5 MYH14 OTOF SIX1 TIMM8A WFS1

CLPP DFNA5 EYA4 GRXCR1 LOXHD1 MYH9 PAX3 SIX5 TJP2

doi:10.1371/journal.pone.0090191.t001

Table 2. Definitions and notations used in the present functional abstraction process.

Gene set: a number of genes for which the genetic functionality is sought, often the result of other experiments such as microarray or proteomic analysis or database
research for a certain topic such as ‘‘pain’’.

Overrepresentation analysis (ORA): calculation of a significant term set for a gene set. For all terms Ti of the GO p-values pval(Ti) are calculated with regard to the
gene annotations of Ti and the gene set by using Fisher’s exact test statistic [3]. To obtain a significant term set usually a predefined threshold tp is used and only terms
Ti with (pval(Ti),tp) are regarded, and corrections to control for multiple testing errors (e.g. Bonferroni, False Discovery Rate [19]) are applied.

Significant term set: the result of an ORA. The set of GO terms consisting of those terms that are annotated to the given gene set significantly more often than
expected by chance. The significant terms set forms a specific ontology.

Specific Ontology: a subset of the GO, the polyhierarchy formed by the significant terms set within the thematic ontologies biological process, molecular function or
cellular component.

Root term/top level term: the most general GO term of the thematic ontology from which all specific ontologies originate.

Details: the leaves of an ontology, describing the most specific pieces of knowledge.

Taxonomy: a path from the root term to a particular detail, narrowing the definitions of the terms from universal to specific details.

Remarkableness of a term: a non-negative number proportional to certainty and information value of a term.

Headline: the term with the largest remarkableness of taxonomy.

Subsumption: substitution of a set of headlines H= {T1,..Tk} by a single term T. T must cover H i.e. all paths from the root term to any term in H must pass through T.

Detailization: substitution of a headline T by a set of terms H= {T1,..Tk} which are covered by T.

Functional Areas: a set of terms FA= {T1,…,Tn} covering all details of a specific ontology. FA optimizes certainty (P-values) and is most informative in an information
theoretical sense. The size of the set is optimized such that human understanding is enhanced.

doi:10.1371/journal.pone.0090191.t002
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P={p1,…, pn} is measured as [13,14]. The terms in the

summation, i.e. Info(Ti), measure the particular information

(information value) that is contributed to the total entropy by the

annotations of the particular term. Using the factor c = e and the

natural logarithm, i.e. Info(Ti) =2e N pi N ln(pi), scales the values of

Info(Ti) to the interval [0,1]. The graph of this function is arc

shaped (Figure 2) reflecting that maximum information value is

provided neither by the root term of the specific ontology, e.g.,

‘‘biological process’’ which is relevant for all genes and due to its

low information cannot be selected, nor by the details which

describe the role of only a small number of genes, such as

‘‘potassium transport’’ may be too detailed when ‘‘sodium

transport’’ is also important and therefore ‘‘ion transport’’ should

be preferred.

Fourthly, the dimension of conciseness aims at a number of

headlines facilitating that humans can grasp the specific ontology,

as few as possible, however not too few to avoid very abstract but

general headlines covering all details. A suitable approach to this

requirement is the Miller number [15] of seven headlines. If there

are less than 7 - 5 headlines some terms should be replaced by

more detailed terms. If there are more than 7–9 headlines some

terms should be merged. Ideally a number of 5–9 terms enhances

human comprehension [16].

Classical approaches at ORA abstraction. The current

state-of-the-art approaches to a concise interpretation of ORA

results mainly consist of (i) selections of the most significant terms

as headlines (CLASSIC p-value), (ii) detail method taking the

leaves of the ontology (CLASSIC detail), or (iii) ad hoc selection.

Considering the shortcomings of current approaches, it becomes

evident that a new method providing a comprehensive coverage of

the functions of a gene set is needed.

The selection of the terms with the smallest p-values as

headlines is a classical approach for the selection of a meaningful

subset of headline terms (CLASSIC p-value). For example, a p-

value limit of less than 10220 selects the eight headline terms

marked in red in Figure 1. One essential requirement of headline

selection is complete coverage of details. In a specific ontology this

means that the taxonomies of all details are covered. At least one

of the headlines (other than the root) should be on the path from

the detail to the root. Using the CLASSIC p-value method,

however, there are several details which are not covered by these

headlines.

However, this covered the ontology only poorly since more than

half of the details lacked a headline (Figure 1). A possible

workaround would be taking all the details as headlines (CLASSIC

detail). However, this included several uninformative headlines

such as ‘‘photoreceptor cell maintenance’’ and ‘‘melanocyte

differentiation’’. This failed to provide an adequate overview

about biologic functions concerned with hearing loss. Moreover,

the results of these procedures critically depend on the parameters

of the particular ORA. Therefore a different set of headlines

would result from choosing other ORA significance levels.

Sometimes the specific ontology is just eyeballed and a set of

headline terms is ad hoc selected as particularly interesting. An

example of such an approach can be found in [8]. There, for a

gene set of 51 non-syndromic hereditary hearing loss genes, which

is a subset of the present HHI, five headlines were identified in a

specific ontology consisting of 42 terms (green circles in figure 4 of

[8]). Four of these headlines are the details of the specific ontology,

one is an arbitrarily chosen inner node.

Functional abstraction. To better meet the requirements at

an abstraction than classical approaches and to obtain an

understandable and informative set of GO terms from ORA, the

following heuristic of functional abstraction (FA) was developed:

For each term Ti in the set of terms, its remarkableness, Rem(Ti),

was calculated as the product of certainty and information
value, i.e., Rem(Ti) = Cert(Ti)?Info(Ti). Coverage was addressed

by assuring that the taxonomies of all details of a specific ontology,

i.e., all the different paths from the leaves (details) to the root, are

being considered. Specifically, the most remarkable term in each

taxonomy was headline candidate. From all candidate terms, C,

redundancies were eliminated, i.e., if all parents of a term T in C

were also members of C, then T was deleted as already

represented in C, thereby addressing conciseness of the abstrac-
tion. The remaining headlines, H, of this FA are called

‘‘functional areas’’.

While these functional areas are a suitable comprehensive

representation of the taxonomies of a specific ontology, a more

global abstraction can be obtained by two methods: detailization

or subsumption. Let T be a term in a specific ontology which

covers the terms T1,..Tk. A set of headlines H containing T is

detailed if T is replaced by the headlines T1,..Tk in H.

Alternatively, a set of headlines H containing T1,..Tk is abstracted

if T1,..Tk are replaced by T in H. Detailization enlarges,

subsumption reduces the number of headlines. Note that the root

is never a headline, since it is excluded from the definition of

coverage. To enhance human comprehensibility a number of 5–9

Figure 2. Graph of the Information value function Info(Ti) =2e N
pi N ln(pi), pi = nG(Ti)/nG, where nG(Ti) denotes the number of genes
of a set annotated to a term Ti and nG denotes the total number
of genes in the set. Derived from Shannon information [14], Info(Ti)
measures the contribution of the annotations of Ti to the total
(Shannon) information of an specific ontology. Specifically, In bioinfor-
matics, IC(Ti) =2log(pi) measures the information content (IC) of a GO
term, [21], if pi is the number of all genes annotated to Ti relative to all
annotations in the GO. So Info(Ti) can be interpreted as weighted
Information Content of a specific ontology. Info(Ti)= 0 if term Ti does
not possess any annotations (pi=0) and for the root of the ontology.
Info(Ti) has its maximum Info(Ti)= 1 at a gene probability of 37%.
doi:10.1371/journal.pone.0090191.g002

Functional Abstraction of ORA Results
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headlines correspond to the human capacity of information

processing [15]. Thus, if the number of headlines in H is smaller

than the Miller optimum, detailization is applied for the headline

T with the largest remarkability, whereas subsumption will be

applied if the number of headlines in H exceeds the Miller

optimum.

Results

For the HHI sample gene set (n = 119) an ORA with p-value

threshold of tp=1.0 ? 1022 and Bonferroni a correction resulted in

the specific ontology of 71 significant terms (see Table S1)

including seven details shown in figures 1 and 2. Functional

abstraction identified a set H of k=8 terms (Table 3, red in

Figure 3) as headlines of the biological processes in which the 119

genes of hereditary hearing loss are involved. Subsequently, three

headlines were eliminated since they were explained (covered) by

other members of H. The final set of functional areas emerging

from functional abstraction (FA) contained five terms (green circles

in Figure 3). This improved the overall values of the four

predefined major abstraction requirements substantially, i.e.,

certainty, coverage, information value and conciseness (Table 4),

as compared to the currently most often used approaches to ORA

interpretation (CLASSIC detail, CLASSIC p-value).

Discussion

A typical ORA results in an all-embracing, encyclopedical

representation of the knowledge about biological processes,

molecular functions or cellular components related with a given

gene set. Human comprehension of this complex knowledge

requires abstraction to a manageable number of headline terms as

acknowledged previously [8]. The method of functional abstrac-

tion (FA) exceeds previous attempts of ad-hoc selections of suitable

terms and uses quantifiable key requirements of an abstraction of a

polyhierarchy, i.e., certainty, coverage, information value and

conciseness. The method provided the comparatively highest

overall values in these dimensions and identified headlines that

reflect the definition of the trait exemplified by hereditary deafness

[9].

The present FA method uses the term with the largest numerical

value of remarkableness of each taxonomy as a candidate for a

headline. The optimization of remarkableness encompasses both,

the certainty that a GO term represents the taxonomy and its

information value, because it is the product of both numerical

values rescaled to the unit interval. By the selection of suitable

terms for all taxonomies, FA also delivers the complete coverage of

a selected ontology. By taking the Miller optimum into account, an

abstraction of a set of headlines is obtained which explicitly aims at

maximizing human understanding of the ‘‘big picture’’ of a

specific ontology.

The process of abstraction may enable emergence [17] in the

sense that novel, formerly unseen properties on a macroscopic

level become visible on top of the only locally defined pieces of

knowledge. Emergence in understanding might be obtained by

integrating taxonomies into a more comprehensive view on the

specific ontology as a whole, i.e., by the interactions of the locally

defined headlines for the detail knowledge representations with the

global structure of the specific ontology [17]. The procedures of

detailization or subsumption provide a basis to obtain emergence

in particular when in larger data sets the initial number of

functional areas selected on the basis of remarkability and

coverage differs from the Miller optimum [15].

In applications with larger sets of genes than in HHI this could

be already observed and used for the discovery of new bits of

knowledge: by a combined proteomic and transcriptomic analysis

of a set of n= 231 genes were identified for the human olfactory

bulb [11]. A suitable ORA identified for this gene set a set of 94

significant GO terms. By the functional abstraction method

presented here the existence of neurogenesis in the adult human

olfactory bulb emerged as a major finding [11]. An ORA on genes

related to pain [18] resulted for the n= 410 genes causally

involved in pain initially in 234 significant terms. Functional

abstraction identified only 12 relevant functional areas that

comprehensively describe the biology of pain from a genetics [18].

With its regard to several intuitively important dimensions of an

abstraction of ORA results (certainty, coverage, information value

and conciseness), FA exceeds the currently most often applied

method of selecting the terms with the most significant p-values

(CLASSIC), which, in contrast to FA, only aims at certainty. Such

a limited focus may result in low values for coverage and

information. This applied also to the present HHI example gene

set. Similarly, another classical method consisting of selecting the

leaves of the ontology (CLASSIC details) as an abstraction

provides complete coverage. However, this method disregards

information value and certainty. Moreover, the obtained headlines

directly depend on the ORA parameters. In the extreme, those

consist of just the root term if the chosen p-value threshold is very

low, or in a great number of headlines in the opposite case. A

typical example of the current state-of-the-art in the abstraction of

specific ontologies is the selection of headlines for a set of 70 genes

of which 55 are included in the present HHI set (Figure 4 in [8]).

The specific ontology contains 49 terms and 3 details. These

details and two other terms are marked as remarkable. That

method of abstraction was ad hoc and involved a major subjective

component.

As a consequence of this comprehensive and comprehension

focused approach, FA improved the classical methods of ORA

interpretation in two main ways. Firstly, it provided the number k

of the functional areas covered by a given gene set as a result. By

contrast, in the classical methods k depends on the selection of the

p-value threshold. Secondly, FA avoided the selection of a set of

terms mainly along the most important taxonomy. The reason

why the CLASSIC method often results in a set covering only a

single or a few but usually not all taxonomies originates from the

semantics of the gene ontology. If a gene G is annotated to a

certain term T, then by the rules of the GO all parents of T are

automatically also annotated with gene G (http://www.

geneontology.org/GO.annotation.conventions.shtml). Therefore,

a large part of the genes annotated to term T will be also

annotated to the parents (i.e. broader terms) P of T, resulting in

correlated lists in T and P. If T is significant, the significance of P is

consequently highly likely. This issue has previously been

approached by a decorrelation method [5]. In their ‘‘TopGO’’

approach to ORA, these authors propose two different methods,

ELIM and WEIGHT [5], for the recalculation of p-values based

on different heuristics to eliminate correlations. Results these

methods applied to the present HHI gene set are shown in the

supporting information (Figures S1 and S2, respectively). The

methods produced comparatively lower values in the quality

dimensions of abstraction (Table 4). Moreover, GO terms

emerged as significant which were not part of the original ORA

results.

Conclusions

The method of functional abstraction (FA) aims at human

comprehension of voluminous gene set specific ontologies. The

idea was to select terms that provide a comprehensive, yet

Functional Abstraction of ORA Results
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complete coverage of the biological functions of a given gene set.

The objective was achieved by (i) introducing a measure of

remarkableness of a term addressing both, the certainty that a

term indeed describes the functions of the gene set and the

information content that avoids too general or too narrow

descriptions, (ii) by selecting headlines from the most remarkable

terms in order to obtain complete coverage of all parts of the

polyhierarchical structure of the biological functions of the gen set,

Figure 3. Functional abstraction of ORA results. Graphical representation of the specific ontology showing the polyhierarchy of functional
annotations (GO terms) assigned to HHI gene set (G= 119, Table 1). ORA resulted in 71 terms at a significance level of p = 1.0 ? 1022 and Bonferroni a
correction (grey ellipses). The functional abstraction approach to ORA results uses as a main measure the degree of remarkableness, calculated as the
product (AND) of certainty, i.e., how safely one can assume that a GO term described the given set of genes, and information, calculated as Shannon
information. Among most remarkable terms (n = 8, red ellipses), immediate redundancy is eliminated by deleting all terms that are already presented
by others. This resulted in functional areas (red ellipses with green margins) conferring a comprehensive set of headline terms characterizing the
biological functions of the HHI gene set. Although the present data set was of limited complexity, greater data sets may result in the initial
identification of more than the desired up to nine functional areas. In this case, the method of subsumption can be applied to reduce this number. In
the present case, this would, for example, join ‘‘cellular developmental process’’ and ‘‘anatomical structure development’’ to the next upper
remarkable GO term ‘‘developmental process’’ (orange margins). In the opposite case, if the number of functional areas is low and an increase may be
desirable, detailization may be applied. In this case, the terms downstream the hierarchy with the next highest remarkability are chose. For example,
‘‘neurological system process’’ would be split into ‘‘sensory perception and ‘‘equilibrioception’’ (yellow margins), which along the hierarchy have the
next highest value of remarkability following the initial term. Note that the intermediate terms have lower remarkability and are therefore not chosen
(Table S1).
doi:10.1371/journal.pone.0090191.g003

Table 3. The headlines produced by functional abstraction resulted in these five headline terms or functional areas (green circled
red ellipses in Figure 2).

Go Term ID GO category Info [%] Certainty [%] Remarkableness Nr. Genes (and %)

GO:0050877 neurological system process 97 95 92 55 (46)

GO:0048856 anatomical structure development 98 77 75 54 (45)

GO:0007275 multicellular organismal development 98 65 64 52 (44)

GO:0048869 cellular developmental process 98 45 44 35 (29)

GO:0016043 cellular component organization 100 20 20 40 (34)

Significant GO terms are a result of over-representation analysis (ORA) of the n=119 genes (Table 1) of the Hereditary Hearing Impairment (HHI) gene set. The precise
definition of the GO terms can be obtained using AmiGO search tool for GO at http://amigo.geneontology.org/[20]. For a full list of significant terms and associated p-
values, see Table S1. Remarkableness of a term is the product of the certainty that the term is not by chance associated with the GO biological process and the
information of the particular subset of genes associated with the term. Genes is the number of genes annotated to the headline.
doi:10.1371/journal.pone.0090191.t003
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(iii) and by adjusting the number of headlines close to the Miller

optimum of 5–9 to enhance human comprehension [15]. The

result was an improvement of the current state-of-the art

approaches to ORA interpretation in several ways. This included

the identification of the number of informative headlines and the

concise coverage of the original ORA. In this respect, FA exceeded

the classical approaches at ORA abstraction (CLASSIC detail,

CLASSIC p-value). By focusing on information rather than

decorrelation of GO terms, it targeted towards human compre-

hension more than ELIM and WEIGHT [5] which aim at term

decorrelation. On large gene sets typically obtained from topical

searches or microarray analyses FA describes complex and

unmanageable knowledge representations in a comprehensive

manner [10,11]. This may lead to a stimulation of the research of

new aspects strengthening functional genomics in biomarker and

drug discovery.

Supporting Information

Figure S1 ORA results and functional areas obtained
with the ELIM TopGO method [5]. Graphical representation

of the specific ontology showing the polyhierarchy of functional

annotations (GO terms) assigned to HHI gene set (G= 119) and

forming a directed acyclic graph (DAG). The figure was generated

with the GeneTrail web-based analysis tool [12]. Significant GO

terms were identified using ORA, which resulted in 71 terms at a

significance level of p = 1.0 ? 10-2 and Bonferroni a correction

(grey ellipses in which the observed number of member genes, the

expected number of genes by chance and the p-value of the

significance of the deviation from the expectations (Fisher’s exact

test) are annotated). The TopGO approach [5] to GO abstraction

exploits the correlation of terms. The selection of the k terms of the

smallest values is done from the recalculated p-values. The ELIM

method investigates the nodes in the GO graph bottom-up and

iteratively removes genes from significant nodes [5], recalculating

the ORA with the remaining set of genes. This may result in the

selection of terms that were not significant in the original ORA

(given at the right bottom of the figure, in red to emphasize the

formal equivalence with the functional areas in Figures 1 and 3 of

the main report).

(EPS)

Figure S2 ORA results and functional areas obtained
with the WEIGHT TopGO method [5]. Graphical represen-

tation of the specific ontology showing the polyhierarchy of

functional annotations (GO terms) assigned to HHI gene set

(G= 119) and forming a directed acyclic graph (DAG). The figure

was generated with the GeneTrail web-based analysis tool [12].

Significant GO terms were identified using ORA, which resulted

in 71 terms at a significance level of p = 1.0 ? 10-2 and Bonferroni

a correction (grey ellipses in which the observed number of

member genes, the expected number of genes by chance and the

p-value of the significance of the deviation from the expectations

(Fisher’s exact test) are annotated). The TopGO approach [5] to

GO abstraction exploits the correlation of terms. The selection of

the k terms of the smallest values is done from the recalculated p-

values. In the WEIGHT method, significance scores of connected

nodes (a parent and its child) are compared to detect locally most

significant terms, which is achieved by down-weighting genes in

less significant neighbors [5]. This may result in the selection of

terms that were not significant in the original ORA (given at the

right bottom of the figure, in red to emphasize the formal

equivalence with the functional areas in Figures 1 and 3 of the

main report).

(EPS)

Table S1 Significant GO terms are a result of over-
representation analysis (ORA) of the n=119 genes of the
Hereditary Hearing Impairment (HHI) gene set. The

precise definition of the GO terms can be obtained using AmiGO

search tool for GO at http://amigo.geneontology.org/[20].

Remarkableness of a term is the product of the certainty that

the term is not by chance associated with the GO biological

process and the information of the particular subset of genes

associated with the term. Genes is the number of genes annotated

to the headline.
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10. Lötsch J, Doehring A, Mogil JS, Arndt T, Geisslinger G, et al. (2013) Functional

genomics of pain in analgesic drug development and therapy. Pharmacol Ther.
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