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Abstract

Social systems have recently attracted much attention, with attempts to understand social behavior with the aid of
statistical mechanics applied to complex systems. Collective properties of such systems emerge from couplings between
components, for example, individual persons, transportation nodes such as airports or subway stations, and administrative
districts. Among various collective properties, criticality is known as a characteristic property of a complex system, which
helps the systems to respond flexibly to external perturbations. This work considers the criticality of the urban
transportation system entailed in the massive smart card data on the Seoul transportation network. Analyzing the
passenger flow on the Seoul bus system during one week, we find explicit power-law correlations in the system, that is,
power-law behavior of the strength correlation function of bus stops and verify scale invariance of the strength fluctuations.
Such criticality is probed by means of the scaling and renormalization analysis of the modified gravity model applied to the
system. Here a group of nearby (bare) bus stops are transformed into a (renormalized) ‘‘block stop’’ and the scaling relations
of the network density turn out to be closely related to the fractal dimensions of the system, revealing the underlying
structure. Specifically, the resulting renormalized values of the gravity exponent and of the Hill coefficient give a good
description of the Seoul bus system: The former measures the characteristic dimensionality of the network whereas the
latter reflects the coupling between distinct transportation modes. It is thus demonstrated that such ideas of physics as
scaling and renormalization can be applied successfully to social phenomena exemplified by the passenger flow.
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Introduction

Recently, there is much interest in applying concepts of

statistical mechanics to social systems. For example, such concepts

as the phase transition [1], random walk [2–4] or phase synchrony

[5] were used to understand collective properties, while social

networks [6–8] provide a simple and convenient description of

social systems. The collective properties and associated complexity

of the systems in general emerge from the couplings between

components, e.g., individual persons [3], transportation points

such as airports [9] or subway stations [10], and administrative

districts [5,11]. Among them, criticality is one of the most

attractive features in complex systems including social systems.

Hitherto, many of the studies devoted to the emergence of the

criticality in complex systems [12–17] have been interpreted in

terms of self-organized criticality [18] and scale-free power-law

distributions have been regarded as the indicator of the criticality

at which the typical length scale disappears. However, rather a

simple stochastic process can give rise to the power-law

distribution [19,20] and the divergence of the correlation length,

namely, the power-law behavior of the correlation function rather

than others is crucial in the criticality. Furthermore, in view of the

fact that the renormalization group theory of phase transitions

provide a profound theoretical framework, validating the scaling

relations and universality (see, e.g., [21,22]), it is desirable to clarify

such concepts as the thermodynamic limit, thermal fluctuations

and correlations, dimensionality of the system, or relevant

coupling between the components, in verifying the criticality

based on the theoretical criteria. Unfortunately, however, this task

still remains unaccomplished for most of complex systems, due to

the limit of the data quality. Notwithstanding this difficulty, there

have been attempts to resolve differences between the theory and

real data by applying methods of statistical mechanics [15–17].

Here the urban transportation system is of great interest as a

complex social system, because couplings in the system are

accompanied by the movements of people. In recognition of the

fact that a majority of people reside in the urban area in this

modern age and most of urban flows are realized through the mass

transportation system such as the subway or the bus network, the

study of the urban transportation system should obviously be

essential for probing principles of social systems. Further, recent

advances of the smart card technology enable us to gather the

information on individual trips and to analyze direct measurement

of human movements. In this direction, the Seoul subway system

was studied through the smart card data [23–25].
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In this paper, we consider the Seoul bus system and analyze the

smart card data for the passenger flow. The smart card (called the

T-money card in Seoul) data contain detailed information of each

trip including the departure/arrival bus stop and time as well as

the bus route taken by the passenger, and thus provide a direct

measure on the urban transportation flow. The whole data are

collected and managed by the government of Seoul City, and not

open to public. With special permission, we have had access to the

one week (10–16 April, 2011) data (with personal identification

removed) and analyzed the obtained data in detail. It is observed

that correlations between numbers of passengers using given bus

stops indeed display power-law behavior, which manifests the

criticality emerging from couplings between passenger flows.

Further, equilibrium fluctuations and the system dimensionality

are also clarified. To probe the criticality in more detail, we

propose appropriate renormalization processes and perform finite-

size scaling on the modified gravity model implementing the

couplings between bus stops. The resulting model with the

renormalized parameters is shown to give a good description of the

Seoul bus system and it is thus demonstrated that statistical

mechanics is successfully applicable to the urban transportation

flow.

Results and Discussion

Seoul Bus System: Criticality and Renormalization
Let us first describe the basic characteristics of the Seoul bus

system, which is a major transportation mode in the Metropolitan

Seoul with more than 28% of the modal share in 2010 [26]. As of

April, 2011, there were 595 bus service routes and 15647 bus stops

in total, among which 12986 stops were located in Seoul (see

Fig. 1). More than six million transactions or completed passenger

trips were made on each weekday of the given week in April, 2011.

Here we consider the bus network which consists of bus stops

serving as nodes and origin-destination pairs of stops as links

between nodes.

We begin with the dimension of the system, which can be

defined according to the distribution of the nodes. Considering the

geographical locations and the corresponding spatial distribution

of bus stops in the two-dimensional space, we probe the

correlation sum of bus stops, i.e., the number of bus stops growing

with the (physical) distance from given stop, which gives the

correlation dimension of bus stops [27]. The result is plotted in

Fig. 2(a). The dimension d of the network is then close to unity

(d~1:06+0:01) at distances shorter than 200 m, reflecting the

linearity of each bus route. At distances between 200 m and

10 km, we obtain the value d~1:78+0:01. Because the bus stops

do not cover the ground compactly due to geographical

constraints, this value, less than two, seems reasonable. Further,

it is of interest that this also accords with the fractal dimension

estimated from the urbanized area distribution [12,28]. On the

other hand, as the length scale reduces below 200 m, the

distribution changes strikingly, yielding strong finite-size effects.

We also compute the correlation dimension dr of each bus service

route directly from the bus route path, by means of the automatic

plateau extraction algorithm [29]. Some bus route paths are not

long enough to detect the plateau with given flatness 0.5.

Disregarding those, we use 300 bus service routes among 595

routes to estimate successfully the correlation dimension as

dr~1:1+0:2, which confirms the origin of the finite-size effects.

On the other hand, the bus network of Seoul is rather sparse in

the following sense: Whereas the bus system is embedded on the

two-dimensional ground, passenger flows are carried by bus

service routes which are specified by roughly one-dimensional

arrays of bus stops. The resulting sparse nature of the bus network

is conveniently described by the network density defined as the

active fraction of all possible links between active nodes:

r:
2Nw

Ns(Ns{1)
, ð1Þ

where Ns and Nw are the total numbers of active nodes and of

active links. By active nodes and active links, we mean bus stops

used by nonzero numbers of passengers and origin-destination

pairs of bus stops carrying nonzero passenger flows, respectively.

Data for these characteristics of the Seoul bus network are

summarized in Table 1. Note that the network shares essentially

the same behavior on weekdays.

In general, different bus stops and routes are coupled crucially

to each other, as revealed by the fraction of transfers occupying

more than half the total transactions. This gives rise to interesting

collective behaviors of the passenger flows, manifested by

correlations in the system. Specifically, we focus on the strength

si of bus stop i, which corresponds to the number of passengers

using the bus stop, and consider the strength correlation function.

In view of the strength taking very different values depending on

the bus stop and the multiplicative Yule type process in

transportation systems [24,25], we consider the normalized

strength ~ssi:si=SsiTt in probing correlations, where S � � � Tt

represents the time average over five weekdays. Here data on

single weekdays correspond to microscopic states, and the average

taken over them describes the macroscopic state. Accordingly, the

correlation function of normalized strengths is defined to be

C(r)~S~ssi~ssjT{S~ssiTS~ssjT~S~ssi~ssjT{1, ð2Þ

where stops i and j are separated by time distance r on a bus

service route and S � � � T represents the spatial average taken over

all stops as well as the time average over five weekdays. Here the

time distance between two bus stops corresponds to the time

required for traveling between the two stops. More specifically, it is

defined to be the average travel time taken by passengers, as

extracted from the smart card data. Because the spatial distance is

Figure 1. Distribution map of bus stops, together with typical
service routes of three characteristic types, in the Seoul bus
network. As shown, routes have various service path lengths. A
standard city bus route is depicted by the (blue) dashed line. A local
shuttle bus route is plotted by the short (red) solid line; the (black)
dotted line represents the commuter bus route connecting directly the
central business district of Seoul and the satellite city Bundang. Square
symbols mark the locations of the bus stops which the commuter bus
route serves.
doi:10.1371/journal.pone.0089980.g001
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apt to be distorted by geographical factors such as topography or

traffic congestion [30], the time distance serves as a more

appropriate measure capturing the actual economic cost or the

social distance experienced by the passengers. In picking out bus

stop pairs for given time distance, we allow a tolerance of two

seconds and compute the correlation function for the Seoul bus

network with 12986 bus stops, to obtain the power-law behavior

C(r)!r{g with exponent g~0:95+0:03, as shown in Fig. 2(b).

Such power-law correlations manifest emergence of criticality

[22], which is characterized by scale invariance, and conveniently

probed by means of scaling and renormalization. Renormalization

was applied both to model networks and to networks constructed

from data [31,32], and corresponding flows and fixed points were

examined [33]. Note that the bus network is basically a spatial

network rather than a topological one: Couplings between bus

stops depending on the physical distance are of importance,

making it necessary to perform geographical scaling [34].

In the following, we develop the renormalization process

appropriate for the spatially embedded network, and apply it to

the bus network. The spirit of the renormalization is similar to that

of Monte Carlo renormalization [35–37] and we treat the

transaction data to reveal the flows and fixed points of the

couplings. We consider two different procedures of renormaliza-

tion, ‘‘box renormalization’’ and ‘‘node renormalization’’, and

compare the results, to demonstrate their applicability.

In the case of box renormalization, we partition the whole area

of Seoul into square boxes of given size a, similarly to the

renormalization process for the topological network [32]. The

difference lies in the concept of the distance: It is defined

geographically for the spatially embedded network, whereas the

chemical distance is used for the topological renormalization of the

network. Those bus stops within each box are then considered to

form a ‘‘block stop’’, thus reducing ‘‘degrees of freedom’’. This is

followed by scale transformation, the details of which are described

as follows: (1) Partition the system into square boxes of linear size

or ‘‘lattice constant’’ a. (2) Obtain the number of passengers using

any bus stops in each box, which gives the strength of the

corresponding block stop. Accordingly, we obtain the passenger

flows between block stops as well. (3) Compute the relevant

parameters in the renormalized system consisting of block stops.

(4) Increase the block size a and repeat the above procedure. Here

the increase in the block size is followed by the scale transforma-

tion under which the spatial length scale shrinks by the same

proportion. Namely, the linear size L of the system is reduced, set

inversely proportional to the block size: L!a{1. To be specific,

we choose a~33 m, corresponding to 0.0003 degree of latitude, as

the fundamental size and perform renormalization in which the

block size is increased by 10% at each stage, ranging from 33 m to

10 km. Namely, the block size at the nth stage is given by a(n)~bna

with the scale factor b~1:1. The renormalized systems with block

size a~222 m, 476 m, and 927 m are exhibited in Fig. 3(a).

In node renormalization, nearby bus stops are combined to

form a block stop. We partition all the bus stops into groups, each

consisting of p neighboring bus stops. This process is repeated as p
is increased from unity. The effective block size (lattice constant) a
is determined in the following way: First, the center of a block stop

is given by the average location of bus stops consisting the block

stop. Then the average block radius is defined as the average of the

root-mean-square distance of the constituent stops from the center:

ar:
1

N

XN

k~1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

p

Xp

i~1
½(xk,i{�xxk)2z(yk,i{�yyk)2�

s
, where N is

the total number of block stops, (xk,i,yk,i) is the location of the ith

stop of the kth block stop and (�xxk,�yyk) is the center of the kth block

stop. Finally, the average block radius multiplied by an appropriate

scale factor c is defined to be the effective block size: a:car. The

scale factor c would be two if all block stops formed close packing of

perfect circles; otherwise c is greater than two. Here we fix c to have

the same network density profile data in the two renormalization

schemes collapse onto each other (see Eq. (5) below), which yields

c~3:54. Technically, we employ simulated annealing, with the

average block radius as the cost function to minimize, and obtain

the optimal partitioning into groups of p nearest neighboring stops

for p~1 to 256. To achieve this, we first carry out the greedy

algorithm, the result of which is adopted as the initial configuration

(block stop distribution). While cooling the temperature algebrai-

cally toward ‘‘zero temperature’’, where the acceptance probability

is about 10{8, we perform 108 Monte-Carlo steps at each

temperature. It turns out that the average block radius is about

2=3 of that obtained via the greedy algorithm and there remain no

pathological block stops consisting of spatially separated groups of

bus stops. As an example, the renormalized system for p~32,

corresponding to a~1394 m is shown in Fig. 3(b).

In both renormalization schemes, the distance between block

stops, i.e., the lattice constant a would be made unchanged, if the

system gets properly shrunk under the scale transformation, as

shown in Fig. 3(a). However, since we deal with the time distance

rather than spatial one, we save the trouble of taking the spatial

shrinkage step and describe the system with the original size to

preserve its geographical properties. In fact this is closely related

Figure 2. Correlation sum and correlation function C of bus stops versus distance R on the logarithmic scale. Also
drawn are lines of slope 1.06 and slope 1.78, which correspond to the geographical dimension d depending on the length scale. (b) Strength
correlation function C versus time distance r on the logarithmic scale. For comparison, a straight line of slope 0:95 is also shown.
doi:10.1371/journal.pone.0089980.g002

Criticality and Scaling in the Transportation Flow

PLOS ONE | www.plosone.org 3 March 2014 | Volume 9 | Issue 3 | e89980

. (a) Correlation sum



with how to increase the degrees of freedom and to reach the

thermodynamic limit of the system. Usually, the thermodynamic

limit is attained by increasing both the degrees of freedom and the

system size with the density being fixed. For the bus network

system, however, increasing the spatial size of the city would also

increase characteristic time scales of urban transportation modes

and thus change the relations between them. Therefore, it is more

convenient for the transportation system to reach the thermody-

namic limit by increasing the density, namely, by increasing the

number of bus stops while keeping the spatial size of the city

unchanged. In this view, the finite-size effects associated with the

lack of a sufficiently large number of bus stops are attributed to the

finite density of bus stops rather than the finite size of the area.

The thermodynamic limit L?? with the linear size L in units of

a may thus be reached by increasing the density, i.e., by taking the

limit a(!L{1)?0. This is just the reverse of the scale

transformation in the renormalization process where a is increased

by the construction of block stops. As the renormalization

proceeds, the numbers Ns and Nw of active nodes and links also

keep decreasing because some neighboring stops are replaced by

single block stops. We count the number of block stops of nonzero

strength and the number of renormalized links with nonzero

weight on each renormalization stage.

To check the criticality of the renormalized system, we compute

the correlation function given by Eq. (2) and show the behavior in

Fig. 3(c) and (d). Data in the range between 50 s and 1000 s are

used for fitting, which cover 75% of the total 28,617,196 passenger

transactions. Power-law behaviors are observed with exponent

g~0:95+0:07 and 0:91+0:07 in the box and node renormaliza-

tion schemes, respectively, which agree with the ‘‘bare’’ (un-

renormalized) behavior in Fig. 2(b) within error bars; this confirms

the criticality of the system.

For additional verification of the criticality, we also examine the

scaling behavior of temporal fluctuations, following the idea in Refs.

[3,6]. At the critical point, fluctuations should be scale invariant,

emerging at all scales. To consider temporal fluctuations, we first

define the mean (normalized) strength of the bus system

~ss~
1

Ns

XNs

i~1

~ssi: ð3Þ

and its standard deviation

s~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S~ss2Tt{S~ssT2

t

q
, ð4Þ

which measures the root-mean-square (rms) temporal fluctuations

of the mean strengths. If there were no correlations, the rms

fluctuations should decay with the size (number of nodes) as N{1=2
s ,

simply according to the law of large numbers. In reality, Fig. 4 shows

that the rms fluctuations of the original data (plotted with red

squares) remain essentially unchanged as the size Ns is varied; such

anomalous scaling manifests scale invariance of the fluctuations or

criticality. For comparison, we shuffle randomly the temporal

sequences of the strengths of bus stops, breaking correlations

between them, and construct renormalized systems from the

shuffled data. The corresponding rms fluctuations of shuffled data

indeed decay with the system size as N{1=2
s (see the data with green

circles in Fig. 4). These results indicate that the anomalous scaling

has its origin in strong correlations present in the original data,

confirming the criticality in the system.

Here one should be careful about renormalization with large

block size, since there is a cutoff originating from sparseness of the

network. To probe this, we examine the scaling behavior of the

network density defined by Eq. (1). In the system of geographical

dimension d and linear size L, the number of nodes scales as the d-

dimensional volume: Ns!Ld . On the other hand, if each bus

route is described by a dr-dimensional array of bus stops, the

number of bus stops on a route scales as Ldr , leading the number

of links on each route to scale as L2dr . Because each bus route

shares this scaling property, the total number of links in the whole

bus system also scales as L2dr . Accordingly, we have the network

density

r!L{2(d{dr), ð5Þ

which decreases as the system size L grows (since dr *w 1 and *v2).

Heretofore, we have assumed that the overlap of bus routes does

not change significantly as the box size is increased. When the size

a becomes larger than certain threshold ac, however, the overlap

increases significantly with renormalization, making Eq. (5) fail for

awac. In fact, there exist overlaps of bus routes even in the bare

bus system: Most of bus routes share their paths with some other

routes and on average 2.35 routes serve each bus stop. As

renormalization proceeds, i.e., as a is increased and more stops

merge into single block stops, some bus routes which do not serve

the same bus stop in the bare system serve the same block stop in

the renormalized system; this leads the overlap to increase. Here

the threshold ac, which may be interpreted as the typical distance

between nearby bus routes without overlap, turns out to be around

1 km. Note that development of such additional overlaps of bus

Table 1. Statistical properties of the Seoul bus network.

Transaction No-transfer Transfer-subway Ns Nw r

Monday 6,118,063 2,465,802 1,673,396 15,558 388,611 0.00321

Tuesday 6,197,066 2,506,855 1,688,808 15,553 390,277 0.00323

Wednesday 6,244,874 2,535,658 1,693,175 15,555 390,699 0.00323

Thursday 6,190,614 2,515,078 1,684,666 15,555 390,058 0.00322

Friday 6,160,585 2,533,688 1,653,979 15,552 389,362 0.00322

Saturday 5,349,482 2,438,953 1,266,950 15,512 377,511 0.00314

Sunday 3,549,359 1,669,990 803,016 15,439 335,420 0.00281

The total number of transactions regardless of transfers, the number of transactions without transfers to other bus routes or the subway, and the number of
transactions with transfers to the subway are given on each day. Also shown are the number Ns of active nodes and the number Nw of active links as well as the
network density r.
doi:10.1371/journal.pone.0089980.t001
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routes affects the sparseness of the network. In general the bare

network is sparse, which implies that coupling is essentially short

ranged: Despite that bus routes can link those bus stops very far

from each other, there is limitation arising from the strong

anisotropy of each route and each bus stop can couple to only a

small fraction of bus stops. As a or p is increased, however, the

short-range nature of the coupling is lifted and the increase in the

overlap of bus routes drives the network finally toward the fully

connected limit; this affects the universality class and critical

behavior of the system. Therefore, renormalization, so as to

preserve the short-range nature of the coupling, should not

proceed indefinitely.

Figure 5 shows how the network density varies with the block

size, i.e., flow of the network density under renormalization [38]. It

is of interest that the densities in both renormalization schemes

collapse onto each other, which has fixed the scale factor c in node

renormalization. Observed is the power-law growth with the block

size: r!a2(d{dr), which is just Eq. (5) since L!a{1. The exponent

takes the value 2(d{dr)&1:40+0:02 in both renormalization

schemes, until the block size a reaches the cutoff ac&1000 m.

This result, together with the geographical dimension of the

network d&1:78 obtained from the scaling behavior of the

correlation sum, leads to the dimension of the bus service route

dr&1:08+0:02, which appears consistent with the correlation

dimension of bus stops at short distances (below 200 m) and/or the

dimension obtained directly from each bus service route. Whereas

deviations from the power-law behavior for av200 m reflect the

finite-size effects, those emerging for awac indicate that the nature

of the coupling is altered. Namely, the network becomes no longer

sparse due to the substantial overlaps between bus routes and as a

result, the universality may change, disallowing renormalization

beyond ac.

Modified Gravity Model
To illustrate the utility of the renormalization theory, we apply

it to the gravity model, which provides a prototypical description

of passenger flows in transportation networks. The conventional

gravity model may suffer from oversimplifications. Specifically,

limitations due to the geographical non-uniformity have been

addressed, together with possible modifications to overcome the

Figure 3. Renormalization and correlation function in the two schemes (a) Box renormalized systems for block size a~222 m,
and 927 m. (b) Node renormalized system for p~32 or effective block size a~1394 m. Nodes of the same color and symbol
stops composing a single block stop. (c) Correlation function in the box renormalized system for a~476 m, together with the straight line of slope
0:95. (d) Correlation function in the node renormalized system for p~6 or a~466 m, together with the straight line of slope 0:95.
doi:10.1371/ journal.pone.0089980.g003

Figure 4. Anomalous scaling of the temporal fluctuations. Red
squares represent rms fluctuations of the original data; green circles
show the results obtained from 100 randomly shuffled data, with the
error bars corresponding to one standard deviation. The blue solid line,
having the slope {0:5, corresponds to N{1=2

s . The saturation for
Nsw3000 is due to incomplete randomization.
doi:10.1371/journal.pone.0089980.g004
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limitations [39,40]. In the case of the intra-urban flow, on the

other hand, transportation facilities are among the main factors

which reflect the non-uniformity originated from the modularized

structures and distinctive functional connections between them. In

this direction, the modified gravity model was proposed [25],

based on non-transfer trips; this makes it possible to probe the bare

coupling between the nodes. Note that there in general exists

cooperation or competition among different transportation modes,

e.g., walk, bus, or subway, which gives rise to coupling between

corresponding transportation networks. Such coupling can be

taken care of by introducing modulation of the gravity model by

the Hill function. This leads to the modified gravity model:

f (r):
Fij

sisj

~
G

ra

rn

rnzKn
gij , ð6Þ

where Fij is the passenger flow between nodes i and j and gij

describes fluctuations. The reduced flow f (r) thus depends only on

the time distance r between nodes i and j; G is the overall

proportionality constant and K is the time constant separating the

long- and short-distance regimes. In this model, parameters of

relevance are the gravity exponent a and the Hill coefficient n:

The former governs the long-distance behavior whereas the latter

measures the number of coupled transportation modes. In the case

of the Seoul subway system of the year 2005, we observed that

a~1:94, K~17:1 min and n~3:0, an integer within error bars.

In addition, fluctuations gij were found to follow a log-normal

distribution quite accurately, implying the Yule-type nature of the

transportation system [25].

We first apply the modified gravity model to each of the 595

routes in the Seoul bus network. Note that some routes serve bus

stops in satellite cities which are not plotted in Fig. 1. For most

routes, the model gives a good description of the passenger flows at

short- and long-time distances with appropriate crossovers

between them, see Fig. 6(a). On the other hand, the model does

not apply well to those routes with too few bus stops, for which

insufficient degrees of freedom disallow least-squares fitting with

reasonable values of the time constant K ; a majority of commuter

bus routes and local shuttle bus routes belong to this category.

Such routes, accounting for 11.3% of the 595 routes on weekdays,

are excluded in further analysis.

Despite the good description for each individual route, resulting

model parameters vary substantially with the route and follow the

distributions plotted in Figs. 6(b), (c), and (d). It appears that the

role of a bus route is influenced much by the geographical

environment such as nearby subway stations as well as such

characteristics as the total number of bus stops and the total path

length of the route. This contrasts sharply with the subway system

which displays universality among different lines, depending only

on topology [25].

The modified gravity model is then applied to the whole bus

system in Seoul. Namely, we obtain the reduced flows on all links

between all the bus stops, as shown for Monday in Fig. 7. The

corresponding values of the parameters, obtained via least-squares

fitting, are summarized in Table 2. Note also that the Hill

coefficient takes non-integer values, which appears unphysical.

This can be remedied by carrying out scaling analysis, as discussed

in the next section.

Scaling Analysis
Making use of the criticality, we perform renormalization and

apply the modified gravity model to the renormalized system, as

shown in Fig. 8(a) for box renormalization and Fig. 8(b) for node

renormalization. It is remarkable that the renormalized system fits

excellently into the modified gravity model (compared with the

bare system); In particular, the description becomes more and

more precise as renormalization proceeds up to the cutoff ac

illustrated in Fig. 8(c) and Fig. 8(d), exhibiting reduced x2 versus

the block size a in the renormalized system. Note that the cutoff

ac&1000 m specifies precisely the scaling regime (see Fig. 5). Now

we can obtain the renormalized values of the modified gravity

model parameters by taking the thermodynamic limit, i.e.,

extrapolating the data points in the scaling regime to the limit

a?0.

Values of the model parameters, obtained in the process of

renormalization, are plotted versus the block size in Fig. 9, both for

weekdays and for the weekend. As expected, the time constant K

remains essentially unchanged in the scaling region. On the other

hand, the gravity exponent a and the Hill coefficient n are shown

to decrease algebraically as the block size reduces (or as the system

size grows). For a 200 m, as expected in Fig. 2(a), this scaling

behavior is concealed by finite-size effects and should be

extrapolated; note that data points at a~0 represent the results

of the bare system summarized in Table 2.

Choosing the scaling region for the network density (see Fig. 5)

and fitting the data in that region, i.e., for the block size in the

range 200 mv* av* 1000 m, we obtain essentially the same values

of the gravity exponent and the Hill coefficient for both

renormalization schemes. The resulting renormalized values of

the gravity exponent a and the Hill coefficient n are summarized

in Table 2. It is of interest to compare these results with the non-

renormalized values which suffer from finite-size effects, making it

necessary to perform renormalization to obtain physical values. In

particular, upon renormalization, the Hill coefficient appears to

take the integer value (n~2) within error bars. It is thus reasonable

to conclude that n~2, which implies that there is another

transportation mode coupled to the bus at short distances, perhaps

walking as an alternative to the bus.

Meanwhile, the gravity exponent a, measuring the dependence

of passenger flows on the (time) distance, is related closely to the

dimension of the system, defined appropriately. At long distances,

one may disregard the modification by walking and apply Gauss’

law to passenger flows regarded as fluxes. In the system of

appropriate dimension dn, this leads to f (r)!r1{dn , which implies

the relation a~dn{1.

Figure 5. Network density r versus (effective) block size a on
the logarithmic scale. Red circles and blue squares represent the
data in the box and node renormalization schemes, respectively.
Observed is algebraic growth with exponent around 1.4, as plotted by
solid lines fitting the data in the range 200 mƒaƒ1000 m.
doi:10.1371/journal.pone.0089980.g005
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The geographical dimension d, which we have considered,

describes the spatial distribution of bus stops and manifests the

origin of finite-size effects in the system. This dimension, however,

does not serve the purpose in the bus network embedded on the

two-dimensional surface, where passenger flows exist on links and

depend on the (time) distance. Instead, the network dimension dn

taking into account both geographical and topological characters

should be considered. We thus examine how passenger flows on

links vary with the time distance, adopting the method for the

spatially embedded network [41], and plot the results in Fig. 10.

There the network dimension is given by dn~2:63+0:27, which

indeed agrees with (az1) within error bars. We can finally

conclude that the individual feels the force with the exponent a in

the network embedded in (az1) dimensional space. This shows

that the functional connectivity, i.e., the linkage via bus service

routes, added to the geographically embedded bus stops, explains

the gravity exponent successfully, and suggests the possibility that

in a network of given geographical and topological structure and

node strengths, passenger flows between nodes can be obtained

from the gravity model.

Conclusions

Analyzing the smart card data during a week, we have studied

the passenger flow on the Seoul bus network system, to find power-

law correlations, characterized by algebraic behavior of the

strength correlation function of bus stops. By analogy with

statistical mechanics, daily variations of strengths have been

treated as thermal fluctuations and such criticality has been

probed by means of the scaling and renormalization analysis of the

modified gravity model applied to the system, which has revealed

the underlying structure of the system. In addition the dimensions

of the system have been clarified and their roles in the density

scaling been examined. It has been demonstrated that the resulting

renormalized values of the gravity exponent and of the Hill

coefficient give a good description of the Seoul bus network: The

former measures the characteristic dimensionality of the network

Figure 6. Modified gravity model applied to each service route. Symbols represent data points and solid lines describe model results, with
error bars estimated by standard deviations. (a) Reduced flow f versus time distance r on the logarithmic scale, for route No. 271 (which is a typical
standard city bus route plotted in Fig. 1 of the main paper) on Monday, when there were 36569 transactions in total. The least-squares fitting to the
model gives the parameters a~1:8(1), n~2:0(1), and K~950(90) s. In (b), (c), and (d), daily distributions of the time constant K , gravity exponent a,
and Hill coefficient n, respectively, are plotted for 595 bus service routes.
doi:10.1371/journal.pone.0089980.g006

Figure 7. Modified gravity model applied to the whole bus
network. Symbols represent data points and solid lines describe model
results, with error bars estimated by standard deviations. Reduced flow
f versus time distance r on the logarithmic scale, for the whole bus
network on Monday. Deviations at distances larger than an hour
(r *> 3600 s) have the origin in boundary effects.
doi:10.1371/journal.pone.0089980.g007
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whereas the latter reflects the coupling between distinct transpor-

tation modes.

As criticality emerges in this transportation system and

renormalization has been carried out, it is tempting to find

analogies and correspondences with physical models studied

extensively in their critical regimes by means of tools of statistical

physics, such as phase transitions in magnets or self organized

critical systems. It may also be interesting to isolate the nature of

long- or short-range interactions at play, which could explain the

emergence of collective effects essential for the criticality in the

network. It is obvious that travel behavior is dictating the

interactions since passengers do not use bus routes in a random

way but want to minimize the time between the origin and

destination and to enhance the mobility during peak periods. Here

such a local variable as the strength of each bus stop is used as the

local order parameter; the bus network is described by the graph

at each vertex of which these variables are located. Usual

quantities such as correlation functions are then useful in

determining the existence of a critical regime, from which typical

scaling exponents at large distances are extracted. Unfortunately,

it is not obvious how to identify the control parameters

corresponding to the temperature or external fields. For instance,

one may consider the government policy or the economic and

political state as a candidate for the social temperature while the

Table 2. Parameters of the modified gravity model.

Bare system Box renormalization Node renormalization

a n K (s) Reduced x 2 a n a n

Monday 2.00(1) 2.50(1) 291(4) 2.80 1.66(2) 2.00(2) 1.69(4) 2.06(4)

Tuesday 2.00(1) 2.51(1) 292(4) 2.78 1.67(2) 1.97(2) 1.73(2) 2.03(5)

Wednesday 2.01(1) 2.53(1) 292(4) 2.78 1.68(2) 2.02(2) 1.71(3) 2.03(6)

Thursday 2.00(1) 2.52(1) 292(4) 2.79 1.68(2) 2.01(2) 1.74(2) 2.06(4)

Friday 2.00(1) 2.51(1) 292(4) 2.78 1.68(2) 2.03(3) 1.74(2) 2.05(5)

Saturday 1.94(1) 2.48(1) 282(4) 2.85 1.61(2) 1.94(2) 1.68(2) 1.96(6)

Sunday 1.87(1) 2.39(1) 263(4) 2.89 1.52(2) 1.87(2) 1.61(2) 1.92(5)

Gravity exponent a and Hill coefficient n as well as time constant K for the whole bus network, together with their renormalized values are given on each day of the
week. Fitting errors for the whole bus network are also shown. It is observed that the renormalized values obtained from box renormalization and from node
renormalization are essentially the same. As discussed in the text, the renormalized gravity exponent measures the characteristic dimensionality of the bus network
whereas the renormalized Hill coefficient takes the integer value (n~2) within error bars.
doi:10.1371/journal.pone.0089980.t002

Figure 8. Modified gravity model applied to the renormalized system. Reduced flow f versus time distance r, obtained from the same data
as Fig. 7: (a) box renormalization with a~766 m and (b) node renormalization with p~12. Reduced x2 versus (effective) block size a: (c) box
renormalization and (d) node renormalization. Data for the renormalized system fit better and better as a is increased up to ac^1000 m.
doi:10.1371/journal.pone.0089980.g008
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population flow from other cities may serve as the external

pressure for a city in the growth or downfall stage. Some (social or

natural) regional events may also be regarded as local external

fields. Further, local disturbances on some route paths, due to

maintenance, road works, or delays, can serve to study response

functions. These functions express the way the passenger flow is

reorganized at intrinsic time scales, after an external perturbation

is imposed. However, the study clarifying relevant control

parameters is yet to be made and at this stage it is not conceivable

to derive the scaling relations in the prototypical form. Neverthe-

less, the relation between the network density exponent and the

fractal dimension of the system appears promising, for the

dimensionality plays a crucial role in the scaling relations.

It also needs further study to reveal detailed nature of the

microscopic couplings between bus stops and to identify reduced

flows and couplings. Although the reduced flow may not be exactly

equivalent to the coupling constant in a physical system, one may

Figure 9. Scaling analysis of the Seoul bus network. The gravity exponent a, Hill coefficient n, and time constant K versus (effective) block size
a for box renormalization [(a), (c), and (e) on the left column] and for node renormalization [(b), (d), and (f) on the right column] are shown together
with least-squares fitting lines in the scaling region. Extrapolation to the limit a?0 leads to the renormalized values summarized in Table 2.
doi:10.1371/journal.pone.0089980.g009

Figure 10. Number M of linked nodes versus distance R,
together with the line of slope 2.63. This gives the network
dimension of the bus system, considering both geographical and
topological characters.
doi:10.1371/journal.pone.0089980.g010
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speculate that the strengths of stations linked via large flows may

tend to order, as spins are aligned in the same direction when the

couplings between spins are strong. In this way, the reduced flow

can be regarded as the coupling between strengths, and we

conclude that the values obtained via scaling analysis are closely

related to the renormalized couplings in the Seoul bus network.

Note that criticality or power-law behavior of correlations

emerges as a characteristic of the strength distribution across the

system. It is natural that the distribution of passengers or

populations is a consequence of the couplings between bus stops

or regions of the city. As well known, the competition between

order attained by couplings and disorder reflecting fluctuations or

randomness is crucial for criticality. In the growth and fall of a city,

these properties appear to be organized to generate the complex

structure of the city. In conclusion, understanding the couplings

and fluctuations is essential for establishing theoretical models for

transportation systems and cities, which is left for further study.
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