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Abstract

Numerous digitization and ontological initiatives have focused on translating biological knowledge from narrative text to
machine-readable formats. In this paper, we describe two workflows for knowledge extraction and semantic annotation of
text data objects featured in an online biodiversity aggregator, the Encyclopedia of Life. One workflow tags text with
DBpedia URIs based on keywords. Another workflow finds taxon names in text using GNRD for the purpose of building a
species association network. Both workflows work well: the annotation workflow has an F1 Score of 0.941 and the
association algorithm has an F1 Score of 0.885. Existing text annotators such as Terminizer and DBpedia Spotlight
performed well, but require some optimization to be useful in the ecology and evolution domain. Important future work
includes scaling up and improving accuracy through the use of distributional semantics.
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Introduction

Biological knowledge, accumulated over centuries of observa-

tion and experimentation, is contained within the legacy format of

printed text, which may or may not be digitized [1]. Because many

observations are expensive or impossible to duplicate, Biology as a

discipline, needs to leverage the scalability of computing to

optimize use of all existing data. Because the volume of

information is far more than any human can read in a lifetime,

a key challenge for biology is migrating this vast amount of

knowledge into modern, machine-readable formats so a computer

can do the work of data discovery. Tools designed to aid in the

manual annotation of text have improved the rate of digitization,

but this process needs to be streamlined further if it is to catch up

to the current rates of species discovery (approximately 19,000

new species every year, [2]). Approaches that involve generating

marked-up manuscripts from databases are emerging [3] but so far

only in taxonomy and not in ecology, and mark-up is not yet as

detailed as needed.

Decades of research into Natural Language Processing and

Machine Learning have resulted in a suite of freely available

algorithms capable of extracting information from general text,

such as newspaper articles [4]. The specialized nature of biological

text requires the development of new algorithms or modification of

existing algorithms [5]. Many specialized algorithms exist and

continue to be refined for the purpose of identifying species names

in text and extracting morphological information and molecule

interaction information (See review of biodiversity related NLP

tools in [5]). Machine learning is not yet advanced enough to allow

large-scale extraction of knowledge from biological text without

human input (at least not life-wide, see [6] for a tool that works

well for plant descriptions). Numerous annotator tools have been

developed to aid the process of human text markup to guide

machines (see [7] for a biodiversity example).

In addition to using algorithms to extract information from text,

placing data in machine readable formats and making it more

interconnected increases the usefulness of data by making it easier

to find and combine in novel ways by people other than the

original collector [8]. The linked open data cloud (LOD) is one

manifestation of this type of data mobilization [9]. There are over

31 billion triples in LOD and 9.6% of them are from life sciences

data sets [9]. Many of these life sciences data sets have a molecular

focus, but some, like TaxonConcept (http://datahub.io/dataset/

taxonconcept) and GeoSpecies (http://datahub.io/dataset/

geospecies) are biodiversity-related. Some members of the

taxonomy community have embraced Semantic Web technology

as a tool that can streamline the process of describing species,

make optimal use of the data collected by taxonomists and

efficiently manage species information [10]. RDF (Resource

Description Framework), one of the languages of the Semantic

Web, has been identified as a machine-readable way to express

taxonomic information [11]. Organizations such as TDWG

(Taxonomic Databases Working Group) and others have been

working to develop a semantic framework for describing

biodiversity information [12,11,13]. A major roadblock to

developing large quantities of machine-readable data is wide-

spread adoption of community standards, such as unique

identifiers for species, specimens and observations and how to

model such data. Proposed biodiversity semantic structures focus

on describing nomenclature (TDWG), phenotype (PATO) and

observations (TDWG and OBOE; [14]). The field of evolutionary
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informatics has recently been defined and strives to organize

information about species around the structure of a tree of life

[15]. The related field of ecoinformatics has developed a strong

network of tools and support for ecological data throughout the

data lifecycle [16]. Standard vocabularies for habitats exist and

can be used to relate species to their habitats (for example, EnvO

(http://environmentontology.org). Ontologies and schema treat-

ing ecological species associations have been attempted several

times ([17]; (http://wiki.tdwg.org/twiki/bin/view/DarwinCore/

InteractionExtension; SWEET (sweet.jpl.nasa.gov), SEEK (seek.e-

coinformatics.org), ETHAN ([18]; bioportal.bioontology.org/on-

tologies/1530), SWISST (foodwebs.org), and TRIN (http://bit.ly/

1cXHoHs), but a leading standard has not yet emerged. A

complete semantic representation of biodiversity data will likely

use components from all of these ontologies.

The biomedical community has fully embraced machine

learning, informatics and semantics as a way to improve

information sharing and discovery. Numerous tools exist for

extracting molecular entities, diseases and interactions from text

[19,20]. Large standardized repositories exist for storing biomed-

ical and molecular data (GenBank, uniprot, KEGG, ArrayEx-

press, OMIM, PubMed and BTRIS) that offer archiving, citation

and visualization tools. The U.S. National Library of Medicine has

developed the Unified Medical Language System, which functions

as a Biomedical WordNet, providing standardized definitions for

biomedical terms and linking related terms in a Semantic Network

[21]. Ecoinformatics has not received the same level of investment

as biomedical informatics, but both disciplines suffer from

ambiguous language, use of abbreviations and the constant

creation of new terms [22–24].

Biodiversity sciences are particularly crippled by data hetero-

geneity because of the distributed nature of data collection and the

need to consider the entire body of knowledge [13]. Thus, a

semantic infrastructure that improves data discovery and integra-

tion, has the potential to make a disproportionate, positive effect

on advances in the discipline. There are thousands of databases

and journals holding biodiversity information (too many to name

all here) all with a different taxonomic and geographic scope. The

advantages of using RDF, or some other semantic markup, to

manage biodiversity data stem from the ability to assign unique

identifiers (URIs) to names, taxa, concepts, etc. and then link

information using those identifiers [11]. Much of the conversation

has been dominated by linking data phylogenetically and

taxonomically, but semantic structures also have the potential to

link information based on interactions between taxa, between a

taxon and its environment, and ultimately to look at ecological or

environmental interactions in another context (phylogeny, for

example). Building this semantic structure is non-trivial because

many data sources use their own terms and identifiers; however,

within biodiversity science, standards are being developed and

followed by some major biodiversity data sources [25,26].

The Encyclopedia of Life (www.eol.org) is a web site with the

ambitious goal of creating a web page for every species and

enabling global access to knowledge about life on earth. They are

accomplishing this goal by being a content aggregator rather than

authoring species pages [27–29]. EOL develops relationships with

existing data sources to have their content featured on an EOL

species page with full attribution and creative commons licenses

(content partners include more than 250 museums, government

agencies and research consortia). EOL has also developed a

network of credentialed curators who label aggregated content as

trustworthy or untrustworthy. All content featured in EOL can be

accessed through an API that gives data in XML or JSON

formats. Anyone with internet access can gain EOL content easily

through this API.

The goals of this project were to develop and evaluate workflows

to mine information held in EOL text objects in order to 1)

annotate them with DBpedia URIs for biological entities relevant

to EOL user interest, and 2) generate a global species association

network. These two tasks, even at a very basic level of success,

provide the foundational structure needed to explore EOL

information from an ecological perspective rather than its current

taxonomic perspective. Outside of EOL, these goals are a step

toward large-scale analyses of biodiversity data based on ecological

relationships. Since 1) there are approximately 2 million described

species, 2) each species can have up to 100 text objects or more,

and 3) EOL content is updated weekly from hundreds of content

partners, any tool for interacting with EOL text must be dynamic,

scalable and capable of handling heterogeneous structure. To

demonstrate proof-of-concept, we have chosen 21 test species. In

this paper we will describe and evaluate our workflows and the

structure of the extracted data. We also provide pointers to data

files (Appendix S1) and recommendations for further analysis.

Materials and Methods

Selection of test species
To explore approaches to achieving our two goals we chose 21

test species across the tree of life (Table 1). To limit overfitting, we

chose species that are diverse in their taxonomy, life history,

habitat, ecological niche and EOL content. Any process that

operates over the entire tree of life will require attention to

scalability. We have taken some basic measures to improve

scalability within this project and discuss strategies to further

improve scalability in future work (see discussion).

Description of text
The text data objects used in this study were accessed through

the EOL API. EOL accesses data objects from its 250 content

partners that deliver structured data so that information from

many sources can be integrated on an EOL page based on taxon

and subject. The text data objects used in this study were written

for a general audience and vary in length from one to 12,075

words. All text data objects used in this study were in English and

labeled as ‘‘Trusted’’ by EOL curators. Content partners include,

but are not limited to, Wikipedia (http://wikipedia.org), Animal

Diversity Web (http://animaldiversity.org) and ARKive (http://

www.arkive.org).

Data retrieval
EOL exposes their content via an API that serves data in XML

or JSON. Every taxon and data object in EOL has its own

identifier which can be used to call it and its associated metadata

through the API. EOL updates content from hundreds of

providers every week, so interacting with EOL content through

the API ensures relevance. API documentation can be found at

http://eol.org/info/api_overview.

Building the dictionary
Text data objects connected to each of the test species were read

and manually annotated for ecologically relevant words and

phrases. These words and phrases were placed in a dictionary as

keys and the appropriate DBpedia URIs as the corresponding

values. For example, ‘uterine cannibalsm’: ‘http://dbpedia.org/

resource/Oophagy’ is included in the dictionary. DBpedia URIs

were collected using the DBpedia Keyword API and manually

placed in the dictionary. The documentation for this API can be

Information Extraction and Annotation of Text
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found at http://wiki.dbpedia.org/lookup/. Any URIs can be

placed in the dictionary (or removed) to suite user need.

An important issue for dictionary creation is how much of and

which word or phrase to include. For example ‘predator’,

‘predation’, ‘predatory’ are all words used to describe a predator

prey interaction that we would want tagged with the DBpedia

URI for Predation (http://dbpedia.org/resource/Predation). This

can be handled by having three separate keys in the dictionary

with identical values or by having one key, ‘predat’, that will find

all of the words. We used the latter strategy to handle plurals and

any other form of a word/phrase. This reduces the size of the

dictionary and thus the time it takes to build it and iterate over it in

the workflow. This strategy would generate many false positives if

applied to general text, but in the biological literature chances of

encountering ‘‘predat’’ outside the context of predation are

smaller.

URI annotation
One code module was written to annotate EOL text objects

with relevant DBpedia URIs (https://github.com/EOL/

pseudonitzchia). The module used a list of Data Object IDs to

call the API and get a JSON response. Each text data object was

converted to lowercase. This helped control the size of the

dictionary by not requiring separate entries for ‘prey’ and ‘Prey’.

The module then went through each key in the dictionary and

searched for it in the data object text returned in the JSON

response. If the key was found, the module returned the

corresponding value (the DBpedia URI) and moved on to the

next key. If the key was not found, the module returned nothing

and moved on to the next key.

Information extraction and network building
The important information extraction task for this project was

to generate a species association network using information in

EOL text objects. Another code module was written to call the

EOL API using EOL taxon IDs and retrieve the text objects under

the ‘‘Associations’’, ‘‘Trophic Strategy’’ ‘‘General Ecology’’ and

‘‘Habitat’’ subchapters (https://github.com/EOL/

pseudonitzchia). We focused on these subchapters so we could

extract information from text specifically describing ecological

interactions (see discussion). The JSON response was parsed and

cleaned using Beautiful Soup (http://www.crummy.com/

software/BeautifulSoup/) and then passed to the GNRD API.

GNRD (Global Names Recognition and Discovery) is a tool for

finding scientific names in web pages, pdfs, Microsoft Office

documents, images or freeform text using the TaxonFinder and

NetiNeti name finding engines [30,31]. Documentation for the

GNRD API can be found at http://gnrd.globalnames.org/api.

GNRD has a ‘‘resolver’’ function that is capable of reconciling

multiple names for one species to a single, current name based on

a user-chosen authority. For this project we chose EOL as the

authoritative source of names and synonyms. More information

about the resolver tool can be found at http://resolver.

globalnames.org/. If a name was found on a page that, according

to EOL, was an old name, the API returned the EOL ID of the

new name. The extracted associations were returned in the format

of Taxon A (Subject of Taxon page): Taxon B (Mentioned on

Taxon page). Thus, if a taxon was mentioned on a page it was

considered associated with the topic of the page. The data, in

tabular form, was imported into Cytoscape for visualization and

analysis [32]. In the network visualization, the nodes represent

taxa and the edges represent an interaction between the taxa.

Metrics testing and analysis
URI annotations. A human annotator read all of the text

objects for the test species and annotated each of them with

appropriate DBpedia URIs. Precision, recall and F1 Score were

calculated for each test species and overall (Table 1). Errors were

noted and categorized (Table 2). Precision was calculated as the

URIs correctly assigned divided by the total number of URIs

assigned to a text object. Recall was calculated as the URIs

correctly assigned divided by the total number of URIs that were

supposed to be assigned. The F1 Score is an overall measure of

accuracy and is the harmonic mean of precision and recall. It is

calculated by dividing precision by recall, then dividing that

quantity by the sum of precision and recall, then multiplying that

quantity by 2.

Associations network. Three human annotators with bio-

diversity expertise read all of the text objects for the test species

and developed a list of association statements representing real

ecological relationships between taxa. Taxonomic relationships

were not included. If the text said that a species was, for example,

pollinated by members of a family, the association was recorded as

one between a species and a family, not as several between that

species and every member of that family. Some annotators worked

before the automatic process and others worked after, but in all

cases the annotators had no prior knowledge of the algorithm

results. Annotator agreement was calculated using Fleiss’ Kappa

[33]. The workflow result was evaluated against performance of

the GNRD API working directly on the EOL taxon page without

the intervention of our workflow (See Appendix S1 baseline.txt).

Precision, recall and F1 Score were calculated for the baseline

result (GNRD alone) and the workflow result compared to a

human-created ‘‘gold standard’’ (See Appendix S1 gold_standar-

d_int.txt). Precision was calculated as the interactions correctly

extracted by the workflow divided by the total number of

interactions the workflow extracted. Recall was calculated as the

interactions correctly extracted by the workflow divided by the

total number of interactions that were supposed to be extracted.

The F1 Score was calculated in the same way as for the URI

annotations. When constructing the network by hand, the

annotator must not only look for terms that refer to taxa, but

make a judgment call as to whether or not the author is describing

an interaction. We did not want to include taxa that were

mentioned solely for comparative purposes, for example. The

annotator-created and automated networks were visualized using

Cytoscape software [32].

Results

URI annotations
The workflow successfully annotated 487 text data objects

associated with 21 species in EOL using a biologically-focused

dictionary with 239 ecologically relevant entries (See biodict.txt in

Appendix S1). Some of those text objects did not receive any

annotations (14%). The most annotations that any one text object

received was 33 and the average number of URIs assigned to a

text object was 2.1.

The performance metrics for this particular method depended

almost entirely on the construction of the dictionary. Overall, 80%

of the URI annotations were correct. Precision = 0.889, recall = 1,

and the F1 Score = 0.941 (Table 1). The lowest F1 Score (0.687)

was for the tube worm, Riftia pachyptila. Recall is perfect, indicating

the ability of the computer to find strings in text, a simple task.

False positives decrease the precision and, in our data set, can be

caused by several factors (Table 2). We have divided all of the

errors into five categories:

Information Extraction and Annotation of Text

PLOS ONE | www.plosone.org 4 March 2014 | Volume 9 | Issue 3 | e89550

http://wiki.dbpedia.org/lookup/
http://dbpedia.org/resource/Predation
https://github.com/EOL/pseudonitzchia
https://github.com/EOL/pseudonitzchia
https://github.com/EOL/pseudonitzchia
https://github.com/EOL/pseudonitzchia
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://gnrd.globalnames.org/api
http://resolver.globalnames.org/
http://resolver.globalnames.org/


1. Negation - This workflow cannot distinguish between ‘‘This

species migrates.’’ and ‘‘This species does not migrate.’’ Both

texts would be annotated with the URI for migration. Negation

is a common NLP problem with rules-based solutions that rely

heavily on context [34]. Coping with negation in biodiversity

and ecology text is possible, but would require additional

analysis.

2. Describing related taxa - Some text objects will use terms

describing a related species that will cause a text object to be

annotated with a URI that does not apply to that taxon. One

example found on the Great White Shark page is the text

‘‘white sharks often attack dolphins and porpoises from above,

behind or below to avoid being detected by their echoloca-

tion’’. The text object containing that line would be annotated

with the URI for echolocation, even though sharks do not have

echolocation. However, since sharks have to cope with

echolocation in their prey species, one could argue that this

annotation would be relevant. For the metrics calculations in

this publication, we took the conservative approach and did not

consider them relevant.

3. Word or phrase part - Some terms will occur within other

terms that mean something totally different. For example, the

term ‘‘forest’’ in ‘‘kelp forest’’. This will result in an oceanic

species being annotated with a URI for a terrestrial habitat.

This error also occurs if a content provider’s name appears in

the text object and contains a relevant term like ‘‘garden’’ or

‘‘marine’’.

4. Generalities - Some terms are used in a general sense, not

specifically referring to the taxon of interest and may cause a

text object to be annotated with an irrelevant URI. This often

occurs in headings. For example, a text object could give

examples of why a species would migrate as an aside ‘‘e.g., to

breeding or wintering grounds, to hibernation sites’’. This

would result in the text object being annotated with the URI

for hibernation even if the species does not hibernate.

5. Homonym - Sometimes the same term can have a subtly

different meaning in different contexts. The available URIs or

the dictionary may not have the appropriate level of specificity.

For example, the DBpedia URI for migration refers specifically

to bird migration and thus cannot be used for any other group.

The DBpedia URI for molt refers specifically to arthropod

molting and cannot be used for bird molting. The term

‘‘attack’’ can describe an act of predation, self defense or

disease, so it is not clear which URI to use.

The largest problem in our data set is the ‘‘describing related

taxa’’ problem (37% of errors) followed by the ‘‘word part’’ and

‘‘homonym’’ problem (each are 19% of errors). Negation is the

least of our problems (7% of errors).

Association network
We used the EOL and GNRD APIs to locate ecologically

relevant text on a species page and find scientific names in that

text. The output from this process was imported into Cytoscape

[32] for visualization (Fig. 1). Our automated methods found 585

relationships between 581 taxa just by looking at the content under

the ‘‘Ecology’’ Chapter of the 21 test species pages. A manual

construction of the associations network using human annotation

of the test species found 675 relationships between 657 taxa (Fig. 2;

Table 2. URI Annotation Errors.

Species Negation
Describing Related
Taxa Word Part Generalities Homonym Total Errors

Shark 2 7 1 2 0 12

Lion 0 4 2 0 0 6

Moss N/A N/A N/A N/A N/A N/A

Diatom 0 1 1 2 0 4

Mosquito 0 0 0 0 0 0

Bacteria 0 1 1 3 1 6

Cactus 0 0 0 0 0 0

Oak 0 2 0 0 0 2

Worm 0 1 0 1 1 3

Crab 0 3 0 0 1 4

Spider 0 1 0 0 2 3

Ciliate 0 0 0 0 0 0

Mushroom 0 0 0 1 0 1

Beetle 0 0 0 0 0 0

Walrus 1 0 2 1 3 7

Water Bear 0 0 0 0 1 1

Copepod 0 0 0 0 0 0

Virus 0 0 0 0 0 0

Kelp 0 0 1 0 0 1

Tube Worm 1 1 1 0 1 4

Honey Bee 0 0 2 0 1 3

GRAND TOTAL 4 21 11 10 11 57

doi:10.1371/journal.pone.0089550.t002
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includes references made using scientific and common names).

Agreement between annotators was 0.840 (Fleiss’ Kappa; See

Appendix S1, annotator_agreement.xlsx). Our automated meth-

ods had an overall precision of 0.844, a recall of 0.930 and an F1

Score of 0.885 (Table 3).

The workflow (using the GNRD API) found 585 taxon names

and 494 of those represented ecological species interactions (84%).

Our results had a total of 91 false positives and 43 false negatives.

The largest source of false positives was the inclusion of higher

taxon names for species that were mentioned (89%). For example,

if a species and the Family it belongs too are both mentioned in a

text object the algorithm will include them both, even though the

interaction is with the species, not the entire Family. The largest

source of false negatives was interactions discussed in text objects

that were not under the Ecology Chapter and thus not analyzed

(46%). Other important sources of error include formatting

confounding GNRD (especially virus nomenclature, 14% of false

negatives) and self referencing (7% of false positives). Out of the

583 unique names GNRD found, 36 (6%) were identified as an

‘‘old’’ name and needed to be reconciled to the new name.

For the task of identifying ecological interactions in text, GNRD

alone had a precision of 0.477, a recall of 0.957 and an F1 Score of

0.636 (Table 4). The workflow, which makes use of GNRD, was

much more effective at extracting ecological interactions, with a

relative improvement in the F1 Score of 39% over the baseline.

Discussion

URI annotations
The performance of the URI annotation workflow depended

entirely on the contents of the dictionary; building this dictionary

was a manual process. This type of dictionary matching method

has limited utility when the dictionary is not complete relative to

user need. This problem can be partially addressed through

methods currently employed by community ontology projects. For

example, terms and their corresponding URIs in an ontology can

be automatically formatted into a dictionary. Many ontologies are

curated by experts who add new terms, reconcile synonyms and

add connections to other knowledge bases. One could leverage

Uberon, a multi-species anatomy ontology containing over 10,000

terms [35] that can be easily transformed into a dictionary and

used to annotate text based on morphology.

A user can run the program with whatever dictionary he/she

chooses to target an area of interest. This strategy can be further

improved by focusing annotations on taxa rather than text objects

and thereby requiring less specificity in the dictionary. For

example, if the goal were to annotate Panthera leo (EOL ID

328672) with the URI for predation, rather than every text object

that discusses predation, we can be much more general with our

dictionary key values. We only need ‘‘predat’’ instead of also

needing ‘‘attack’’ ‘‘feed on’’ and ‘‘hunt’’ which can describe

interactions not related to predation. Automating dictionary

creation may also speed the process, but this would entirely

depend on user need. For example, if a user were only interested in

one key term, automation would not be helpful.

There are many existing tools that can add semantic

annotations to text. Many of these have been tested and developed

using news articles and other non-specialized text [36,37]. We

have explored two annotators within the context of ecology text:

Terminizer [38] and DBpedia Spotlight ([39]; Fig. 3, Table S1).

Terminizer annotates text when it finds strings that match

ontological terms from 40+ biological ontologies in the OBO

Foundry. DBpedia Spotlight annotates text with DBpedia URIs

when it finds a relevant string. To explore these systems, we

submitted a single text object to Terminizer and DBpedia

Spotlight (Fig. 3). Terminizer made 65 annotations from 21

different ontologies. Most of the annotations Terminizer made

were correct (40%), but there were still large numbers of incorrect

annotations (37%) and we were not able to verify some

annotations (25%) because the terms were not defined in their

respective ontologies. DBpedia Spotlight made 36 annotations, all

with DBpedia URIs. Most of these annotations were correct (70%)

and only one annotation could not be verified as correct or

incorrect (,1%). The errors made by Terminizer were mostly due

to specificity and domain. For example, some annotations were

made that described unrelated model organisms or molecular

interactions. Another common error included annotating only one

word in a two-word term, like ‘‘litter size’’ and ‘‘food chain’’.

DBpedia Spotlight was able to find two-word terms like ‘‘food

chain’’ and ‘‘marine mammal’’, but had disambiguation problems

with terms that also had a pop culture reference. For example,

‘‘carcass’’ was annotated with a URI for a music band and ‘‘seal’’

was annotated with the URI for the Unites States Navy SEALs.

The performance of these annotators may be improved by

restricting the ontologies they are using. Terminizer has an option

to choose specific ontologies in OBO or insert your own (in OBO

Figure 1. Automated Species Interactions. Taxon interaction
network generated algorithmically by extracting information from text
under the ‘‘Ecology’’ Chapter using the EOL and GNRD APIs. These
associations are from the test species only.
doi:10.1371/journal.pone.0089550.g001

Figure 2. Manual Species Interactions. Taxon interaction network
generated manually by reading through all of the text on an EOL taxon
page and collecting scientific and common names. These associations
are from the test species only.
doi:10.1371/journal.pone.0089550.g002
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format). DBpedia Spotlight has settings that can allow for

refinement or it can take your own dictionary, if you can set up

your own instance. Our method annotated the same text with six

URIs from our dictionary, including ‘‘social animal’’, ‘‘electro-

reception’’, ‘‘gestation’’, ‘‘ovoviviparous’’, ‘‘predation’’ and ‘‘ma-

rine’’. These terms represent our ecological knowledge annotation

goal. As expected, the tool we designed ourselves best addressed

our needs. Only half of these desired terms were found by

Terminizer and/or DBpedia Spotlight: ‘‘gestation’’ was found by

both and ‘‘predator’’ and ‘‘marine’’ was found by DBpedia

Spotlight. Our tool avoided some disambiguation problems by

only working with biological text (so we don’t have to worry about

pop culture references like DBpedia Spotlight) and carefully

selecting the terms in the dictionary. For example, ‘‘ovovivipa-

rous’’ has a single meaning. A possible next step would be to

fashion either a dictionary or an ontology file containing our terms

so that Terminizer or DBpedia Spotlight could be used as an

attractive user interface. We would like to suggest that annotators

include pathways for users to add terms of interest within the

functionality of the interface.

Association network
The ability to build an automated taxon associations network

from narrative depends on three factors 1) the ability to recognize

taxon names in text, 2) the ability to reconcile multiple terms used

for the same species and 3) the ability to determine if a taxon

mention refers to an ecological interaction.

Recognizing taxon names in text is a major area of research.

Several tools have been developed that can find scientific names

[5] and we use one of them, GNRD, in this project. None of these

tools can find common names in text, which results in missing

approximately 13% of the total associations and taxa. Some work

has been done in the field of Earth Science to recognize common

names for geomaterials using contextual clues with some success

(Jenkins pers. comm.). EOL has a compilation of over 780,000

common names across the tree of life that are linked to an EOL

ID. The EOL API can return an EOL taxon for a common name

submitted, but recognizing a common name in narrative is still a

major challenge. One possible strategy is to search for the

common names corresponding to the found scientific names

(Mozzherin pers. comm.), but that would not find taxa only

mentioned by common name and would not improve the

performance of the workflow.

One cannot assume that all of the taxa mentioned on an EOL

taxon page have an ecological relationship with the topic of that

page. Taxa are mentioned for several reasons including compar-

ison, taxonomic relationships and in discussion of a common

phenomenon, like poisonous mushrooms. Users must balance

their need for precision and recall against the amount and type of

text they process. As mentioned above, the largest cause of false

negatives was names found in text objects that were not under the

Ecology chapter. Most of those text objects were from Wikipedia.

Including Wikipedia content in our analysis is likely to also

dramatically increase false positives because Wikipedia text often

includes a list of taxonomically related species and subspecies.

This annotation and information extraction exercise represents

the initial explorations for making EOL data semantically

available and creating a semantic infrastructure describing species

interactions. Most available information about species is organized

taxonomically or phylogenetically. EOL is an example of this,

Table 3. Performance Metrics for Associations Workflow.

True Positives False Positives False Negatives True Negatives Precision Recall F1 Score

Carcharodon carcharias 9 2 2 23 0.818 0.818 0.818

Panthera leo 30 2 4 16 0.938 0.882 0.909

Hypnum fauriei 0 0 0 1

Pseudo-nitzschia australis 0 0 0 3

Culex pipiens 0 0 0 6

Escherichia coli 0 0 1 119

Harrisia simpsonii 1 0 0 5 1.000 1.000 1.000

Quercus robur 81 2 3 15 0.976 0.976 0.976

Lumbricus terrestris 0 0 2 3

Callinectes sapidus 49 9 11 13 0.845 0.875 0.860

Loxosceles reclusa 0 0 0 11

Paramecium aurelia 0 0 0 1

Psilocybe cubensis 0 0 0 51

Oryctes nasicornis 0 0 1 24

Odobenus rosmarus 1 1 1 17 0.500 0.500 0.500

Hypsibius dujardini 0 0 0 7

Tobacco mosaic virus 5 0 1 0 1.000 0.833 0.909

Eurytemora affinis 0 0 0 4

Nereocystis luetkeana 0 0 0 2

Riftia pachyptila 0 0 0 7

Apis mellifera 318 75 17 19 0.809 0.952 0.875

TOTAL 494 91 43 347 0.844 0.930 0.885

doi:10.1371/journal.pone.0089550.t003
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Table 4. Performance of GNRD without Associations Workflow.

True Positives False Positives False Negatives True Negatives Precision Recall F1 Score

Carcharodon carcharias 10 37 1 0 0.213 0.909 0.345

Panthera leo 33 45 2 0 0.423 0.917 0.579

Hypnum fauriei 0 2 0 0

Pseudo-nitzschia australis 0 7 0 0

Culex pipiens 0 7 0 0

Escherichia coli 0 135 1 0

Harrisia simpsonii 1 7 0 0 0.125 1.000 0.222

Quercus robur 82 26 2 3 0.759 0.976 0.854

Lumbricus terrestris 2 4 0 0 0.333 1.000 0.500

Callinectes sapidus 53 28 2 1 0.654 0.964 0.779

Loxosceles reclusa 0 16 0 0

Paramecium aurelia 0 3 0 0

Psilocybe cubensis 0 55 0 1

Oryctes nasicornis 1 25 0 0 0.038 1.000 0.074

Odobenus rosmarus 2 29 0 1 0.065 1.000 0.121

Hypsibius dujardini 0 8 0 0

Tobacco mosaic virus 5 3 1 0 0.625 0.833 0.714

Eurytemora affinis 0 6 0 0

Nereocystis luetkeana 0 4 0 0

Riftia pachyptila 0 12 0 0

Apis mellifera 321 101 15 0 0.761 0.961 0.849

TOTAL 510 560 24 6 0.477 0.957 0.636

doi:10.1371/journal.pone.0089550.t004

Figure 3. Annotator Comparison. Combined results from Terminizer (blue) and DBpedia Spotlight (red) when given an EOL text object to
annotate (originally from ARKive). Strings that were annotated by both tools are colored purple. The superscripts correspond to the Identifier column
in Table S1.
doi:10.1371/journal.pone.0089550.g003

Information Extraction and Annotation of Text

PLOS ONE | www.plosone.org 8 March 2014 | Volume 9 | Issue 3 | e89550



allowing users to browse information using a taxonomic classifi-

cation. Using a taxonomic infrastructure, a user is not able to

navigate from a lion directly to its prey, its parasites or its

competitors. Long term goals include enabling an ecologically-

focused browse capability in EOL and making EOL content

semantically available. Our short term vision is that users who are

learning about Oophagy on the Wikipedia page can easily find

EOL text objects and taxon pages that discuss the phenomenon

through the linking of DBpedia and EOL URIs.

These workflows are not perfect and, considering the complex-

ity of biology and language, are not likely to ever be perfect. A text

object might say ‘‘oak trees provide habitat for many animals’’.

Animals refers to Animalia, but the authors were not intending to

say that all Animalia live in oak trees. A text object may use a high

level taxon name that in practice only applies to a single species in

a particular area. For example, referring to deer (Cervidae) on the

US East Coast really only refers to White Tailed Deer (Odocoileus

virginianus). Some terms are used as though they correspond to a

taxonomic group, but in reality do not, such as seabirds and

worms. From an EOL perspective, it is far more important to have

high precision than high recall (Wilson pers. comm.). Fortunately,

EOL has curators and staff to cope with the errors that may result.

The algorithm may be accurate enough to reduce the manual

work to a level that is reasonable for the curators and staff. There

are approximately 1,200 EOL curators of which 182 are

considered ‘‘active’’ and make approximately 1,500 actions per

month. This has resulted in approximately 22,000 EOL pages that

have been subject to one or more curatorial actions since the

curatorial functions were enabled in 2008. Still, other methods of

assisting users in avoiding bad text-mining results are recom-

mended to any data consumer, including EOL, such as not

importing until an average F1 Score threshold is met, assigning

numerical ratings to datasets based on rate and type of errors, and

flagging datasets that are the result of text-mining.

Future Work

Using machines to extract knowledge from centuries of

biological descriptive data is a promising strategy that still needs

significant investment. Below we discuss future work specifically

relating to knowledge extraction from sources like EOL.

1. Classify associations using a well-developed interaction vocabulary. An

association network like the one developed in this project could be

made even more informative if the association was defined more

specifically. At the moment, the network only states that a

relationship exists. No information is given about the nature of the

relationship. The most efficient way to do this is to develop a

standard vocabulary for ecological relationships that can be

applied using clues from the surrounding text. A new generation of

researchers is working on normalizing terms and relationships that

can be applied to found associations [40].

2. Inferring meaning with contextual clues. Humans use context to

cope with ambiguous terms. Computers can do this through

distributional semantics. This is where meaning is inferred by

quantitative analysis of word-associates using statistical methods

such as Cosine Similarity, Jaccard Index and Maximum Entropy

[41]. Algorithms exist that analyze text using distributional

semantics and have been used successfully in the geosciences

(Jenkins pers. comm.). We plan to apply these methods to EOL

content. The URI annotations discussed in this paper can also

provide contextual clues. For example, if a text object is annotated

with the URI for predation and an association is also detected, a

predatory relationship can be inferred. However, if multiple

associations and multiple URI annotations are available for the

same text object, it is unclear which goes with which. Development

of these types of intelligence systems for ecological text is a step

above the dictionary methods used here and represents our

anticipated research trajectory.

3. Scaling up. There are two important ways to increase the speed

of this process: improving data retrieval and removing as much

manual intervention as possible. Considering the frequency with

which EOL updates, interacting with content through the API is

ideal; however, these types of requests are relatively slow. There

may be small ways to improve efficiency of these methods in the

future, such as not rerunning the algorithms over EOL content

that has not changed, but increases in the speed of queries using an

API will be limited. SPARQL queries, because of their bulk

processing capabilities, have the potential to be a much faster way

to interact with heterogeneous EOL data, but cannot be

immediately implemented. Any manual step is a bottleneck,

including the manual dictionary creation and the correction of

errors. Scale is and will continue to be an issue for any project

trying to work over the entirety of life and all of its data.

Conclusions

Semantic strategies for representing knowledge are finding a

practical foothold in biological research [42,43]. The potential of

semantics for revolutionizing the way biodiversity knowledge is

recorded and data are shared and used is vast. The work described

in this paper is a modest step toward large-scale knowledge

extraction from an aggregator of biological text, EOL. As we

continue to develop our workflows and data structures we will be

increasingly able to utilize the advantages of semantics, including

inferencing and reasoning.
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