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Abstract

In computational methods, position weight matrices (PWMs) are commonly applied for transcription factor binding site
(TFBS) prediction. Although these matrices are more accurate than simple consensus sequences to predict actual binding
sites, they usually produce a large number of false positive (FP) predictions and so are impoverished sources of information.
Several studies have employed additional sources of information such as sequence conservation or the vicinity to
transcription start sites to distinguish true binding regions from random ones. Recently, the spatial distribution of modified
nucleosomes has been shown to be associated with different promoter architectures. These aligned patterns can facilitate
DNA accessibility for transcription factors. We hypothesize that using data from these aligned and periodic patterns can
improve the performance of binding region prediction. In this study, we propose two effective features, ‘‘modified
nucleosomes neighboring’’ and ‘‘modified nucleosomes occupancy’’, to decrease FP in binding site discovery. Based on
these features, we designed a logistic regression classifier which estimates the probability of a region as a TFBS. Our model
learned each feature based on Sp1 binding sites on Chromosome 1 and was tested on the other chromosomes in human
CD4+T cells. In this work, we investigated 21 histone modifications and found that only 8 out of 21 marks are strongly
correlated with transcription factor binding regions. To prove that these features are not specific to Sp1, we combined the
logistic regression classifier with the PWM, and created a new model to search TFBSs on the genome. We tested the model
using transcription factors MAZ, PU.1 and ELF1 and compared the results to those using only the PWM. The results show
that our model can predict Transcription factor binding regions more successfully. The relative simplicity of the model and
capability of integrating other features make it a superior method for TFBS prediction.
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Introduction

Gene regulation is affected by the binding of transcription

factors (TFs) to regulatory sequences in DNA. Recognition of

transcription factor binding sites (TFBSs) improves insights into

the genes regulated by a TF. These target genes combined with

their expression data can be used to elucidate transcriptional

regulatory networks and transcription regulation mechanisms

[1,2]. Due to significant sequence variation in the binding sites of a

TF, transcription factor binding site prediction is still known as a

difficult and central problem in computational biology [1–10].

This problem uses motif prediction in which a set of annotated

binding sites and a new sequence are given as input, with the goal

of finding similar binding site on the sequence [5,8].

Chromatin immunoprecipitation followed by high throughput

sequencing (ChIP-Seq) [11–14] and array hybridization (ChIP-

chip) [15] experiments, are two promising high throughput

technologies for identification of TF binding locations [13,15–

21]. These technologies have been successfully used to map

binding locations in several organisms but some properties of these

experiments such as being tissue and condition specific, the

availability of antibodies for TFs under study, and the expense of

the experiments have made them useful only for a limited number

of TFs [2,7,10]. Therefore, utilization of computational approach-

es to identify binding sites seems inevitable [1–5,7,9,10].

Binding sites of a TF can be represented as a consensus

sequence or a position weight matrix (PWM). Despite the ease of

visual interpretation, variations in nucleotide composition of

binding sites make consensus sequences an unsuitable approach

to represent TFs [4,6]. So, the most common methods apply

PWMs for TFBS representation instead of consensus sequence [8].

TFs usually bind to short (4–12 bp) DNA sequences. The

repetitive nature of DNA causes the binding sites to occur at many

locations throughout the eukaryotic genome, of which only a small

number are involved in the regulatory processes of the cell. These

considerations make motif scanning i.e. searching DNA sequence

for matches with a PWM, to be highly uncertain and to produce a

high frequency of false positive predictions [3,5,9]. This problem is

more evident in mammalian genome since cis-regulatory elements

are usually kilo bases away from target genes, making it necessary

to search large regions, which in turn leads to an increase in false

positives [7]. These challenges undermine the use of motif

scanning as a standalone method for TFBS prediction.

Common PWMs do not take into account higher order

dependencies between nucleotides, thus it is believed that

developing better models for binding sites and utilizing higher

order background models will improve the performance of motif

prediction[22–24]. Construction of such complex models has
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proved to be challenging [25], so the use of additional data sources

in the context of TFBS prediction is attracting more attention [5].

Eukaryotic DNA is packaged into nucleosomes and forms local

structures of chromatin [26,27]. Dynamic changes in chromatin
structure through post-translational modifications of
histones, restrict accessibility of DNA for TFs [3,28]. Several

studies have shown that TFs binding to genomic regions are

associated with various histone modification levels [20,29–31].

According to these observations, several studies have developed

frameworks to improve TFBSs prediction accuracy using a limited

number of epigenetic experimental assays [1–3,7,9,10]. They

considered the numbers of different histone modification tags as

additional information sources for improving the prediction

accuracy.

Nozaki et al. [28] showed that nucleosomes harboring histone

modifications like H3K4me1, H3K4me2, H3K4me3 as well as the

histone variant H2A.z have an aligned and periodic pattern

around broad promoters. They concluded that this might be due

to the accessibility of TFs to DNA.

In this study, we were interested in using information from the

positions and distribution of modified nucleosomes to improve the

performance of TFBS prediction. We have examined the effects of

two features ‘‘modified nucleosomes neighboring’’ (MNN) and

‘‘modified nucleosomes occupancy’’ (MNO) around TFBSs.

The MNN feature considers the closest distance from a TFBS to

the nearest nucleosome harboring a specific histone modification.

The MNO feature represents the total number of nucleosomes

containing a histone modification around the binding sites of a

transcription factor.

To investigate these features, we considered 21 histone

methylation modifications [30]. For each feature (MNN, MNO)

a set of values corresponding to different modifications were

computed based on Sp1 binding sites on Chromosome 1 in human

CD4+T cells. Then, these values were applied as a training set in a

logistic regression classifier (LRC). The rest of (Chromosome 2–22)

autosomes and two sex chromosomes were used as a test set to

show that these features are capable of predicting Sp1 binding

regions on other chromosomes. We found that only 8 out of 21

histone modifications, namely H2A.z; H3K4me1, H3K4me2,

H3K4me3; H3K9me1; H3K27me1; H4K20me1 and H2BK5me1

are strongly correlated with transcription factor binding regions.

We next designed a second model to search a genome for

TFBSs based on the features (MNN, MNO) combined with using

the PWM. We applied this model on MAZ, PU.1 and ELF1 TFs

and compared the results with the common model using PWM

alone. The results show that false positives are significantly

decreased with only a minor decrease in true positives.

Results and Discussion

In this section, we introduce two features based on the modified

nucleosomes which are effective for distinguishing transcription

factor binding regions from random ones. We call these features

‘‘modified nucleosomes neighboring’’ (MNN) and ‘‘modified

nucleosomes occupancy’’ (MNO).

At first, we analyzed the MNN feature using the general

transcription factor Sp1 in human resting CD4+T cells. Through

the evaluation of the MNN feature, eight significant histone

modifications were identified for TFBS prediction. Next, the

MNO feature was applied on these eight marks to show that the

occupancy of modified nucleosomes is also predictive of true

binding regions. Finally, a model was designed which integrates

PWM with the MNN and MNO features to improve prediction of

the MAZ, PU.1 and ELF1 binding sites.

1. Benefit of ‘‘Modified Nucleosomes Neighboring’’
In this part, we would like to show that the vicinity of

nucleosomes containing a certain histone modification is useful for

predicting TFBSs. At first, we extracted Sp1 binding sites from

Chromosome 1 in human CD4+T cells. Then, for each histone

modification, the distance between the Sp1 binding sites and the

nearest nucleosomes containing the modification was calculated

and considered as a training set in the LRC model (see Methods).

Next, 21 (Chromosome 2–22) autosomes and two sex chromo-

somes were binned into 1-kb non overlapping intervals and used as

a test set for the model (see Methods). Intervals on these

chromosomes were then predicted by the model as Sp1 binding

regions [1].

This task was repeated for nucleosomes containing each of the

21 histone modifications. Figure 1 (and Figure S1 and Table S1)

and Figure 2 show ROC curves and AUC values, respectively for

21 LRCs associated with different histone modifications. These

figures show the results of evaluations averaged on the test set (21

autosomes and two sex chromosomes).

To compare the accuracy of this feature with PWM, test set

intervals were scored using an Sp1 PWM constructed based on

binding sites on Chromosome 1 (see Methods). The ROC curve

and AUC value of PWM scanning is shown in Figure 3.

Comparison of the PWM AUC value with previous results

clearly shows that the MNN feature, especially for certain marks,

greatly outperforms the traditional scanning approach. This

demonstrates the usefulness of our proposed MNN feature in

recognition of target sites.

These figures clearly show that using the MNN feature greatly

reduces the number of false positives with a minor decrease in

sensitivity. However histone modifications do not contribute

equally in prediction improvements. Comparing AUC values

show that seven types of histone modification, H3K4me1,

H3K4me2, H3K4me3, H4K20me1, H2BK5me1, H3K9me1,

H3K27m1 as well as histone variant H2A.z have a significant

effect on improvement. We refer to these eight modifications as

top marks.

It has been shown that 21 histone modifications can be classified

into three groups [21]. Active modifications are related to active

genes and enhancers. Repressive modifications are connected with

repressed genes and heterochromatin and moderate modifications

have no preference toward any of activated or repressed genes.

Table 1 shows each modification and its assigned category.

Eight predicted top marks using our model are among the active

modifications. Modifications with weak prediction accuracies

(H3K9me2, H3K9me3 and H3K27me3) can be seen in the

repressive group. The other histone modifications, with average

prediction accuracies, appear in the moderate modifications.

Among these moderate marks, H3K27me2 and H4K20me3 have

the lowest AUC values. In contrast, H3K79me1 and H3K36me1

show relatively acceptable accuracies with AUC<0.79. From

these observations, we conclude that H3K27me2, H4K20me3 as

well as other modifications in the moderate group with low AUC

values have a tendency toward repressed genes. On the other side,

highly predictive modifications can be connected to the activation

of transcription. These findings are in line with previous studies

that H4K20me3 is associated with heterochromatin, H3K36me1

shows a slight tendency toward active genes and H3K27me2

signals are more prevalent at silent promoters [30,32–34]. The

signals and functional consequences of H3K79me1 are not well

studied but our results predict a slightly active tendency for this

mark.

Putting it all together, we reason out that active histone

modifications are more predictive for TFBSs prediction with the

TFBSs Prediction Based on Modified Nucleosomes
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exception of H3K36me3 mark. Studies have shown that this

epigenetic mark is considered as an active mark only when this

mark lies in the coding region of a gene, and a repressing mark in

the promoter region [26,30]. This particular distribution of

H3K36me3 may explain a cause for poor predictive power of

this modification.

The histone code hypothesis [35] suggests that a combination of

histone modifications affects gene regulation. So, we analyzed

whether combining histone modifications can predict Sp1
binding sites better than single marks.

We considered three combinations among histone modifications

as follows: 1) combining all 21 modifications, 2) combining the

eight top marks 3) integrating H3K4me3 and H2A.Z data. We

chose H3K4me3 and H2A.z because they have the largest AUC

values among top 8 marks (Figure 1).

In comparison with using single modifications, integrating more

marks is expected to enhance the accuracy of predictions. The

results show that the most predictive single histone modification

for Sp1 is H3K4me3 with an AUC value of 0.9683. The AUC

values for 21, 8 and 2 combined histone modifications are 0.9149,

0.9545 and 0.9682, respectively (Figure 4).

The failure of combining modifications may be due to the fact

that histone modifications are closely correlated and there is a data

redundancy among them [36].2.

In this part, we are interested to show that the combination of

the top eight marks can be used as an acceptable approach in

TFBSs prediction. So, we considered another feature called

modified nucleosomes occupancy which represents the total

number of nucleosomes harboring a histone mark in the binding

regions. Therefore, the total number of nucleosomes containing

the top 8 marks in 1-kbp regions flanking Sp1 sites on

Chromosome1 were computed and applied as a training set in

the LRC (see Methods). As before, Sp1 bound regions on 21

autosomes and two sex chromosomes were employed to evaluate

the predictive power of the feature. Figure S2 shows that utilizing

occupancies of nucleosomes can be informative in actual binding

sites prediction.

To provide evidence why certain modifications are more

predictive than the others, the ratio of nucleosome containing

top 8 marks and three repressive histone modifications (as a

control) were calculated at each position around binding sites of

Sp1 (see Methods). We found that nucleosomes containing the top

8 marks are enriched and show a bimodal pattern around Sp1

binding sites. A nucleosome depleted region with respect to the

center of the binding sites is evident in active marks (Figure 5).

This bimodal distribution may indicate TFs compete with

nucleosomes to access DNA. We can consider these nucleosome

free regions flanked by modified nucleosomes as landing sites

which direct TFs into the true binding locations.

3. Evaluation of the Suggested Features on the other
Transcription Factors

Studies have suggested that epigenetic data show a general

binding tendency for TFs in genomic regions and thus are not

specific to a given TF [3]. Therefore, the assigned scores to the test

set chromosomes based on Sp1 MNN and MNO features, may be

predictive of the other TFs as well.

Figure 1. ROC curves for predicting the binding regions of Sp1using the MNN feature. ROC curves for 21 LRCs trained on individual
histone modifications for prediction of Sp1 binding regions, using the MNN feature. The LRCs corresponding to each histone modification were
trained on Chromosome 1 and tested on Chromosome 2 to 22 and two sex chromosomes. The LRCs assign a score to each interval. Predictions of
binding regions are based on these scores. These curves show that the MNN feature is predictive of binding regions even when no PWM score is
used. The x-axis is the false positive rate and the y-axis is the true positive rate. Shown are the curves of the most predictive modifications. ROC curves
for the rest 13 modifications can be found in Figure S1.
doi:10.1371/journal.pone.0089226.g001
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To investigate this hypothesis, we developed a new model to

predict the binding regions of three additional transcription factors

MAZ, ELF1 and PU.1 based on MNN and MNO features.

First, each test set interval was scored based on the MNN

feature, trained on Sp1 binding sites. Then, these scores were

combined with the PWM of the corresponding TF (see Methods).

These scores were used to predict binding regions related to each

TF. ROC Curves for these three TFs and 21 modifications are

shown in Figure 6 (and Figures S3). As expected, Comparing these

figures with ROC curves of PWM scanning (Figures S4, S5, S6)

confirms the higher predictive power of the top eight identified

modifications. The AUC values are illustrated in Table S2.

We further evaluated the effect of the MNO feature on

prediction of these TFs (Figure S7 and Table S3). Like the MNN

feature, the nucleosome occupancies combined with PWM scores,

significantly enhance predictions over using PWM alone. This

Figure 2. AUC values corresponding to different histone modifications for predicting the binding regions of Sp1 based on the MNN
feature. Results are shown for predicting the binding sites of Sp1 in CD4+T cells using the MNN feature. The height of each bar corresponds to the
Area under the ROC curves. Certain modifications are more predictive for true binding regions. Comparing the results with using the PWM alone
(Figure3) clearly shows that the MNN feature, especially for certain modifications, can be used as an informative feature for TFBSs prediction.
doi:10.1371/journal.pone.0089226.g002
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confirms the usefulness of epigenetic data in the context of TFBS

prediction.

Finally, we illustrated the ratio of marked nucleosome at each

position around binding sites of MAZ, PU.1 and ELF1 (Figures

S8, S9, S10) and observed the bimodal patterns of the top 8

modified nucleosomes distributed around the central position of

binding sites in these three TFs as well.

Conclusions

By using a probabilistic approach, we discovered that using the

genomic position of modified nucleosomes can be informative for

predicting the binding locations of TFs. We first showed that the

vicinity of modified nucleosomes around TF binding sites

combined with PWM can enhance the performance of predictions

over using PWM alone. Then, we observed that eight types of

histone modifications correlate more highly with TFBSs. Using

these eight modifications, we investigated the nucleosomes

occupancy around the binding sites, and again showed that this

feature is also correlated to the target regions of TFs. The analysis

of the modified nucleosomes distribution around binding sites

revealed that these nucleosomes show a bimodal distribution with

a depleted region right on the center of binding sites.

In this study, we used two features, namely ‘‘Modified

Nucleosome Neighboring’’ and ‘‘Modified Nucleosome Occupan-

cy’’ to analyze whether the spatial distribution of nucleosomes are

informative for TFBS prediction. The proposed features as well as

the classifier can be easily applied to other TFs to evaluate how

well these features will perform in prediction processes.

Here, we only analyzed the role of 21 histone methylation in

TFBS prediction. As more and more genome-scale histone

modification data sets become available, more complex features

related to the distribution of nucleosomes may be defined and used

Figure 3. The standard ROC curves for the traditional motif scanning method with a zero order background model. Result is shown
for predicting the test set (Chromosome 2 to Chromosome 22 and two sex chromosomes) binding regions of Sp1 in CD4+T cells using the PWM. AUC
value corresponding to this curve is 0.7880.
doi:10.1371/journal.pone.0089226.g003

Table 1. Histone modification types.

Histone modification Modification type

H2A.Z Active

H3K4me1 Active

H3K4me2 Active

H3K4me3 Active

H3K9me1 Active

H3K9me2 Repressive

H3K9me3 Repressive

H3K27me1 Active

H3K27me2 Moderate

H3K27me3 Repressive

H3K36me1 Moderate

H3K36me3 Active

H3K79me1 Moderate

H3K79me2 Moderate

H3K79me3 Moderate

H3R2me1 Moderate

H3R2me2 Moderate

H4K20me1 Active

H4K20me3 Moderate

H4R3me2 Moderate

H2BK5me1 Active

Each modification is clustered into active, repressive or moderate type based on
their association with active or repressed genes. Moderate marks show a dual
tendency toward active and repressed genes.
doi:10.1371/journal.pone.0089226.t001
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to uncover the actual patterns that the modified nucleosomes take

around binding sites.

We believe that our study is a step toward understanding

epigenetic regulation of target genes of TFs and inferring how

epigenetic modifications influence and recruit regulatory proteins.

Materials and Methods

1. Transcription Factor Binding Sites
Genome wide position of Sp1, MAZ, PU.1 and ELF1 binding

sites were obtained from FANTOM 4 (http://fantom.gsc.riken.jp/

4/download/GenomeBrowser/hg18/TFBS_CAGE/allsites_cage_

tfbs_feb09_latest.gff.gz) [37].

2. Nucleosome Position Detection and Dataset
The genomic position of the 21 modified nucleosomes in human

resting CD4+T cells were obtained from [30]. These data show

the genomic position of unambiguously mapped sequence tags

from chromatin immunoprecipitation followed by high-through-

put sequencing (ChIP-Seq) experiments. We used the NPS

package [21] to determine the genomic positions of nucleosomes

corresponding to the short sequence tags. The March 2006 human

genome (NCBI Build 36.1, hg18 assembly) was used as a reference

genome.

3. Distribution of Nucleosome Positions around
Transcription Factor Binding Sites

The distributions of the nucleosomes from 21 kb to +1 kb with

respect to the center of TF binding sites from the positions

identified in the previous steps were calculated by dividing the

number of nucleosomes at each position by the number of binding

sites. Genomic positions from 215 bp to 15 bp with respect to the

central positions of the nucleosomes are assumed as the genomic

positions where the nucleosomes exist. The distributions of

nucleosomes near Sp1, MAZ, PU.1 and ELF1 binding sites were

separately calculated [28].

4. Position Weight Matrix Representation
A zero order background model represented by [38] was used to

construct the matrix based on Sp1 binding sites extracted from

Chromosome1. The number of nucleotides in each position was

calculated and converted to a frequency as follows:

fca~(ncazbca)=(NczBc),

where nca and bca are the real counts and pseudocounts of

nucleotide a, respectively in position c. The total number of real

counts and pseudocounts are called Nc and Bc in the position,

respectively. Here we consider Bc~1 and bca~Bc|pa where pa is

the background frequency of base a. These frequencies are then

converted to a log odd score as follows:

wca~ log2 ( fca
pa

),

where wca is the matrix value of base a in position c. The scores

given to a binding site are converted to a relative unit scale by:

score{scoremin
scoremax{scoremin

,

where scoremin and scoremax are the sums of minimum and

Figure 4. Improvement in Sp1 binding site prediction by combining MNN data from different modifications. ROC curves for a number
of different methods for predicting bound locations. Results of predictions made by combining all 21 modifications (green line); 8 modifications
(black line) and integrating H2A.Z and H3K4me3 data (blue line). Comparing this figure with Figure 1 shows that applying the LRCs to the data of
single modifications perform better than those LRCs trained with the combination of histone modifications. This may be due to the fact that the
predictive ability for distinguishing true target regions is redundantly encoded among histone marks.
doi:10.1371/journal.pone.0089226.g004
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maximum scores in each column of constructed PWM, respec-

tively. This strategy was used to construct MAZ, PU.1 and ELF1

PWMs.

5. Scanning and Scoring Regions by PWM
All chromosomes except Chromosome 1, which is used as a

training set, were binned into non-overlapping 1 kb intervals.

Every base bi in each interval was scored by PWM. So, two scores

scorez
i and score{

i were assigned to the base bi corresponding to

two sub sequences on positive and negative strands. The score of

each interval is finally represented by:

Scoreinterval~ maxf max
1ƒiƒ1000

(scorez
i ), max

1ƒiƒ1000
(score{

i )g:

According to the constructed PWM, a score is assigned to each

interval for each TF under study.

6. Training Set
For the modified nucleosome neighboring feature (MNN), the

distances from the center of Sp1 binding sites on Chromosome 1

to the central positions of the nearest nucleosomes containing a

Figure 5. Distributions of nucleosome positions around Sp1 binding sites. Distributions of the central positions of nucleosomes for the top
8 marks and 3 repressive marks around Sp1 binding sites on the genome. The x-axis shows genomic positions with respect to central position of Sp1
binding sites (from 21015bp to +1015bp). The positions of nucleosomes are defined as the positions from 215 bp to 15 bp with respect to the
center of the nucleosome. Active marks are highly enriched around binding sites and show a bimodal distribution around these sites. A nucleosome
free region with respect to central position of binding sites is also observable in all top marks.
doi:10.1371/journal.pone.0089226.g005
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specific modification were computed. These single values were

used to train 21 LRCs corresponding to 21 histone modifications.

Combinations of these values were used to train the LRCs

corresponding to 21, 8 and 2 combined modifications.

For the modified nucleosome occupancy feature (MNO),

another LRC was constructed, in which the number of modified

nucleosomes of certain types (the top 8 marks) were computed in1-

kbp regions flanking the center of Sp1 binding sites. These 8

obtained values were used as features to train the LRC.

For both MNN and MNO features, corresponding to each

positive location in the training set, two random positions in non-

gapped regions of the Chromosome 1 were selected as negative

control. For these positions the MNN and MNO features

corresponding to different histone modifications were computed

the same as above.

7. Test Set
Each interval from 21 autosomes and two sex chromosomes

containing the center of a reported binding site was considered as

a true binding location and the others as false binding regions. For

each region, values corresponding to the MNN and MNO features

were computed as follows. For the modified nucleosome neigh-

boring feature (MNN), the closest distance from the center of the

region to the nearest nucleosome containing a specific modifica-

tion was computed. This task was done for each interval and for

each 21 different modifications. Thus, for each interval 21 values

corresponding to 21 different histone modifications were obtained.

Finally each single value or combinations of these values, as

described in the results, were inserted into the LRC model as a test

set. The LRC classified the intervals as binding or non-binding

locations.

For the nucleosome occupancy feature (MNO), only top 8

marks (recognized through evaluation of the MNN feature) were

considered and in each test set interval, the total numbers of

nucleosomes containing each of these top modifications were

calculated separately. So, 8 values were assigned to each interval.

These 8 values were inserted into the LRC for evaluation

purposes. The LRCs assigned a score to each interval which

showed the Sp1 binding probability to that interval.

8. Evaluating the Features on MAZ, PU.1 and ELF1
Since Sp1 is a well-known and ubiquitous protein and has been

reported to bind practically everywhere in the human genome [5],

the same LRCs trained on Sp1 were used to score test set intervals.

Figure 6. ROC curves for predicting the binding locations of MAZ, ELF1 and PU.1 using the MNN feature combined with the PWM
scores. Results are shown for predicting the binding locations of A) MAZ, B) PU.1, C) ELF1 using the MNN feature with different histone
modifications, combined with the PWM scores. The final score assigned to each region is Scoreinterval~Scorefeature{MNN as introduced in the
Methods. ROC curves for the rest of the 13 modifications can be found in Figure S3. Comparing this figure with Figure S4, S5, S6 clearly demonstrate
the usefulness of the MNN feature for prediction of binding locations.
doi:10.1371/journal.pone.0089226.g006

TFBSs Prediction Based on Modified Nucleosomes
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Then, these scores were made specific to each MAZ, PU.1 and

ELF by integrating these values with the PWMs corresponding to

each factor (see below).

9. Integrating Logistic Regression with Position Weight
Matrix

For each test interval the score is computed as follows:

Scoreinterval|Scorefeature{i,

where Scoreinterval and Scorefeature{i i[fMNN,MNOg, are

calculated based on the PWM of the TF under study and the

LRC model trained on SP1.

10. Logistic Regression Classifier
We used a logistic regression classifier (LRC) to integrate

multiple data sources. This classifier maps a single or a set of

computed features to a score which represents the probability of a

TFBS.

A TFBS prediction can be represented as a binary classification

problem.The LRC hypothesis function used for prediction is

defined as hh(x)~g(hT x) where x is the vector of input features.

The vector of parameters h (also called weights) can be estimated

based on the training examples. In this study we chose the logistic

function, g(z), to be a sigmoid function:

g(z)~ 1
1ze{z :

So, hh(x) is always a real number between 0 and

1(0ƒhh(x)ƒ1). Here hh(x) shows the probability of a region

being a binding site:

hh(x)~p(y(i)~1jx,h),

where y(i) shows the i th region which can be the target of a TF.

To estimate the parameters h, we define the cost function as:

Cost(hh(x),y)~

{
1

m

Xm

i~1

y(i) log (hh(x(i)))z(1{y(i)) log (1{hh(x(i)))
� �" #

,

Where m is the number of training examples and x(i) is the

vector of input features (the MNN or the MNO) computed for the

i th interval. We call this function J(h). To Estimate the

parameters h, we need to minimize this function. The Matlab

function fminunc was used to minimize and estimate these

weights. All calculations were done in Matlab R2012a. Prepara-

tion of the data was done in C# 2010.

Supporting Information

Figure S1 ROC curves for predicting the binding
regions of Sp1 based on the MNN feature. ROC curves

are shown for 13 modifications with less predictive power for

prediction of Sp1 binding regions on the test set. The MNN

feature is used to train corresponding LRCs on Chromosome 1.

Only scores assigned by the LRCs (without using PWM scores) are

used to predict binding regions. The x-axis is the false positive rate

and the y-axis is the true positive rate.

(TIF)

Figure S2 ROC Curve of the modified nucleosome
occupancy feature for prediction of the Sp1 target
regions. The ability of the LRC trained on the MNO feature-

to differentiate between reported bound locations of Sp1 and

random sites (AUC = 0.9413). Not only is the vicinity to modified

nucleosomes but also the total number of these nucleosomes an

appropriate identifier of true binding regions. The MNO feature is

an eight dimensional vector (corresponding to top 8 marks), each

element of which is the total number of nucleosomes containing a

certain marks.

(TIF)

Figure S3 ROC curves for predicting the binding
locations of MAZ, ELF1 and PU.1 using the MNN feature
combined with the PWM scores. ROC curves are shown for

the 13 modifications with less predictive power in A) MAZ, B)

PU.1, C) ELF1. Each interval final score is a combination of MNN

scores and PWM score corresponding to a TF under study. The

ability of the LRCs, trained on Sp1 data, in predicting true

binding regions of other TFs show that epigenetic modifications of

nucleosomes are not specific to a certain TF and these

modifications represent the general binding tendency of other

TFs as well.

(TIF)

Figure S4 The standard ROC curves for the traditional
motif scanning method with a zero order background
model. Result is shown for predicting the binding regions of

MAZ in CD4+T cells using the PWM. The AUC value

corresponding to this curve is 0.7818.

(TIF)

Figure S5 The standard ROC curves for the traditional
motif scanning method with a zero order background
model. Result is shown for predicting the binding regions of PU.1

in CD4+T cells using the PWM. The AUC value corresponding to

this curve is 0.7195.

(TIF)

Figure S6 The standard ROC curves for the traditional
motif scanning method with a zero order background
model. Result is shown for predicting the binding regions of

ELF1 in CD4+T cells using the PWM. The AUC value

corresponding to this curve is 0.7378.

(TIF)

Figure S7 ROC Curve of modified nucleosome occu-
pancy feature combined with the PWM Scores, corre-
sponding to MAZ, ELF1 and PU.1. Curves show the ability of

the MNO feature incorporated with PWM scores to differentiate

between reported bound locations of MAZ (Blue line), PU.1 (green

line) and ELF1 (red line) and random sites. This figure compared

to Figure S4, S5, S6, demonstrates the predictive power of the

MNO feature combined with the PWM scores.

(TIF)

Figure S8 Distributions of modified nucleosome positions

around MAZ binding sites on the genome. Repressive sites are

shown as negative controls. The x-axis shows genomic positions

with respect to central position of MAZ binding sites (from 2

1015bp to +1015bp). The positions of nucleosomes are defined as

the positions from 215 bp to 15 bp with respect to the center of

the nucleosome. Active marks are highly enriched around binding

sites and show a bimodal distribution around these sites. A

nucleosome free region with respect to central position of binding

sites is also observable in all top marks.

(TIF)

TFBSs Prediction Based on Modified Nucleosomes
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Figure S9 Distributions of modified nucleosome positions

around PU.1 binding sites. Repressive sites are shown as negative

controls. The x-axis shows genomic positions with respect to

central position of PU.1 binding sites.

(TIF)

Figure S10 Distributions of modified nucleosome positions

around ELF1 binding sites. Repressive sites are shown as negative

controls. The x-axis shows genomic positions with respect to

central position of ELF1 binding sites.

(TIF)

Table S1 AUC values of different histone modifications.
AUC values for predicting Sp1 binding regions on 21 (Chromo-

some 2–22) autosomes and two sex chromosomes using modified

nucleosome neighboring as the only feature for enhancing

predictions. Among top 8 marks, H2A.z and H3K4me3 are the

most predictive modifications.

(DOCX)

Table S2 AUC values corresponding to the ROC curves
for different histone modifications. AUC values for

predicting three separate TF binding regions on the test set (21

autosomes and two sex chromosomes) using modified nucleosome

neighboring incorporated with PWM scores for enhancing

predictions.

(DOCX)

Table S3 AUC values of model incorporating MNO
feature and PWM scores for prediction of bound regions
of 3 TFs. AUC values corresponding to prediction made by using

occupancy of 8 top marks combined with PWM scores.

(DOCX)
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modification levels are predictive for gene expression. Proceedings of the National

Academy of Sciences 107: 2926–2931.

36. Zhang Z, Zhang MQ (2011) Histone modification profiles are predictive for

tissue/cell-type specific expression of both protein-coding and microRNA genes.
BMC bioinformatics 12: 155.

37. Suzuki H, Forrest ARR, Nimwegen EV, Daub CO, Balwierz PJ, et al. (2009) the
transcriptional network that controls growth arrest and differentiation in a

human myeloid leukemia cell line. Nature genetics 41: 553–562.

38. Mount DW (2004) Sequence and genome analysis. Bioinformatics: Cold Spring
Harbour Laboratory Press: Cold Spring Harbour 2.

TFBSs Prediction Based on Modified Nucleosomes

PLOS ONE | www.plosone.org 10 February 2014 | Volume 9 | Issue 2 | e89226


