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Abstract

Cognitive science recognizes two kinds of systematicity: (1) as the property where certain cognitive capacities imply certain
other related cognitive capacities (Fodor and Pylyshyn); and (2) as the principle that analogical mappings based on
collections of connected relations are preferred over relations in isolation (Gentner). Whether these kinds of systematicity
are two aspects of a deeper property of cognition is hitherto unknown. Here, it is shown that both derive from the formal,
category-theoretic notion of universal construction. In conceptual/psychological terms, a universal construction is a form of
optimization of cognitive resources: optimizing the re-utilization of common component processes for common task
components. Systematic cognitive capacity and the capacity for analogy are hallmarks of human cognition, which suggests
that universal constructions (in the category-theoretic sense) are a crucial component of human cognitive architecture.
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Introduction

Cognitive science recognizes two kinds of systematicity. One

kind of systematicity is the property of cognition where the

capacity for certain cognitive abilities implies the capacity for

certain other cognitive abilities, i.e. capacity is distributed around

equivalence classes of cognitive abilities [1]. Another kind of

systematicity is the preference for analogical mappings based on

collections of connected relations over relations in isolation [2].

Whether these two kinds of systematicity are aspects of a deeper

property of cognition is hitherto unknown.

In previous work [3–6], we explained Fodor and Pylyshyn’s

kind of systematicity using the category theory notion of universal

construction [7]. The new aspect of the current paper is the use of

universal constructions to also explain systematicity in the context

of analogical mapping. Here, the two kinds of systematicity are

recalled in the remainder of this introduction before a category

theory account of both is provided in the subsequent sections.

Systematicity (Fodor and Pylyshyn)
A remarkable property of human cognition is the distribution of

cognitive capacities, where the capacity for certain cognitive

abilities implies the capacity for certain other cognitive abilities.

For example, suppose one is shown pairs of geometric shapes such

as a square to the left of a triangle. If one has the ability to infer

square as the left shape in the pair (square, triangle), then one also

has the ability to infer triangle as the left shape in the pair (triangle,

square), assuming that squares and triangles are individually

recognizable. This property is generally referred to as systematicity

[1], and is characterized more broadly as having capacity c1 if and

only if c2 [8], i.e. as equivalence classes of cognitive capacities.

For cognitive science, a major challenge has been to provide a

theory of cognitive architecture that explains systematicity: i.e. why

certain cognitive capacities are distributed in a particular, non-

arbitrary way [1,9,10]. Cognitive architecture is the collection of

basic processes and their modes of composition that together

provide the basis for a slew of cognitive abilities, from recognizing

concrete physical objects to reasoning about abstract mathematical

structures. The problem with the major theoretical frameworks,

including classicism (symbols systems) and connectionism (neural

networks), is that systematicity does not necessarily follow from the

core principles and assumptions of their proposed theories. The

essential problem is that although classical and connectionist

theories are sufficiently general to derive models supporting the

systematicity property (in the cognitive domains of interest), they

are insufficiently specific to rule out models (derived from the same

core principles and assumptions) that do not support systematicity

(in those same cognitive domains). Further, ad hoc (essentially,

arbitrary) assumptions are needed that take up the explanatory

slack to exclude those classical or connectionist models that do not

support systematicity, and so neither classical nor connectionist

theory fully explains systematicity [10].

The reasons for failure stem from postulated notions of

compositionality: i.e. the ways in which a representation of a

complex entity is constructed from the representations of the

complex entity’s constituents. The classical account of cognitive

architecture is that cognitive processes are sensitive to grammatical

structure such that the representations of complex entities are

tokened whenever the representations of their constituents are

tokened [1]. Thus, the two shape capacities (above) are inseparable

because they involve a common process: say, (p,q)?p, where p
and q are symbols for squares and triangles, under the assumption

of having component processes for recognizing squares and
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triangles. In other words, the presence or absence of the common

grammatical rule implies the presence or absence of the entire

group of cognitive (shape-inferring) capacities; under this compo-

sitional scheme, there is no case of having some, but not all

capacities.

Similarly, a connectionist account of capacity can make use of

common processes in the form of activation units and weighted

connections modeling cognitive processes that are sensitive to

spatial structure. In this case, the two shape capacities factor

through a common (sub)network of weighted connections that

map (neuronal) vector representations of shape pairs to first

shapes, so that the presence or absence of this common network of

connections implies the presence or absence of the collection of

capacities.

Classical and connectionist models can be constructed such that

capacity c1 if and only if c2, however, systematicity doesn’t

necessarily follow from classical, or connectionist theory, because

one can also devise models from those theories such that c1 but not

c2 [10]. For example, the following instance of a classical

(production rule) architecture: P?(p,q), p?%j , and q?%j
generates all four representations of square/triangle pairs; but the

instance: P0?(p,%)j(%,q), p?%j , and q?%j does not

generate the pair ( , ), even though it can generate the other

three (adapted from [3]). Connectionist theory also admits

systematic and nonsystematic models in an analogous way, though

the mode of compositionality may differ (see [11]). Additional (ad

hoc) assumptions are needed to provide models with the

systematicity property. (Ad hoc assumptions are like having

arbitrarily many free parameters to fit data.) So, classical and

connectionist theories fail to fully explain systematicity [10].

Classicists have rebuffed the claim that, by assuming only the

systematic grammars, the classical explanation for systematicity

relies on ad hoc assumptions [8]: accordingly, the Classical

(Language of Thought, LOT) theory of cognitive architecture

postulates only those grammars that generate ‘‘… all and only the

mental sentences whose meanings are the contents of propositional

attitudes that the cognizer has the ability to have. That the symbol

system has such a grammar is not an auxiliary hypothesis that is

independent of the LOT hypothesis.’’ ([8], footnote 16, original

emphasis). Cognitive architecture is said to consist of grammars

that afford a ‘‘canonical decomposition’’ of mental sentences (see

[12], section 6.3), which would seem to rule out the example of a

nonsystematic classical architecture given above. Yet, even if

granted these assumptions (as not being ad hoc in nature), the

principle that guarantees such grammars remains unspecified.

Ironically, although classicists postulate a representational/computa-

tional theory of mind, following Turing [12], computer scientists have

long recognized the idiosyncratic (ad hoc) nature of syntax in

developing a theory of computation [13], and thus have turned to

category theory as an approach to computational structure to

obviate this problem (see, e.g., [14–17]). Our approach to

systematicity is motivated analogously: essentially, the systematic

constructions are the universal/optimal constructions, in a

formally precise sense to be specified later.

Systematicity (Gentner)
In the context of analogy, systematicity is the observation that

when matching source and target domains of (relational)

knowledge people match systems of (higher-order) relations in

preference to isolated (lower-order) relations [2]. This observation

is embodied as the systematicity principle, or assumption, in the

structure mapping theory of analogy [2]. Structure mapping theory

supposes that relational knowledge consists of a system of concepts

arranged in tree-like structures. Three kinds of concepts are

distinguished: objects, attributes and predicates. Object concepts are

things like John: they are constants, which are nodes in a concept

tree from which there are no more branches. Attributes and

predicates are concepts that express some proposition about other

concepts. An attribute expresses a proposition about a single

concept, e.g., Male(John) expresses the proposition that John is a

male, and its concept tree structure has Male (attribute) as the root

concept node and John (object) at its only branch. Predicates are

concepts that express propositions about two or more concepts,

e.g., Loves(John, Mary) expresses the proposition that John loves Mary,

and its concept tree structure has Loves (predicate) as the root node,

John at its first branch and Mary at its second branch. Later, we

consider objects, attributes and predicates as instances of relations

of arity n: i.e. nullary (n~0), unary (n~1) and n-ary (n§2)

relations, respectively.

Predicates can express propositions about other predicates. For

example, Knows(Tom, Loves(John, Mary)) expresses the proposition

that Tom knows that John loves Mary. Its concept tree consists of the

predicate Knows at the root with Tom at the first branch and the

concept tree corresponding to the proposition that John loves Mary

at the second branch. Predicates that express propositions about

objects are called first-order predicates, and those expressing

propositions about predicates are called higher-order predicates. In

the current example, Loves is a first-order predicate and Knows is a

higher-order predicate.

The Water-Heat flow analogy example (see [2]) illustrates the

systematicity principle in analogical mapping. Suppose the

following relational knowledge (concept trees) from the water flow

domain:

1. And(Contains(Vessel, Water), On-top-of(Lid, Vessel)); and

2. Cause(And(Puncture(Vessel), Contains(Vessel, Water)), Flows-from

(Water, Vessel)).

Suppose, also, two corresponding trees from the heat flow

domain by replacing the objects in the water flow domain with

corresponding objects in the heat flow domain, as given by the

following object concept mappings: Vessel?House, Lid?Roof ,
and Water?Heat: The systematicity principle as expressed in this

example is the preference for mapping the second tree over the

first, because the second tree involves a larger system of (higher-

order) predicates than the first [2].

Outline of approach
The novel aspect of this paper is two-fold: (1) a category-

theoretic explanation for Gentner’s kind of systematicity, and (2)

an explanation for why these two kinds of systematicity are related

via the category-theoretic notion of universal construction. In category

theory, a universal construction relates a collection of arrows in

some category of interest via a common mediating arrow in a unique

way [7]. We used universal constructions to explain Fodor and

Pylyshyn’s kind of systematicity [3–6]. Intuitively, in a collection of

systematically-related cognitive capacities (arrows), every capacity

is composed of a common cognitive process (mediating arrow) in a

unique way (no further, ad hoc, assumptions are needed) for the

cognitive domain (category) of interest. Hence, the presence or

absence of this common process implies the presence or absence of

the collection of capacities.

Universal constructions can also be conceptualized as a kind of

optimization: as the factorization of a collection of arrows via their

greatest common arrow, which is analogous to the factorization of

a collection of numbers via their greatest common divisor. This

conception of universal construction as a form of optimization is

the intuition behind a category-theoretic explanation for Gentner’s

Analogy and Cognitive Architecture
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kind of systematicity, where humans typically attempt to maximize

the number of matches between source and target elements in an

analogical mapping. Heuristically, the benefit of finding more

matches is the greater transfer of knowledge from one (source)

domain to facilitate inferences in another (target) domain.

The rest of this paper is concerned with detailing a category-

theoretic link between these two kinds of systematicity. In the next

section (Methods), we provide the basic category theory in regard

to the universal constructions that are used to explain the two

kinds of systematicity. Then, in the following section (Results), we

derive these two kinds of systematicity from the category-theoretic

notion of universal construction. The explanation for Fodor and

Pylyshyn’s kind of systematicity was already provided in previous

work [3–6]. The essential points of this explanation are recalled

here, but the presentation differs from the earlier work to facilitate

the comparison with the explanation of Gentner’s kind of

systematicity. In the final section (Discussion), psychological/

conceptual interpretations of these results are discussion, along

with possible extensions to address some other aspects of analogy.

The style of presentation in the main text is informal with the

supporting technical details provided in the supplementary texts so

that familiarity with category theory is not required.

Methods

In this section, we provide an informal introduction to the

category theory concepts needed to explain the two kinds of

systematicity, i.e. universal constructions, which depend on the

concepts of category and functor. An introduction to category

theory typically starts with a definition of a category, which includes

a collection of objects and relations between objects, called arrows (or

morphisms, or maps). The category theory approach to cognition

presented here regards a cognitive architecture as a category (of

possibly other categories), where objects are interpreted as

components of the architecture and arrows are relations between

those components. For instance, two objects may be interpreted as

two collections of representational states and an arrow between

them as a cognitive process (function) mapping states to states.

Hence, we begin our introduction from the more familiar notions

of sets and functions between sets. The definition of a universal

construction also depends on the concept of a functor, so we also

provide an informal introduction to functors. Formal definitions

are provided in the appendices. Deeper introductions to category

theory can be found in many texts on the subject (e.g., [7,18]).

Category
A category is a collection of objects and arrows between objects

with a composition operation for composing arrows to form new

arrows in a way that satisfies certain axioms. They are the

associativity and identity axioms (see Text S1). Many results in

category theory apply at this abstract level, where the nature of the

objects, arrows, and composition operator is left unspecified. More

concretely specified categories are typically employed for partic-

ular domains of interest. For instance, we will consider the shapes

example as part of a category whose objects are sets, arrows are

functions between sets, and composition operation is function

composition. More concretely still, some of these objects (sets) are

sets of perceptual, or conceptual states for corresponding shapes,

and the arrows are functions (cognitive processes) transforming

representational states.

Objects and arrows may be constructed from other objects and

arrows. The set of shape concept pairs, for example, is constructed

from the Cartesian product of the set of shape concepts, S~fsquare,
triangleg, with itself: i.e. the set S|S~f(square,square),

(square,triangle),(triangle,square),(triangle,triangle)g, which is

another object. The first and second elements of each pair are

retrieved by two functions (also called projections): p1 : S|S?S;

(square,square).square, (square,triangle).square, (triangle,
square).triangle, (triangle,triangle).triangle; and p2 : S|S?
S; (square,square).square, (square,triangle).triangle, (triangle,
square).square, (triangle,triangle).triangle. In general, the Car-

tesian product of sets A and B is the set A|B of all pairwise

combinations of the elements taken from sets A and B, and two

functions, p1 : A|B?A and p2 : A|B?B, that return the first and

second elements of each pair. A Cartesian product is a product in the

category Set. (Boldface is conventionally used for the names of

categories.) More generally, in some category C, a product of objects A

and B is an object P (also denoted A|B) together with two arrows

p1 : A|B?A and p2 : A|B?B such that certain universal

conditions are met, which will be specified when introducing the

concept of universal construction.

Functor
Functors are to categories as arrows are to objects. They send

objects and arrows in one category to (respectively) objects and

arrows in another category. Functors can also be considered as a

way of constructing categories from other categories. For example,

the product functor constructs product objects and arrows from pairs

of objects and arrows. The product functor, in the context of Set,
constructs the Cartesian product object A|B from objects A and

B, and the product function f |g : A|B?C|D, mapping pairs

of elements, from the functions f : A?C and g : B?D. Universal

constructions are defined with regard to functors.

Universal construction
The intuition behind the formal notion of universal construction

involves the idea of capturing the common component of a collection

of entities (arrows). We can see this intuition in action from our shapes

example. Observe that every pair of maps that extracts the first and

second shape concept from shape images (firsti and secondi) can be

composed of a map sending each image to a pair of shape concepts in

the Cartesian product set and the projections for extracting the first

and second shape concepts from each pair of shape concepts. For

example, the map first1 : % .square is composed of the map

u1 : % .(square,triangle) and the projection p1 : (square,
triangle).square. The map first2 : %.triangle is composed of

the map u2 : %.(triangle,square) and p1. Maps first1 and first2

share the common component map p1. Similarly, maps that

extract the second shape concept from each image, secondi, share

the common component map p2 : (square,square).square,

(square,triangle).triangle,(triangle,square).square,(triangle,
triangle).triangle.

Universal constructions can also be thought of as a kind of

optimization relative to the underlying functor. In the case of

products, the underlying functor of interest is the diagonal functor,

which sends objects and arrows to pairs of objects and arrows. We

will see in more detail later that every pair of arrows to the object

(A,B) factors through the pair of projections (p1,p2) in a unique

way.

Results

Two kinds of systematicity are derived from universal

constructions. For succinctness, Fodor and Pylyshyn’s kind of

systematicity is termed F-systematicity, and Gentner’s kind of

systematicity is termed G-systematicity.

Analogy and Cognitive Architecture
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F-systematicity (Fodor and Pylyshyn)
The shapes example is used for the explanation of F-

systematicity based on universal constructions. In this example

of F-systematicity, if one has the capacity to infer from % that

the left shape is square, then one also has the capacity to infer from

% that the left shape is triangle, and likewise for the right shape

in each instance.

Cognitive architecture is modeled in the category Set where

objects are sets of cognitive representations, arrows are cognitive

processes mapping representations, and the composition operator

is function composition. For the specific shapes example, we have

objects that are sets of representations of shape concepts (indicated

by name, e.g., square) and images (indicated by symbol, e.g., %),

and arrows that are functions from representations to represen-

tations. For example, the set of shape concepts is the set

S~fsquare,triangleg, the set containing the square-triangle

image is the singleton (one-element) set Z1~f% g, and the set

containing the triangle-square image is the singleton set

Z2~f %g. (We also have sets Z3~f%%g and Z4~f g.)
The arrow representing the capacity to infer from % that the left

shape is square is the function first1 : Z1?S;% .square, and

the arrow representing the other left-shape inferential capacity is

first2 : Z2?S; %.triangle. Likewise, we have arrows for right-

shape inferential capacities: second1 : Z1?S;% .triangle, and

second2 : Z2?S; %.square.

F-systematicity follows from the fact that in Set we also have the

Cartesian product set of all pairwise combinations of elements of S,
i.e. S|S~f(square,square),(square,triangle), . . .g, and two

functions (projections) that return the first and second elements of

each pair, i.e. p1 : S|S?S; (square,triangle).square, etc., and

p2 : S|S?S; (square,triangle).triangle, etc. Together, the

Cartesian product and projections constitute the product construc-

tion (S|S,p1,p2), which is an instance of a universal construction.

As a universal construction, for each set Zi and each function

firsti : Zi?S, there must exist a unique function ui : Zi?S|S

such that firsti~p10ui and secondi~p20ui. Indeed, for first1 and

second1, we have the function u1 : Z1?S;% .(square,
triangle), where first1(% )~p1((square,triangle))~p1(u1(% ))
~p10u1(% ). This function, u1, is the only function that satisfies

the equality (first1,second1)~(p1,p2)0u1, as required by the

definition of product. Likewise, u2 : Z2?S; %.(triangle,
square) is the only function satisfying (first2,second2)~(p1,p2)0u2.

In psychological/cognitive terms, the sets Zi, S and S|S and

the functions p1, p2 and ui correspond to internal cognitive

representational states and processes. The arrows firsti and

secondi correspond to cognitive capacities derived from the

composition of the other arrows. (The derived arrows representing

computations are constructed from a graph representing sets of

cognitive states—nodes—and processes—edges—by a functor

sending each graph to the free category on that graph—add the

identity arrow for each corresponding node and one arrow for

each corresponding path consisting of more than one edge. A

systematic relationship between cognitive and computational levels

could be further developed in terms of adjoint functors [7], another

kind of universal construction, denoted as the relation F a G, but

that is beyond the scope of the current paper.) The collection of

objects and arrows modeling the shape capacities is given in the

following commutative diagram (i.e. paths from the same start object

to the same end object are equal, where one path has at least two

arrows)—sets and arrows associated with the %% and cases

are not shown; a dashed arrow indicates uniqueness:

ð1Þ

Systematicity is realized by common mediating functions p1 and

p2, the presence or absence of each arrow implies the presence or

absence of each collection of systematically related inferential

capacities.

Our categorical explanation for F-systematicity appears to be

analogous to the classical/connectionist explanation involving

shared grammatical rules/weighted connections, which corre-

spond to arrows in our terms. The critical difference, though, is the

additional constraints imposed by the universal construction part

of our explanation that is not present in a classical/connectionist

explanation. A variation on the categorical architecture for the

shapes example illustrates this difference.

Suppose we modify the categorical computational architecture

that is shown in Diagram 1 by replacing the Cartesian product set

S|S with the set T~f(square,square),(square,triangle),
(triangle,square)g. Accordingly, we also replace the projections

p1 and p2 by modified projections p01,p02 : T?S with element

maps (respectively) that are the same as p1 and p2, but without the

corresponding element map for the pair (triangle,triangle) not in

T . Similarly, the unique arrows u1 and u2 are replaced by arrows

v1 : Z1?T and v2 : Z2?T with element maps that are the same

as u1 and u2 (respectively). The new architecture is shown in the

following commutative diagram (where the arrows associated with

Z3 and the arrow first4 : Z4?S are not shown):

ð2Þ

In this category, there does not exist an arrow v4 : Z4?S such

that first4~p010v4 and second4~p020v4. Note that the arrows first4

and second4 are given in this architecture, not derived from the

composition of other arrows. Hence, the presence or absence of

the arrows p01 and p02 implies the presence or absence of all

capacities firsti and secondi for i[f1,2,3g but not for i~4. So, this

architecture does not support systematicity even though it employs

shared arrows p01 and p02. The critical difference here is that the

construction (T ,p01,p02) is not a universal construction, and so is

excluded by our explanation of systematicity. As this example

illustrates, our explanation for systematicity is neither a general-

ization nor a specialization of the classical one. Instead, our

category theory explanation generalizes the classical one on the

aspect of shared cognitive resources (generalizing from shared

grammatical rules to shared categorical arrows), but specializes the

classical explanation on the aspect of modes of compositionality

(specializing arbitrarily available juxtapositioning of symbols to

universally composable arrows). See [17] for a category theoretical

approach to context-free languages.

F-systematicity, universal constructions and optimization. The

explanation for F-systematicity just provided emphasized universal

constructions as they relate to equivalence classes. This perspective

is natural given that F-systematicity pertains to equivalence classes

of cognitive capacities. Another aspect of universal constructions is

Analogy and Cognitive Architecture
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in relation to optimization. G-systematicity, that is the preference

for connected over isolated relations in forming analogies, pertains

to this aspect. Hence, we recast our explanation for F-systematicity

in terms of the optimization aspect of universal constructions to

prime a category-theoretic universal constructions approach to G-

systematicity in analogy.

A universal construction is also a kind of optimization in the

sense that it consists of an object (from a collection of objects) that

is ‘‘closest’’ (relative to the collection) to an object of interest. If we

consider each cognitive capacity as a path from one set of cognitive

states (input) to another set of cognitive states (output), then closest

is interpreted in terms of path length, i.e. the number of

component arrows between two objects. The following diagram

illustrates this conception by comparing the paths associated with

the set S|S and the paths associated with the set T ,

corresponding to architectures having universal and non-universal

constructions (respectively):

ð3Þ

This diagram omits the functorial component of this universal

construction and simplifies some objects and arrows to highlight

the characterization of universal constructions as a kind of

optimization. The omitted details are given in Text S1. In

particular, the projection operators, p1 and p2, are simply denoted

here as the arrow p : S|S?S, which stands in for the arrow pair

(p1,p2) : (S|S,S|S)?(S,S). Likewise, ui and Zi stand in for

the arrow (ui,ui) : (Zi,Zi)?(S|S,S|S), and similarly for vj and

T . With the exception of S, p and p0, these objects and arrows

belong to the image of the diagonal functor, sending objects and

arrows to pairs of objects and arrows. The image of a functor

F : C?D is the collection of objects F(A) and arrows F (f ).

Diagram 3 reveals the sense in which object S|S is closer to S
than T . Arrow p0 is composed of two arrows, the projection p and

the injection i. Hence, the ‘‘distance’’ (number of component

arrows) from T to S (two) is greater than the distance from S|S

to S (one). All capacities fi : Zi?S are composed of p, only

capacities f1, f2 and f3 are composed of p0. This conception of a

universal construction as closeness motivates a reconceptualization

of analogy as structure approximation to provide a categorical

treatment of G-systematicity, next.

G-systematicity (Gentner)
All categorical constructions, including universal constructions,

reside in a category of some kind. So, the first step in providing a

categorical account of G-systematicity is to recast source and

target knowledge domains in terms of a suitable category. The

second step is to show that G-systematicity derives from a universal

construction in regard to that category. The explanation for G-

systematicity also considers two cases of analogy: (1) a special case,

where the source and target knowledge domains each consist of a

single concept tree; and (2) the general case, where the source or

target domains consist of multiple concept trees. Most (perhaps all)

analogies concern the general case. However, the categorical

explanation for the general case is a straightforward extension of

the special case, hence this division of labor is also for didactic

reasons. The formal details on which this account is based are

provided in Text S2. The Water-Heat flow analogy (see

Introduction) is used as an example application.

Special case: single pair of trees. Recall that a category

consists of objects, arrows and a composition operator for arrows

satisfying certain axioms. Each of these components is defined in

turn. In structure mapping theory, source/target knowledge is

represented as tree-like concept structures. Here, each concept tree

is considered as an object in some (to be specified) category. It is

assumed that knowledge is represented in tree form, where every

node has at most one parent. A concept that participates in two

different relations will appear as two separate nodes, each

representing the same concept but having a different parent,

rather than a single node with two parents. In the water flow

knowledge domain, for example, the binary relation Contains(Vessel,

Water) is represented by the tree SContains,(SVesselT,
SWaterT)T, where the first component is the relational concept

(Contains) and the second component is the list of trees representing

the related concepts (Vessel and Water). In general, an n-ary relation

is represented by a tree consisting of an n-ary relational concept

and a list of n concept trees. A limit of N~4 (i.e. quaternary trees)

reflects a theoretical and empirical complexity limit of quaternary

relations for adults [19–21].

The arrows in this category are specified next. Universal

constructions can be conceptualized as a kind of optimization.

Optimization suggests analogical mapping as involving a kind of

structure approximation. Approximation ordering for inductively

defined data structures, such as lists and trees, affords a categorical

treatment of recursive computation [22]. The structures employed

here are trees. Hence, approximation ordering over trees is

considered as the arrows of this category of concept trees. In this

context, approximation refers to partial knowledge about some

concept tree. For example, suppose the contents of a vessel are

unknown. A representation of this partial knowledge is the

approximation tree SContains,(SVesselT,\)T, where the symbol

\ indicates the unknown concept tree. Conversely, for example,

suppose one does not know the source of a water leak. This

situation is represented by the tree SFlows{from ,(\,SWaterT)T.

Trees are (partially) ordered by an approximation order relation,

denoted v. The expression t v r says that tree t is no better an

approximation (expresses no more knowledge) than a tree r; or, in

passive form, tree r is at least as good an approximation (expresses

at least as much knowledge) as tree t. The definition of the specific

approximation order relation for concept trees has two parts that

formalize the following intuitions: (1) the concept tree \ is no

better an approximation (expresses no more knowledge) than any

tree t, and (2) recursively, an n-ary tree t is no better an

approximation (expresses no more knowledge) than an n-ary tree r
whenever the two trees express the same relational concept and

each related tree ti is no better an approximation than its

corresponding related tree ri. Formally, the approximation order

relation for n-ary trees of arity 0 to N is defined by:

\ v t and

Sa,(ti)
n
i~1T v Sb,(ri)

n
i~1Tu(a~b) ^ ^

n

i~1
ti v ri

� �

From the water flow knowledge domain, we have the following

examples:
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N \ v SContains,(SVesselT,SWaterT)T;

N SContains,(SVesselT,\)T v SContains,(SVesselT,
SWaterT)T; and

N SContains,(\,SWaterT)T v SContains,(SVesselT,
SWaterT)T.

Some pairs of trees are not ordered, for example:

N SContains,(\,SWaterT)T and SContains,(SVesselT,\)T;

and

N SContains,(SVesselT,SWaterT)T a n d SFlows� from,
(SWaterT,SVesselT)T.

N The approximation order relation, v, has three important

properties (proved in Text S2).

1. Reflexivity (t v t): t is no better an approximation than itself.

2. Transitivity (s v t ^ t v r[s v r): if s is no better an approx-

imation than t, and t is no better an approximation than r then

s is no better an approximation than r.

3. Antisymmetry (t v r ^ r v t[t~r): if t is no better an approx-

imation than r, and r is no better an approximation than t then

t is the same as r.

Together, these three properties make the approximation

relation, v, a partial order. The set of tree approximations, denoted

T\, together with the partial order, v, constitute a partially ordered

set, or poset, denoted (T\, v ).

Finally, the composition operator, 0, for partial orders is

conjunction (of arrows). The transitivity property of partial orders

means that if we have (the corresponding arrows) a v b and b v c
then we have (the arrow) a v c, which satisfies the requirement for

a category that there is an arrow for every pair of composable

arrows. (Unlike logical conjunction, a conjunction of partial order

arrows operator is not commutative, because vAB 0 vBC is

undefined for A=C.) The reflexivity property of partial orders

means that for every element (object) a we have (the corresponding

arrow) a v a, which satisfies the requirement for a category that

every object has an identity arrow. The proof that this collection of

objects, arrows and composition operator is a category follows

immediately from the fact that (T\, v ) is a partially ordered set

and every partially ordered set is a category.

We now want to consider a particular universal construction in

regard to this category. Structure mapping theory says that

analogical mapping involves identifying common relations be-

tween source and target domains, and G-systematicity is the

principle that favours connected higher-order relations over

isolated lower-order relations. Now that a category of concept

trees and approximation orders is defined, we can consider an

analogical mapping between two trees, t and r, as involving their

greatest common approximation tree, i.e. the tree p that shares the

greatest number of (higher-order) relational concepts. Intuitively,

the notion of a greatest common approximation tree is analogous

to the concept of a greatest common divisor between numbers, or

the greatest lower bound in a lattice. Indeed, category theory

shows that these apparently similar concepts are formally instances

of the same kind of construction, a product, which is a universal

construction. Hence, our candidate construction is a product of

concept trees in the category of trees and approximations.

The definition of the greatest common approximation (gca) of two trees

is motivated by the following considerations:

N if either tree is the no approximation (no knowledge) tree, \,

then their gca is also the no approximation tree;

N if either tree represents a different relational concept then their

gca is also the no knowledge tree; and

N if both trees represent the same relational concept then their

gca is that relational concept together with the gca of each pair

of trees at the corresponding role of the relation.

Formally, the gca for trees t,r[T\ is defined by:

gca(t,\)~\

gca(\,r)~\

gca(Sa,(ti)
m
i~1T,Sb,(rj)

n
j~1T)~\ a=b

gca(Sa,(ti)
n
i~1T,Sa,(ri)

n
i~1T)~Sa,(gca(ti,ri))

n
i~1T

Some examples of the gca of two trees follow:

. gca(SContains,(SVesselT,SWaterT)T,\)~\;

. gca(SContains,(SVesselT,SWaterT)T,

SContains,(SVesselT,SoilT)T)~SContains,(SVesselT,\)T;

.gca(SContains,(SVesselT,SWaterT)T,

SContains,(SHouseT,SHeatT)T)~SContains,(\,\)T; and

. gca(SContains,(SVesselT,SWaterT)T,

SFlows{from ,(SVesselT,SWaterT)T)~\:

As the last example illustrates, gca is the greatest common

approximation tree, not the correspondence between two trees:

Contains and Flows-from are relational concepts, not relational

concept trees, hence the greatest common approximation tree is

not S\,(SVesselT,SWaterT)T). Having obtained the gca, a

subsequent process can be employed to obtain correspondences

between the other concepts (see also Discussion).

The gca of trees t and r is their greatest lower bound p. The

poset (T\, v ) is a category where each tree t[T\ is an object in

the (poset as a) category (T\, v ). The product of trees t and r in

this category is their gca together with two approximation arrows:

i.e. (gca(t,r), vt , vr ). A proof is provided in Text S2. The proof

follows from the proof that the gca of two trees is their greatest

lower bound, and that the greatest lower bound is a product in a

poset considered as a category.

The product of trees t and r is the tree with the greatest number

of connected higher-order relations in common to t and r (together

with their approximation arrows). A product is a universal

construction. Hence, a universal construction provides an expla-

nation for G-systematicity.

General case: multiple pairs of trees. The explanation of

G-systematicity in terms of universal constructions considered just

a single pair of trees. In general, a source and target domain may
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consist of multiple trees, as illustrated in the Water-Heat flow

example in the Introduction. The explanation generalizes to this

situation. Here, we sketch the generalization.

Suppose there are multiple candidate pairs of source-target

trees. The pairs of source-target trees considered during an

analogy constitute a list of tree pairs. Computing the gca of each

pair gives a list of product trees. Since product trees are also trees,

we can also define an ordering on them. In this case, the ordering

is over tree size, rather than tree approximation. Again, we have a

partially ordered set and hence a product of product trees as the

greatest lower bound. Suppose size is a natural number, for

example, indicating tree height which corresponds to the order of

the root relation, where size of the unknown tree is zero, i.e.,

size(\)~0. The set of natural numbers, N, and the usual ordering

on them, ƒ, is the poset (N,ƒ). This set is also a totally ordered set

(i.e. every pair of elements in the set is ordered) and the product of

two natural number objects x and y in the poset as a category

(N,ƒ) is the minimum of x and y: e.g., the categorical product

2|3~(2,ƒ2,ƒ3). In the case that we require the maximum

size of two trees, we can work in the dual (opposite) category (N,§),
whose product is the maximum of two numbers: e.g., in (N,§), the

categorical product 2|3~(3,§2,§3). Equivalently, in (N,ƒ), the

maximum of two numbers is the dual, coproduct (universal)

construction (denoted, z): e.g., the categorical coproduct

2z3~(3,ƒ2,ƒ3).

Putting the two steps together (i.e. computing the gca for each

pair of concept trees, and then computing the largest product tree)

gives us the largest common approximation tree for the Water-

Heat flow analogy, which corresponds to the G-systematicity

principle. That is:

which corresponds to the largest approximation tree

SCause,( . . . )T.

Obtaining the largest tree in a list of n trees can be computed by

an n-ary product, a product of n objects, which is a generalization

of the binary products used to this point. However, an n-ary

product may be psychologically implausible for large n in the light

of our account of cognitive complexity in terms of the arity of the

underlying product [23]. Alternatively, we can provide a recursive

definition of general products on an object A, a set of concept

trees, in terms of (at most) binary products. Informally, a general

product is either an object A (unary product), or the binary

product of A and a general product. In this way, we limit ourselves

to binary products at every step, which is within the proposed

capacity limits of older children and adults [23]. Pairs of trees are

considered serially, in this case, instead of conjointly. The recursive

approach also suggests another kind of universal construction. The

details are beyond the scope of this paper, but algebras constructed

on an endofunctor provide another kind of universal construction

[14,16] used in our explanation of systematically related recur-

sively definable cognitive capacities [5]. (An endofunctor is a

functor having the same domain and codomain category, hence its

relevance to recursion.)

Discussion

From a category theory perspective, F-systematicity and G-

systematicity are two sides of the same coin; two aspects of a

common principle, universal construction. Systematic cognitive

capacity (F-systematicity) and analogical mapping of systems of

higher-order relational concepts (G-systematicity) are hallmarks of

human cognition. That they are two aspects of the same principle

suggests that universal constructions (in the category-theoretic

sense) are a crucial component of cognitive architecture.

Psychologically, we can consider universal constructions as a

kind of optimization of cognitive resources. In the context of

cognitive capacity, the F-systematicity property affords the

ecological benefit of not having to expend further resources for

an already present (component) cognitive capacity [3]. In the

context of analogy, the G-systematicity property affords more

correspondences between source and target knowledge domains

[2], and therefore greater opportunities to exploit knowledge in

one domain for inferences in another. Hence, systematic cognitive

capacity and analogical mapping of systems of higher-order

relations are two expressions of this one formal, optimization

principle.

The explanation for G-systematicity involved two components:

the gca trees computed from pairs of concept trees, and the largest

gca from the list of computed gca trees. In terms of cognitive

processes, one possible interpretation is that these two components

reflect processes operating within and between a focus of attention.

This interpretation is illustrated by the following sequence: two

concept trees are in the current focus of attention; their gca is

computed and stored in working memory; attention is shifted to a

new pair of trees; the gca of the new pair is computed and

compared to the gca already in working memory; if the gca tree of

the new pair is larger than the one in working memory then the

tree in working memory is replaced with the gca of the new pair;

this process continues until some termination criterion at which

point working memory holds the largest gca. How this category-

theoretic level of analysis maps into a symbolic level, e.g., the

structure mapping engine [24], or a connectionist level, e.g., DORA

[25], of analysis is a further challenge. At the neural level, one

approach that we have mentioned before [6] is to propose a

suitable category of neural networks and arrows between
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networks. Networks are a kind of graph. The category of graphs

and graph homomorphisms has products, so one possibility is a

variation of this category that also has products.

A psychological interpretation of a categorical construction may

also depend on the nature of the arrows and ambient category.

The explanations for F-systematicity and G-systematicity involved

one kind of universal construction (product), but two different

types of arrows and hence categories: functions between sets for F-

systematicity, and order relations between trees or numbers for G-

systematicity. The interpretation of F-systematicity in terms of

common processes mapping cognitive states to states is natural,

but a similar interpretation for G-systematicity may appear less so,

since the arrows appear to be comparisons (not transformations)

between objects. Nonetheless, G-systematicity also has an inter-

pretation in terms of common arrows: in a poset as a category,

every comparison between objects z and t (and r), i.e. zƒt, factors

through the comparison of the least upper bound p of t and r, i.e.

pƒt, because the corresponding arrow ƒzt~ƒpt0ƒzp (i.e. z less-

than-or-equal t whenever z less-than-or-equal p and p less-than-or-

equal t). Hence, ƒpt is the common arrow underlying all

comparisons with t, defining an equivalence class of capacities

for comparisons with t (and likewise r). The general claim, then, is

that these two forms of systematicity are expressions of a kind of

optimization of cognitive resources.

Summary and further directions
The category theory concept of a universal construction was

introduced to address a limitation of the classical explanation for

F-systematicity: i.e. the lack of an explanation as to why the

grammars constituting cognitive architecture are just the system-

atic ones. The category theoretical explanation says that the

(grammatical) structures supporting systematicity are the univer-

sal/optimal ones, in a precisely specified, formal sense. This

category-theoretic principle of universal construction also accounts

for G-systematicity as the same kind of optimal/universal

structure, albeit in a different category.

Given the abstractness of category theory, one may wonder

whether any collection of arrows (cognitive processes) can be

characterized by a universal construction of some kind. In

particular, any two cognitive processes as computable functions

would seem to be characterizable by an architecture with the

equivalent computational power of a universal Turing machine. In

this case, every (computable) cognitive process is systematically

related to every other (computable) cognitive process, which would

seem to render the category theoretical explanation of systema-

ticity as too powerful. However, the common property of

computability is only one part of each process. (Recall that each

arrow characterized by a universal construction is composed from

a common mediating arrow and a unique arrow.) For unrelated

cognitive processes, beyond the computability property in this

example, there is no reason why having the unique component of

one process implies having the unique component of the other

process. This situation is the category theoretical analogue of

knowing that John stands for the person John says nothing about

knowing that Mary stands for the person Mary. An extreme

example is where the mediating arrow is the identity arrow, which

essentially means that the only thing two processes share is a

common (co)domain. Hence, our universal constructions expla-

nation does not imply some version of pan-systematicity. (Note

also that not all categories have all kinds of universal constructions.

For a simple example, a discrete category, having only identity

arrows, does not have an initial object universal construction: i.e. for

each object Z in the category there is a unique arrow from the

initial object to Z.)

The category-theoretic explanation for G-systematicity is

intended to complement models of analogy generally. Category

theory was invented as a formal means of comparing mathemat-

ical structures so that the tools and techniques of one field may be

carried over for the benefit of another [26]. Similarly, here, the

additional value of revealing a connection between these two kinds

of systematicity is the potential for exchange of methods and

concepts for the mutual benefit of each discipline. For instance, F-

systematicity is primarily a question about the cognitive structures

that underlay collections of systematically related cognitive

capacities, rather than the origins of those structures. Analogy

research is also concerned with the induction of knowledge

structures, such as addressed in the DORA model of analogy and

schema induction [25]. Hence, methods and techniques used to

address schema induction may also transfer to the F-systematicity

domain for what is called second-order systematicity [10], the

systematic capacity to learn certain cognitive capacities.

In the other direction, a categorical basis for F-systematicity of

recursively definable cognitive capacities in terms of algebras

constructed on an endofunctor [5], mentioned earlier, provides a

unifying treatment of recursive computation generally [14].

Concept trees and products of them were defined recursively.

Correspondences between the remaining concepts that are not

common to both trees can also be computed recursively as the list

consisting of a pair of corresponding relational concepts followed

by the (possibly empty) list (in the case of nullary concept trees) of

correspondences between their branch concept trees. Optimiza-

tion has also been cast as a recursive computation (e.g., [27]).

Hence, such algebras may also provide a unifying treatment for

computational models of analogy.

There is a large literature on computational models of analogy

for a broad range of phenomena (see [28] for a review), and the

category theoretical approach presented here is a modest first step

towards integrating properties of analogy with other components

of cognition. One important aspect of analogy not addressed here

is the role of the one-to-one correspondence principle that is a

central feature of theories of analogy, such as structure mapping

theory [2]. For example, the gca of Causes(Loves(John, Mary),

Kisses(John, Mary)) and Causes(Loves(Jane, Marcia), Kisses(Jane, Marcia))

is the same as the gca of Causes(Loves(John, Mary), Kisses(John, Mary))

and Causes(Loves(Jane, Marcia), Kisses(Susan, Tony)), yet we may

expect a preferential mapping to the first choice given that the

repeating components (e.g., John as the lover and as the kisser)

represent the same concept. One possibility is to include the dual

notion of coproducts by considering each repetition as a single

concept with more than one parent, i.e. by considering the

structure as a lattice instead of a tree. In this case, matching is

based on both top-down (product) and, dually, bottom-up

(coproduct) universal constructions.

Another important aspect of analogy not addressed here is the

semantic relatedness of concepts, which is addressed in models of

analogy such as LISA [29] and DORA [25] using semantic feature

units. For instance, these models prefer matching Loves(John, Mary)

to Likes(Bill, Susan) than Fears(Peter, Beth), because Loves and Likes

share more semantic features than Loves and Fears (see [29]). A

categorical approach that combines syntactic (symbolic) and

semantic (vectorial) aspects of language was proposed in [30], as

a categorical product of corresponding components. A further

challenge, then, is a category theoretical approach to integrating

such syntactic and semantic aspects of analogy.

Category theory has further potential to reveal connections

between cognitive components that may not be apparent from

other theoretical approaches. To conclude with another example,

it has been argued that the capacities for analogy and (relational)
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language are closely connected and unique to humans [31].

Elsewhere [5], we noted a distinction between kinds of recursive

capacities based on the underlying endofunctor: e.g., the

systematic capacities for recursion over numbers, lists and trees

are based on universal constructions derived from endofunctors

with different forms. In particular, tree-related algebras involve a

more ‘‘complex’’ endofunctor than list-related algebras, analogous

to the difference between quadratic and linear functions. The

connection between analogy and language may depend on

systematic capacities for recursion that are tied to tree-related

algebras and the common ‘‘quadratic’’ form of their underlying

endofunctor. Having such an endofunctor and associated universal

construction affords the capacity for analogy if and only if the

capacity for language as another kind of systematicity. Such

formal, category-theoretic connections hint at a further deepening

of our understanding of the structure of human cognition.
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