
An Evaluation Framework and Comparative Analysis of
the Widely Used First Programming Languages
Muhammad Shoaib Farooq1,2, Sher Afzal Khan1, Farooq Ahmad2, Saeed Islam3, Adnan Abid2*

1 Department of Computer Science, Abdul Wali Khan University, Mardan, Pakistan, 2 Faculty of Information Technology, University of Central Punjab, Lahore, Pakistan,

3 Department of Mathematics, Abdul Wali Khan University, Mardan, Pakistan

Abstract

Computer programming is the core of computer science curriculum. Several programming languages have been used to
teach the first course in computer programming, and such languages are referred to as first programming language (FPL).
The pool of programming languages has been evolving with the development of new languages, and from this pool
different languages have been used as FPL at different times. Though the selection of an appropriate FPL is very important,
yet it has been a controversial issue in the presence of many choices. Many efforts have been made for designing a good
FPL, however, there is no ample way to evaluate and compare the existing languages so as to find the most suitable FPL. In
this article, we have proposed a framework to evaluate the existing imperative, and object oriented languages for their
suitability as an appropriate FPL. Furthermore, based on the proposed framework we have devised a customizable scoring
function to compute a quantitative suitability score for a language, which reflects its conformance to the proposed
framework. Lastly, we have also evaluated the conformance of the widely used FPLs to the proposed framework, and have
also computed their suitability scores.

Citation: Farooq MS, Khan SA, Ahmad F, Islam S, Abid A (2014) An Evaluation Framework and Comparative Analysis of the Widely Used First Programming
Languages. PLoS ONE 9(2): e88941. doi:10.1371/journal.pone.0088941

Editor: Hussein Suleman, University of Cape Town, South Africa

Received September 18, 2013; Accepted January 14, 2014; Published February 24, 2014

Copyright: � 2014 Farooq et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors have no support or funding to report.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: adnan.abid@ucp.edu.pk

Introduction

Computer programming holds a central importance in the

computing curricula. The selection of a programming language for

an introductory course of computer programming has always been

pivotal as well as contentious [1], such a language is generally

referred to as First Programming Language (FPL). Purpose of the

first course in computer programming is to provide conceptual

knowledge to the beginners for ‘‘understanding the fundamental

programming constructs’’ in such a way that they should be able to

program a given problem [2][3]. The literature survey reveals

[78][79][80][81] that many different programming languages

have been used as FPL. During the 1990s, Professor Richard Reid

of Michigan State University has been maintaining a list of the

languages used as FPL by various different universities and

institutes [4]. Later on, this list has been updated till 2006 by

Frances Van Scoy [79], and lately another version of this list has

been compiled [78]. A summarized list of number of universities

using a particular language as FPL at different times has been

presented in Table 1, which has been compiled by getting data

from [4][78][79][80]. It clearly reflects that Pascal remained

dominant FPL for a whole decade (1990s) [78], while Ada and

Modula-2 remained consistent during this time. C++ gained

popularity in late 90s, whereas Java and Python started to appear

in the counts in late 90s. Java emerged as the most widely used

FPL beyond 2006, whereas, C++ remained the runner-up

throughout this time.

The genealogy of the programming languages has been

presented in Figure 1. The languages in solid boxes are popular

FPLs. The figure clearly shows that newer languages are

influenced by some existing languages, which enforces a new

language to carry some legacy features of its ancestors. Thus, the

size of the new language increases, which in turn poses serious

problems in terms of its suitability as an FPL. On the other hand

some languages [82] have been designed purely from educational

perspective, but they altogether miss out the industrial demands,

and hence are not warmly welcomed by the community. This

demands a comprehensive evaluation criterion for evaluating the

suitability of a language as an appropriate FPL. Many people have

presented different sets of requirements [5][6][7][8] for an

appropriate FPL. However, these approaches discuss the problem

at higher abstraction levels, and to our knowledge, there is no

concrete and well defined method for the evaluation of an

appropriate FPL.

The major focus of this article is to figure out a possible way to

evaluate the suitability of a language as an FPL. To this end, we

have proposed a framework for the evaluation of an FPL which is

mainly based on technical and environmental features. The novelty of

this work is that while evaluating the languages we have not only

relied on relevant research literature, but we have also strongly

involved the general programming language rules to evaluate most

of the features. We have also defined a scoring function based on

the parameters in the defined framework. This scoring function is

customizable and can be tuned to the user’s preferences. The other

contribution of this work is that we have evaluated and ranked

widely used FPLs using our proposed framework. Therefore, we

have considered different imperative and object oriented pro-

gramming languages which have been top ranked FPLs at a

PLOS ONE | www.plosone.org 1 February 2014 | Volume 9 | Issue 2 | e88941

http://creativecommons.org/licenses/by/4.0/

certain stage. It is evident from Table 1 that Ada, C, C++, Fortran,

Java, Modula-2, and Pascal have been the most frequently used

FPLs, whereas, Python and C# which have recently gained

popularity as FPL. The survey revealed that Scheme is also

another reasonably used FPL; however, we do not consider it in

our comparison as it is not an imperative language.

The rest of the paper is organized as follows: following the

Introduction section, we present the related work. The proposed

framework has been discussed in detail in the section ‘‘Proposed

Framework and Comparative Analysis of Commonly used FPLs’’, where we

have not only presented the evaluation criterion for each feature,

but we have also rated the considered FPLs over it. The scoring

function along with the suitability analysis for the programming

languages has been presented in the section ‘‘Scoring Function’’.

Finally, we present the conclusion and future directions of this

research work.

Related Work

Formal evaluation efforts for the assessment of programming

languages are few and far between, and most evidence gathered is

Figure 1. Genealogy of Programming Languages.
doi:10.1371/journal.pone.0088941.g001

Table 1. Percentage of leading FPLs taught.

Language YEAR

1994 1997 1999 2006 2011

Ada 15 19 18 3 1

C 8 11 12 7 3

C++ 4 20 21 22 23

C# 0 0 0 1 1

Fortran 2 2 2 0 0

Java 0 0 3 60 56

Modula-2 13 11 10 0 0

Pascal 40 33 30 0 0

Python 0 0 0 4 12

Others 18 4 4 4 4

doi:10.1371/journal.pone.0088941.t001

Evaluation of First Programming Language

PLOS ONE | www.plosone.org 2 February 2014 | Volume 9 | Issue 2 | e88941

anecdotal in nature. Some approaches have been proposed to

evaluate the quantitative suitability score for an FPL, for instance,

Parker et al.[5] compiled a list of criteria for introductory

programming courses at universities. However, this criterion has

not been discussed with sufficient technical details of the involved

measures, which can be useful for evaluation and scoring purposes.

Clarke [8] used questionnaires to evaluate a programming

language. He has demonstrated that a questionnaire involving the

cognitive dimensions can be a useful and valuable tool for

evaluating the usability of a programming language. But, focusing

just on cognitive aspects does not allow comprehensive evaluation

or assessment from all aspects.

Gupta [6] discussed requirements for programming languages

for beginners, which effectively is a requirement analysis for an

appropriate FPL. However, there is no formal assessment

mechanism devised for the evaluation of a language for its

suitability as an introductory FPL. Similarly, some articles

[13][14][17] present language independent evaluation based on

intrinsic and extrinsic criterion for suitability of introductory

programming language. Intrinsic criterion is related to language

technical aspects such as type safety, syntax, visual vs. textual,

compiled vs. interpreted. Extrinsic criterion is related external

factors (student demand, industry trend), accessibility (supporting

material, text books) and introductory programming course

(design, thinking, algorithm social skills). However, these criterion

and relevant parameters have been discussed on a surface level

and need to be probed further so as to actually evaluate the

languages.

McIver [7] proposed a method for comparative evaluation

based on the usability of programming language. The interaction

of programmer with similar language IDEs was recorded and

analyzed for all types of errors made by programmer. The

proposed approach by McIver evaluates languages together with

similar IDEs; however, it strongly focuses on IDE and undermines

the other features. Kölling [42] claims that several tools to support

and improve the learning and teaching of programming have been

developed, used and researched for many years, but still the

problem persists.

Another dimension of research in this area is the comparative

evaluation of languages that are widely being used as FPL. For

instance, a comparison of Modula-2, Fortran-77, Pascal and C is

presented in [10]. Phipps [11] compared C++ and Java from the

viewpoint of defects, bugs and productivity rates. Similarly,

Hadjerrouit examined Java’s suitability as an FPL [12]. A

comparison of Ada95, C, C++, and Java with their conformance

to the requirements of ‘‘Steelman’’ has been presented in [45].

Another dimension of work, presented in [12] [15][16][17] by

motivated faculty members, is about their dissatisfaction on a

language’s usability, especially, C++ and Java. This has paved way

for other newer languages like Python. These articles present the

evaluation of these languages based on their teaching experiences.

Another recent but orthogonal dimension of work is to gather the

real data about the behavior of the novice programmers [44].

The above discussion reveals that many efforts have been

carried out to evaluate and compare different FPLs, yet no

adequate way to assess and compare FPLs exists. This gives rise to

the question of the availability of a comprehensive method to

evaluate a language’s strength as an appropriate FPL, which in

turn, helps in comparing the suitability of different languages as

FPL. In this work, we focus on defining a comprehensive

evaluation criterion for the assessment of a proper FPL, with all

relevant and in-depth details. The novelty of this work is that apart

from defining the evaluation parameters, we have also presented

the related characteristics to evaluate each parameter, and unlike

existing approaches our method strongly incorporates the general

programming language rules for this purpose. This effectively

helps in performing comprehensive evaluation of a language, as

well as may be used to compare the suitability of different

languages as an appropriate FPL. We have also assigned scores to

the widely used FPLs using our framework. Furthermore, we have

also devised a score aggregation function so as to quantify and

rank the FPLs based on the given criterion.

Proposed Framework and Comparative Analysis
of Commonly Used FPls

In this section we present our proposed framework for the

suitability analysis of an FPL. Furthermore, the suitability analysis

of popular FPLs, based on the parameters defined in this

framework, has also been presented. To this end, we analyze

each language and assign a qualitative score based on its

conformance to each factor related to a parameter. Our proposed

framework comprises of two main categories which include

technical and environmental feature sets. The technical feature set

covers the language theoretical aspects, whereas, the environmental

feature set helps evaluating the external factors. These factors have

Table 2. Evaluation Framework.

Technical Features High Level

Orthogonality

Strongly Typed

Enforceability of Good Habits

Security

Feature Uniformity

Less Effort for writing simple programs

Environmental
Features Demand in Industry

Contemporary Features

Easy Transition

Readable Syntax

Quality Coding

User Friendly Integrated Development Environment

doi:10.1371/journal.pone.0088941.t002

Table 3. No. of assembly language instructions for one
instruction of the considered FPLs.

Languages No. of assembly language instructions

Ada 6.5

C 2.5

C++ 6

C# 6

Fortran 4

Java 6

Modula-2 4

Pascal 4

Python 7

doi:10.1371/journal.pone.0088941.t003

Evaluation of First Programming Language

PLOS ONE | www.plosone.org 3 February 2014 | Volume 9 | Issue 2 | e88941

been presented in Table 2. The feature sets in this framework not

only help in evaluating the suitability of an FPL, but also include

comprehensive guideline for designing a new FPL.

Firstly, we have discussed each technical feature separately, which

are then followed by the discussion on environmental features,

individually. We discuss each feature using the following

ingredients: (i) define a feature; (ii) discuss its suitability for the

evaluation of an FPL; (iii) define its evaluation criterion; and (iv)

evaluate each language in Table 1 to reflect its conformance to

each relevant measurable sub features for that feature.

Each feature is further comprised of a few sub features, and

while evaluating each language against a feature, we rate it against

each defining sub-feature. To this end, we use the following four

simple qualitative values: (i) Fully Supported; (ii) Mostly Support-

ed; (iii) Partially Supported; (iv) Not Supported. We assign an

entry of ‘‘Fully Supported’’ to a language against a sub feature if its

major implementations generally meet the requirements, whereas,

‘‘Not Supported’’ indicates that requirements are generally not

met. The intermediate entry ‘‘Partially Supported’’ shows that

some requirements are met, but a major portion of the

requirements are not met, while ‘‘Mostly Supported’’ specifies

that the requirement is generally met, but some specific

requirements are not met. Such qualitative measures have already

been used in literature for the language evaluation [45].

In order to define and evaluate each feature, we have utilized

the references available in the literature; statistics related to the

languages; sources considered to be language’s defining docu-

ments; and the implementation of these features in the widely used

compilers of that language, essentially with similar semantics. The

list of documents considered for this study has been presented in

Appendix S1.

Technical Features
In this section we discuss each technical feature in detail. These

technical features have been evaluated by considering a language’s

conformance to their defining sub-features. Furthermore, these

features have also been rated against the aforementioned four

qualitative values.

High Level. A good FPL should not have constructs that

concern machine internals and possess no semantic value [18].

Jobs that can easily be managed by compiler or underlying

platform should not be privileged to programmer [19]. IBM

defined the level of a language as the number of basic assembly

language statements it would take to produce the functionality of

one statement in the target language [20]. In any high level

language one instruction should be equal to three or more

assembly language instructions. Table 3 describes levels of popular

leading FPLs in which except C all languages are high level [20].

In our evaluation process we have incorporated IBM’s criteria. For

that reason C is a middle level language.

It is important to note that by definition it is evaluated in

quantitative terms, therefore, we do not map it to the above

mentioned qualitative values. However, we treat it in a different

manner, as discussed in the scoring function section, where we

compute the overall score of a language.

Orthogonality. Orthogonality means all language constructs

follow consistent rules [6][9][21][57][58]. As an example, in an

orthogonal language keywords cannot be declared as an identifier;

and semantics of statement should be predictable. Therefore, an

orthogonal language offers the novice programmers a smoother

and simpler learning curve. Hence, in order to evaluate the

orthogonality of a language we evaluate it based on the following

parameters: i) all keywords should be reserved; ii) consistent rules

should be applied; and iii) interaction of the constructs should be

predictable.

In terms of the mainstream FPLs, all keywords are reserved in

Ada, C++, C, Java, Python, Modula-2 and Pascal. However, in

Fortran [21] keywords are not reserved and can be declared as an

identifier. This in turn, creates serious readability problem as

shown in Figure 2(Code Listing 1). C# provides two types of

Figure 3. Default initialization rules in Java.
doi:10.1371/journal.pone.0088941.g003

Figure 2. (Code Listing 1) Keywords in Fortran. (Code Listing 2) Different syntax for stack and heap memory objects.
doi:10.1371/journal.pone.0088941.g002

Evaluation of First Programming Language

PLOS ONE | www.plosone.org 4 February 2014 | Volume 9 | Issue 2 | e88941

keywords, i.e. reserved and contextual, the reserved keywords can be

declared as an identifier with ‘@’ prefix, while contextual keywords

are special words for compiler in certain context and can be

declared as an identifier outside the context.

Consistent rules means that the features of a language are

independent of the context of its appearance in a program. If

syntactic construct is allowed for one data type, it should be

allowed for all the data types available in the language, e.g. in C an

array cannot be returned from function, but it is possible to return

an array when it is placed in a structure [36][58]. Parameter

passing rule in Java is orthogonal, primitives are passed by value,

whereas objects are passed by reference. All Python and Java objects

are created in heap memory. In C++, objects can be created in

heap as well as in stack using different syntax. The methods of

objects created in stack are accessed through (.) dot operator,

whereas (R) arrow operator is used to access members for the

objects stored in heap, which is a violation of orthogonality as

illustrated in Figure 2 (lines 4, 6 -Code Listing 2).Similarly, in Java

and C#, the rule for the initialization of variables is not

orthogonal. By default, all class scope primitive variables are

implicitly initialized with its default value as illustrated in Figure

3(line 2 - Code listing 3), and objects are initialized with null.

However, the local variables are not initialized by default, and

should be explicitly initialized by the programmer as illustrated in

Figure 3(lines 4,6 - Code Listing 3). However, unlike the other

languages the variable initialization rule in Ada is orthogonal, as it

implicitly assigns a default initial value for all types of variables and

also supports in, out and in-out mode semantics for parameter

passing.

Another consideration about orthogonatlity is that it enforces a

predictable interaction among the constructs of a language, which

means that the compiler writer is bound to implement a certain

language construct as prescribed by the language documentation,

and the behavior of the implementation should be documented,

and needs to be consistent [45]. The defining documents for the

languages C and C++ include a very large number of undefined

semantics. C++ is constantly evolving and its compilers are mostly

complete with respect to only a few versions, and some programs

in C/C++ exhibit different behavior on different compilers [45].

Ada exhibits the same problems as some compilers have not

completed their transition to newer specifications, although the

validation process of Ada (including ACVC test suite) helps to

ensure that its compilers implement the entire language [59].

Similarly, Fortran has also been facing the same inconsistencies as

it has also been evolving over the years, and thus losing support

from many compiler versions. Table 4 shows the evaluation of the

considered programming languages in terms of their conformance

to the property of orthogonality.

Strongly Typed. Strongly typed means all type checking

issues are resolved either at compile time, or at run time [21]

[22][57]. It ensures that no unexpected results occur at runtime

due to type mismatching. Thus, it must be checked by the

compiler, or by the runtime system, and no automatic conversions

should be allowed. The only possible way for type conversion is

explicit type casting by the programmer. Strongly typed languages

are more reliable, and are easy to program and debug by novices.

The concept of strongly type is usually implemented in two forms:

dynamic strongly typed, and static strongly typed.

In dynamic strongly typed languages the variables are implicitly

declared and the type binding takes place at run time. Variables

are independent of type but value has type. The variable type is

determined when a value is assigned to a variable using an

assignment statement, variables are references defined in stack, and

value is an object defined in heap. Type of variable can be changed

from one type to another type at run time as illustrated in Figure 4

(lines 2, 5 -Code Listing 4). This certainly increases programming

flexibility, but at the same time, decreases early error detection.

Python, JavaScript, and Ruby support dynamic strongly typed

concept. In Python, incompatible types on the right side of an

assignment operator are not detected as errors, rather the type of

the left side is simply changed to the incorrect type. For example in

Figure4 (line 1, 4 -Code Listing 5) the variables x and y store

integer values, and z is storing a list. One needs the assignment

statement y = x but accidently assign list z to x variable as

illustrated in Figure 4(line 4 – Code Listing 5). In this case no error

is detected, interpreter simply converts variable x to list type. This

type of error is hardly detectable by novices, and full errors

diagnostics depend on heavy unit testing, which is not possible for

novice programmer.

In static strongly typed languages the variables are explicitly

declared and the type binding takes place at compile time.

Figure 4. (Code Listing 4) Dynamic type binding. (Code Listing 5) Accidently converting integer to list type in Python.
doi:10.1371/journal.pone.0088941.g004

Table 4. Orthogonality of FPLs.

Language
All keywords
are reserved

Consistent
Rules Predictable Interaction

Ada Fully Mostly Partially

C Fully No No

C++ Fully No No

C# Mostly Mostly Fully

Fortran No No Partially

Java Fully Mostly Fully

Modula-2 Fully No Fully

Pascal Fully No Fully

Python Fully Fully Fully

doi:10.1371/journal.pone.0088941.t004

Evaluation of First Programming Language

PLOS ONE | www.plosone.org 5 February 2014 | Volume 9 | Issue 2 | e88941

Similarly, all errors related to type are detected at compile time.

The type of a variable cannot be changed after its declaration.

Fortran, Ada, C/C++, Pascal, Modula-2, Java, and C# belong to

static strongly typed category. Fortran supports both explicit and

implicit declarations. If a variable is not explicitly declared by

programmer, then it is implicitly declared according to following

convention: identifier whose name starts with I,J,K,L,M,N or their

lower case versions, is implicitly declared to be an Integer; and

otherwise is declared to be real.

Ada allows the programmer to defer type checking for a

specified type conversion using function Unchecked_Conversion. C/

C++ are mostly static strongly typed languages, the only problem

is that, the union construct cannot be type checked. Fortran uses

equivalence for union, and the union construct is not type checked.

Hence, such type of union is called free union as shown in Figure 5

(line 7 - Code Listing 6) [21]. A special type of union called

discriminant union is secure for type checking. Pascal and Ada

support this type of union as shown in Figure 5(line 3- Code Listing

7) [21]. In Ada, Pascal, and Modula-2 union is type safe and more

reliable. Java and C# do not support union due to the concerns of

type safety.

Another type conversion issue is boxing and unboxing. Boxing

is a process of converting primitive data types to object types, and

vice versa is called unboxing [60][61]. This augments a language’s

capability towards static type checking. C# and Java both support

this concept. In C# primitive data types are stored onto the stack,

and object types are stored in heap. Boxing implicitly converts stack

value types to heap objects, and unboxing explicitly converts heap

object to stack value as shown in Figure 6 (line 2,3 Code Listing 8).

In Java boxing implicitly converts value of primitive types in

corresponding object wrapper type. It will not generate some type

errors. e.g. % and + = operators are not available for Java’s

wrapper Integer type, and the compiler compiles the code without

any error as shown in Figure 6 (line 4,5 Code Listing 9). Unboxing

to Null object is a reliability issue as it will generate NullPointer-

Exception in Java. The usage of boxing concept is not recom-

mended for arithmetic expressions; the safest way is to use this

concept for the storage of primitives in collection. Java and C#
boxing concept is similar to that of Python for memory allocation

in stack and heap. For novices, boxing and unboxing create

simplified application of heap and stack, but some types of errors

are hardly detectable by the novices. In general, static strongly

typed languages help the novice programmers as they help

diagnosing all type checking errors earlier at compile time. Table 5

shows the evaluation of the considered programming language as

a strongly typed language.

Enforceability of Good Habits. A good FPL should enforce

programmers to write clean and consistent code. Good program

writing style is based on clarity and readability, and these habits

should be encouraged from the beginning [23][24]. A good

language should not allow:[9][62]

1. Coercion with demotion (narrowing).

2. Expression side effects

3. Intermixing of arithmetic, logical and relational operators in

Boolean expressions

4. Unconventional operator usage and overloading

5. Scope overriding

Coercion with demotion (narrowing conversion) results into the

loss of data during the processing of mix-mode arithmetic

Figure 6. Autoboxing and unboxing.
doi:10.1371/journal.pone.0088941.g006

Figure 5. Free and discriminant union.
doi:10.1371/journal.pone.0088941.g005

Evaluation of First Programming Language

PLOS ONE | www.plosone.org 6 February 2014 | Volume 9 | Issue 2 | e88941

expression. Fortran, Modula-2, Pascal, C++ allow promotion as

well as demotion using coercion. Demotion creates data loss

problem as shown in Figure 7(line 6 - Code Listing 10). Ada allows

restricted form of mix-mode expressions. C#, Java, and Python

discourage the concept of coercion with demotion. In terms of

teaching, it is very hard for a teacher to explain coercion at early

stages.

Arithmetic expressions are prone to get affected from functional

side effects. Side effect occurs when a function changes a non-local

variable or a two-way parameter [21][62]. A good programming

language produces referentially transparent programs that are

more readable as shown in Figure 7(Code Listing 11). The

variables answer1 and answer2 will be equal if function fun has no

side effects, whereas, in case of any side effect these variables may

not be equal.

There is no concept of function side effects in mathematics, and

it is also true in functional programming languages. A good

programming language should not violate primitive mathematical

rules. e.g. fun (2) + fun(2) is equivalent as 2 * fun(2) in mathematics.

Ada supports this by using only in-mode formal parameters. Static

local variables produce functional side effects, and Java language

does not allow such type of variables. Similarly, a misuse of global

variables violates this concept as shown in Figure 8(line 14,18 -

Code Listing 12). Fortran, C, C++, Modula2, Pascal, and Python

are prone to such side effects. While, due to object oriented

features C++ tends to receive less use of global variables. Java and

C# do not support global variables but are still prone to functional

side effects. Java and C# do not support global variables and are

prone to functional side effects.

Mixing of arithmetic operators with logical and relational

operators creates readability problem as shown in Figure 9 (lines

3,4 - Code Listing 13). It results into frustrating experiences for

novices, and debugging of the code becomes tedious if arithmetic

operators are used as Boolean expressions. In Mathematics,

Boolean algebra AND, OR operators have same precedence, Ada

supports this concept. Fortran, Modula-2, C, C++, C#, Java, and

Python have different precedence for AND and OR operators. For

example, in C arithmetic expressions can be written as Boolean

expressions in if statement. In C, scalar variables (numeric or

character) and constants can also be used as Boolean expressions,

where ‘0’ means false and non-zero is considered as true. A good

language should avoid these issues [36].

Unconventional operator usage in language design will also

create readability problem. For Example, division operator (/) in

most of the languages is used for integers as well as real numbers as

shown in Figure 9(line 3 - Code Listing 14). In mathematics (/)

operator means real division. In assignment statement double

result = first/second; both operands in division are integer type so

integer division truncates fractional result. Destination variable

result is double so integer result is coerced to double. Here implicit

type conversion (coercion) will not be responsible for the data loss.

Pascal, Modula-2 and Python provide separate operators for integer

and real division. Pascal and Modula-2 use div for integers and ‘/’

for real numbers, whereas Python uses ‘‘//’’ for integer and ‘/’ for

real. Other languages use ‘/’ as overloaded operator for both integer

and real division. In short, a good FPL should not violate core

mathematical rules.

Unconventional operator overloading also create ambiguities.

Languages which support abstract data types like Ada, C++, C#,

Python, and Fortran95 allow programmer to overload operators.

When used for conventional purpose it will enhance readability

but unconventional use of operator overloading will create poor

readability. For example use of + operator to compare two stack

type objects. In order to avoid unconventional operator overload-

ing, Java does not support this feature. Sometimes overloading of

AND and OR operators overrides the default behavior of short

circuiting in boolean expression, that is why C# and Python do

not allow overloading of these operators. Ada defines ‘‘and then’’

and ‘‘or else’’ as short circuit form and these forms cannot be

overloaded as shown in Figure 10 (line 1, 3 -Code Listing 16).

Scope overriding decreases the readability of a program. In

most block scope languages, variable name should be unique with

in single block, but nested blocks can declare same name variable

as parent block. C++ provide scope resolution operator (::) for

accessing overridden global variables. In order to avoid scope

overriding problem variable names should be unique within single

as well as nested scopes. For novice programmer identical names

Table 5. Strongly Typed.

Language Static Strongly Typed Dynamic Strongly Typed

Ada Mostly No

C Partially No

C++ Mostly No

C# Mostly No

Fortran Mostly No

Java Mostly No

Modula-2 Fully No

Pascal Fully No

Python No Mostly

doi:10.1371/journal.pone.0088941.t005

Figure 7. (Code Listing 10)Coercion with demotion in C++. (Code Listing 11) Referential transparency and side effects.
doi:10.1371/journal.pone.0088941.g007

Evaluation of First Programming Language

PLOS ONE | www.plosone.org 7 February 2014 | Volume 9 | Issue 2 | e88941

in nested blocks are too error prone and difficult to debug as

shown in Figure 10 (line 2, 4 -Code Listing 15). Here Loop

condition depends on outer i declared at line 2 but inner i declared

at line 4 overrides outer i. Therefore, outer i cannot be accessible

within the body of while loop, which results into an infinite loop.

C# and Java does not allow scope overriding. A good

programming language and coding standards should not allow

scope overriding, as it is error prone, especially, for novice

programmers [21][46]. Table 6 shows the evaluation of the

considered languages based on their enforceability of good habits.

Security. In order to evaluate a language for its strength in

security we propose the following parameters: i) language should

avoid dangling references; ii) there should not be any memory

leakage; (iii) control over array index out of bound; (iv) pointers

arithmetic; (v) prevent stack and heap overflows. Every program-

ming language should support controlled aliasing. Aliasing can be

brutal to the security of the program [30], and a programming

language is considered to be less secure due to uncontrolled

aliasing. Uncontrolled aliasing is a major threat as it may create

problems like dangling referencing and memory leakage. Pro-

grams that have the keyword new without a matching delete, creates

these types of problems. Best practice is to add new keyword and

remove delete keyword from a language. Particularly, from an

FPL’s point of view inclusion of new and delete affects the

pedagogical activities both in terms of teaching, and learning.

Thus, the provision of automatic garbage collection should be

made available in good a programming language.

Dynamic memory management mechanism of Pascal and

Modula-2 poses problems like memory leakage as shown in

Figure 11 (line 9 - Code Listing 17), and dangling references as

shown in Figure 11(line 8 - Code Listing 18).

In Java, the keyword new is allowed but there is no delete

keyword. Garbage collector is responsible for deleting all non-

referenced memory locations in Java, C# and Python. C++ also

suffers from memory leakage and dangling reference problems

since programmer has to explicitly revoke the memory using the

delete keyword. Ada partially elevated dangling reference problem

and has no solution for garbage.

Out of bound access in array is another security problem. C/

C++ suffer from this problem which leads to read and write

operations to unwanted memory locations. Novice programmers

can make such mistakes as shown in Figure 12 (line 4, 5 -Code

Listing 19). However, Java and C# do not pose such issues and

throw array index out-of-bounds exceptions at run time, or report

error at compile time. Python, Modula-2, and Ada also support

this concept. Pascal addresses this issue on compile time, but

cannot handle it at run time.

Another important consideration is a language’s ability to detect

errors related to pointer at compile time or run time. Certainly, for

better diagnostics compile time detection of errors related to the

pointers is much safer, and is very helpful for novice programmers

as well. C/C++ have no support for detecting errors related to

pointers at compile time, as well as at run time as shown in

Figure 12 (line 2,3,4 -Code Listing 20). In Python all variables are

considered as reference variables, which are always implicitly

referenced, and direct access to the memory address is not

allowed. Java does not have pointers, and only supports reference

types, which can only point to objects. Java does not support

pointer arithmetic on reference types. This in turn, reduces many

error prone practices by novices. C# includes both references of

Java and pointers of C++ using unsafe modifier possibly to provide

backward compatibility with C and C++. Ada pointers are called

access types and do not allow pointer arithmetic. Fortran77 does

not have pointers, whereas, Modula-2 and Pascal also prone to

pointer errors. Hoare [63] states about pointers, ‘‘their introduc-

tion into high-level languages has been a step backward from

which we may never recover’’.

Lastly, stack and heap overflows are also serious security

concerns. Stack overflow mostly occurs when infinite/large

recursive calls are made which consume whole memory stack.

All the discussed languages suffer from this issue. Heap overflows

occur when such a data array is created at runtime which requires

Figure 9. (Code Listing 13) Mixing of operators in boolean expressions. (Code Listing 14) Division operator in C++.
doi:10.1371/journal.pone.0088941.g009

Figure 8. Functional side effects.
doi:10.1371/journal.pone.0088941.g008

Evaluation of First Programming Language

PLOS ONE | www.plosone.org 8 February 2014 | Volume 9 | Issue 2 | e88941

more storage space than available memory in heap. None of the

languages has been able to resolve this issues properly. All

languages suffer from this issue as well. Java attempts to handle

this issue by defining StackOverflowError in its exception hierarchy.

Table 7 shows the evaluation of the considered languages based on

their conformance to security.

Feature Uniformity. A language is considered to be feature

uniform language if a proper subset of that language is not able to

solve all problems that can be solved by whole set [6] [9].

Stroustrup [43] claims that in order to learn a programming

language one has to learn a few fundamental constructs,

techniques, and underlying models. The minimality of constructs

certainly relaxes the learning curve. The feature uniformity in

turn, can be anticipated in more than one ways, namely, feature

exclusiveness and feature multiplicity [9] [21][62].

Feature exclusiveness means a particular task can be accom-

plished by using exclusively different language constructs. As an

example, swapping of two variables is a commonly taught

programming problem in the initial programming courses. One

can implement this problem in C++ using pointers, as well as using

reference variables, as shown in Figure 13 (Code Listing 21).

Method1 implements swap function with pointers and Method2

implements swap function through reference variables. In this

case, if a novice programmer learns swapping through pointers,

then in order to understand Method2, she has to learn the concept

of reference variables as well, which in turn, increases the learning

curve.

Feature multiplicity means more than one ways to accomplish

the same task while using the same language constructs [6][9][21].

As an example the Figure 14 (Code Listing 22) shows the feature

multiplicity for incrementing the value of a variable; and assigning

a value to an index of an array.

The major problem caused by the unavailability of feature

uniformity is that the size of the language increases, which in turn,

results into a longer learning curve. Feature multiplicity can be

observed in the control structures as they enhance language size by

substituting each other. For example in C++ while and for loops are

different in syntax but both have same semantics. Figure 1 shows

the evolution of the programming languages, we can observe that

Pascal was evolved from ALGOL60, hence, it carries the features

of its predecessor language. This leads to an increase in the

language complexity, in terms of the number and type of

constructs. Resultantly, a language without feature uniformity

usually demands the instructor to teach a subset of the language. A

programmer can use this subset for writing code, but for reading

other’s code, comprehensive knowledge is required.

Therefore, a measure to identify whether a language holds the

characteristic of feature uniformity is that its fully functional

proper subset cannot be computed. Here, fully functional mean

that a programmer can perform all tasks with the help of this

subset. Table 8 shows the evaluation of feature uniformity for all

leading FPLs.

Less Effort for writing simple programs. An FPL should

require less programming effort to write simple programs.

Furthermore, it should also support simple ways for input and

output through console. In order to evaluate the effort to write

simple programs we firstly consider the number of lines required to

write a simple ‘‘Hello World!’’ program, and secondly, what is the

Table 6. Enforceability of Good Habits.

Language
Coercion without
demotion

No expression side
effects

No scope
overriding No intermixing of operators

Restricts Unconventional
operator Usage and
Overloading

Ada Fully Mostly No Fully No

C No Partial No No No

C++ No Mostly No No No

C# Fully Mostly Fully No No

Fortran No No Fully Fully Fully

Java Fully Mostly Fully No Fully

Modula-2 Fully Partially Fully No Fully

Pascal No Partially Fully Fully Fully

Python Fully Mostly Fully No No

doi:10.1371/journal.pone.0088941.t006

Figure 10. Scope overriding and short-circuit evaluation.
doi:10.1371/journal.pone.0088941.g010

Evaluation of First Programming Language

PLOS ONE | www.plosone.org 9 February 2014 | Volume 9 | Issue 2 | e88941

required level of learning overhead [29]. The number of lines is

fairly simple, however, we evaluate the second by identifying the

number of distinct keywords used to write a simple program. For

example, in Pascal writing a simple ‘‘Hello World!’’ program

requires some learning overhead i.e. understanding of the

keywords program, uses, begin, and end is required as shown in

Figure 15 (Code Listing 23). In Ada, learning overhead (use, with,

procedure, begin, end) is required for ‘‘Hello world!’’ program as shown

in Figure 15 (Code Listing 24). Modula-2 also requires learning

overhead (Module, import, from keyword, STextIO library) for ‘‘Hello

world!’’ program as shown in Figure 16 (Code Listing 25). Java

programmers also have to learn many basic constructs of the

language for writing simple program [12][30]. The main method

used in Java and C# is complicated for a beginner, and is hard to

explain to the novice programmers as it demands the explanation

of the concepts like class, static, public, void etc. as shown in Figure 16

(Code Listing 26) and Figure 17(Code Listing 27). Fortran requires

learning the keywords program, end program and print as shown in

Figure 17 (Code Listing 28). C/C++ have almost same learning

overhead, as C++ requires the knowledge of namespace as shown in

Figure 18 (Code Listing 29 and 30). Python learning curve is very

simple for beginners as shown in Figure 19(Code Listing 31).

The other consideration for writing simple programs is the

easier use of console I/O for primitive data types. The traditional

pedagogical activities in teaching an FPL involve problems that

include data input from the user, and display the output to the user

through console. In order to evaluate the considered languages we

have incorporated a simple I/O based computer program that

inputs an integer ‘a’ from the user, and displays this integer with

message in the format ‘‘value of a = ’’ followed by the value of

variable ‘a’. Table 9 shows that the code for the aforementioned

problem for all considered languages. We have shown multiple

ways of input for Java and C#. We have evaluated it using two

considerations, firstly the learning overhead that is based on the

number of lexemes; and secondly, we rate the languages higher if

they possess primitive constructs for I/O than the ones which use

library functions for such purpose.

The evaluation of console input as shown in Table 9 shows that

Pascal, Modula-2, and C++ are the simplest for input. Fortran,

Ada, and Python involve some additional constructs. C and C#
involve even more constructs and concepts, lastly, Java offers most

difficult way as it requires a lot of learning overhead for a novice.

Table 9 shows the output of most of the languages is much

simpler as compared to the input methods. Pascal, Python, and

C++ offer the simplest way to output data on console. Java, C#,

and Fortran involve even more constructs for console output. C,

Modula-2, and Ada require different instructions for different data

types, which makes the output statement more complicated.

Table 10 reflects the amount of effort needed to write simple

programs in all considered FPLs. Table 10 shows the rating of the

considered languages based on the number of language constructs

to write a simple program, minimum number of constructs reflect

low learning overhead.

Environmental Features
In this section we discuss each environmental feature in detail.

These environmental features have been evaluated by considering

a language’s conformance to their defining sub-features. Further-

more, these features have also been rated against the aforemen-

tioned four qualitative values.

Demand in Industry. The industrial strength of a language

is that it should genuinely be capable of being used for

Figure 11. Memory leakage and dangling reference.
doi:10.1371/journal.pone.0088941.g011

Figure 12. Array index-out-of- bounds, and pointer arithmetic problems.
doi:10.1371/journal.pone.0088941.g012

Evaluation of First Programming Language

PLOS ONE | www.plosone.org 10 February 2014 | Volume 9 | Issue 2 | e88941

programming in realistic industrial and commercial situations. A

number of FPLs are popular in the educational institutes because

of their significance in the software industry [2][25].

In order to evaluate the industrial relevance of a language we

consider the following features: i) the number of code repositories

available online for a particular language; (ii) the number of

available jobs; and (iii) the number of web searches made for a

language. Different data sources available on the Internet have

been used to evaluate the aforementioned three parameters. The

data from github.com (https://github.com/munificent/github-

language-ranking/blob/master/2013-08-01%20results.txt) has

been incorporated to get the statistics about the number of code

repositories for a language. Secondly, we can find the job trends

from jobstractor.com (http://jobstractor.com/monthly-stats), which

provides the statistics about the jobs advertised requiring expertise

in a certain language. Lastly, we have incorporated the data from

TIOBE index (http://www.tiobe.com/index.php/content/

paperinfo/tpci/index.html) that reflects the use of a language in

web search. We believe that all these statistics help us in identifying

the strength of a language for its usage and need in industry.

Furthermore, all these indexes are kept up-to-date by their

respective administrators, and hence can provide the language

evaluator with the latest statistics, as well as, enable her to find the

recent trends. We have also incorporated the latest statistics from

all these data sources.

An important consideration is that all the indexes used in the

evaluation of this parameter provide us quantitative data,

therefore, we do not map this data on our proposed qualitative

values, but we present the data in its actual form. However, we

have given a special consideration to these values while computing

the language’s suitability score in the scoring function section. The

recent statistics about code repositories, jobs, and number of web

searches have been presented in Table 11.

It is important to note that by definition it is evaluated in

quantitative terms, therefore, we do not map it to the above

mentioned qualitative values. However, we treat it in a different

manner, as explained in the scoring function section, while

computing the overall score of a language.

Contemporary Features. Contemporary programming fea-

tures and methodologies are always appealing for both academia

and industry; therefore the FPL should include contemporary

features based on software engineering principles [10]. These

features include support of: object oriented programming, multi-

threading, exception handling, packages, generic programming

[21][25][31]. Although all such features are not taught in the FPL

course, yet these features are taught in the subsequent program-

ming courses, and are widely required in industry. Certainly,

choosing a language as FPL which possesses these features reduces

the transition cost of learning yet another programming language

in the advanced programming courses.

Object-oriented paradigm is closest to the real world applica-

tions and is easy to understand. Object orientation is a popular

and demanded feature due to its conformance to nature,

reusability, and easy implementation [18][27][34]. C, Modula-2

and Pascal are the only widely used FPLs which do not support

object oriented paradigm, whereas, the current versions of all

other languages support this paradigm. Most of the popular object

oriented languages, particularly the ones considered in this

research, are multi-paradigm languages [21].

Concurrency in Programming language [64][65] occurs at

instruction, statement, or subprogram level. Concurrency can be

physical (i.e. more than one concurrent units runs simultaneously

on multiple processors), or logical (i.e. more than one concurrent

units run simultaneously on a single processors). In both cases, it

requires synchronization, which is implemented in two ways:

Table 7. Security issues in FPLs.

Language No Dangling Reference
Garbage
Handling

Control over Array Index
out of bound

Support Pointers
Arithmetic

Handle Stack and
Heap Overflows

Ada Partially Partially Fully No No

C No No No Fully No

C++ No No No Fully No

C# Fully Fully Fully No Partially

Fortran No No No No No

Java Fully Fully Fully No Partially

Modula-2 No No Fully Partially No

Pascal No No Partial Partially No

Python Fully Fully Fully No Partially

doi:10.1371/journal.pone.0088941.t007

Figure 13. Swap function in C++.
doi:10.1371/journal.pone.0088941.g013

Figure 14. Feature multiplicity.
doi:10.1371/journal.pone.0088941.g014

Evaluation of First Programming Language

PLOS ONE | www.plosone.org 11 February 2014 | Volume 9 | Issue 2 | e88941

https://github.com/munificent/github-language-ranking/blob/master/2013-08-01%20results.txt
https://github.com/munificent/github-language-ranking/blob/master/2013-08-01%20results.txt
http://jobstractor.com/monthly-stats
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

competition synchronization (mutually exclusive access to shared data),

and cooperation synchronization (among competing tasks). All lan-

guages considered in this research work support concurrency to a

certain extent. High performance Fortran specifies statements that

can be executed concurrently, and also includes statements for

distribution of data over memory units connected to multiple

processors [66]. Ada, Java, and C# support monitors for mutually

exclusive access, and semaphores for cooperation synchronization.

Ada tasks are heavy weight tasks which communicate with each

other using rendezvous mechanism. Java supports light weight

concurrent units, any class that inherits Thread class or implements

Runnable interface, and also override a method named run, can be

executed concurrently as shown in Figure 20(line 1,2 -Code Listing

33). Here, the competition synchronization is implemented through

synchronized block or method, whereas, cooperation synchronization is

implemented through notify, notifyAll, wait, join, sleep, and yield

methods. C# further improves over Java as unlike Java it allows

any method to be concurrent. Furthermore, it supports three types

on thread synchronization namely, lock, interlock and monitor.

Python concurrency model is loosely based on Java as illustrated

in Figure 20 (Code Listing 32). Currently, Python thread class does

not support priorities, thread groups, resume, suspend, and interrupt. C,

C++, Modula-2, and Pascal partially support concurrency with the

help of library functions.

Exceptions are run time unusual events, erroneous or not,

detectable by hardware or software and may require special

processing [21][55]. Exception handling is a process done by code

unit called exception handler. It increases the reliability as it avoids

runtime failures that result into cascading aborts as mentioned in

Figure 21(line 6, 11, 15 - Code Listing 34). The write statement in

procedure f2 will generate divide by zero exception for the instance

where the variable p holds value 0. Delivering such programs to

clients is highly unethical in software engineering practices. A good

language should be equipped with proper exception handling

mechanism.

Among the considered FPLs Fortran, C, Pascal, and Modula2

do not support exception handling. Ada supports exception

handling with many problems. First, Ada exception propagation

model propagates exception to outer scope from where exception

is not visible and it is hard to trace the origin of error propagation.

Second, its exception handling for task is very weak; a task without

exception handling dies or raises exception. Finally, it may not

always be possible to determine the object which originated the

exception [67][68][69]. C++ is the first C-based language that

includes exception handling, where exceptions are not named and

are connected to handlers using actual parameter type. Formal

parameter may be omitted by using ellipsis (…), in which case it

catches all types of exceptions. Primitive types can be used as

formal parameters in handlers, but the best practice is to define

user classes for exceptions in order to enhance readability. Java

supports improved form of exception handling over C++ and Ada

in many ways. Firstly, only those objects that are instance or

descendent of Throwable can be thrown as an exception. Secondly,

it improves readability by introducing checked exceptions using

throws clause in method declaration. A method without throws

cannot throw checked exception that it does not handle.

Furthermore, introducing finally clause for cleanup actions also

enhances program readability. Lastly, JVM implicitly catches and

throws variety of exceptions that can be handled by other user

programs. C# handles the exceptions identically as of Java except

the fact that it does not support throws clause. Python supports

exception handling using try, except, else, finally keywords.

Packages divide the program into manageable smaller pieces of

code and provide easy ways to separately compile and assemble

different pieces together to develop a large program without the

inherent complexity due to its size. They also provide name

encapsulation in order to define name scopes that assist in

avoiding name conflicts in the APIs that expose a package to the

user. Good modular design using packages supports minimum

coupling and maximum cohesion [18][28]. In Java, package is a

group related public types (classes, interfaces, enumerations, and

annotation), where package name dictates the source file directory

structure as presented in Figure 22 (Code Listing 35). One Java

package can have many sub packages. Python and Ada support

packages similar to that of Java. C++ and C# provide namespace

as package which unlike Java does not depend on physical layout

of files in directories on disk. as mentioned in Figure 22 (Code

Listing 36). The rest of languages loosely define packages: e.g. C

supports packages by inclusion of header files which are stored on

disk; whereas, Pascal, Modula-2 and Fortran support packages in

the form of modules.

Generics are subprograms or abstract data types that take

parameters of different types in different activations, and are also

referred to as parameterized polymorphism [21]. The use of

generics offers several advantages e.g. it prevents code duplication;

helps early diagnostics of errors as it converts runtime errors to

compile time errors; and programmers no longer have to manually

cast elements [53][54][55][56]. In our considered languages Ada,

C++, Java and C# support generics, while Python is dynamic

Table 8. Feature Uniformity for FPLs.

Languages Feature Exclusiveness No Feature Multiplicity

Ada Fully Fully

C No No

C++ No No

C# Mostly Mostly

Fortran No Fully

Java Mostly Mostly

Modula-2 Fully Fully

Pascal Fully Fully

Python Partially Mostly

doi:10.1371/journal.pone.0088941.t008

Figure 15. ‘‘Hello World’’ program in Pascal and Ada.
doi:10.1371/journal.pone.0088941.g015

Evaluation of First Programming Language

PLOS ONE | www.plosone.org 12 February 2014 | Volume 9 | Issue 2 | e88941

strongly typed language which implicitly supports generics. Java

implements generics (Figure 23, Code Listing 37) in the following

different ways as compared to Ada and C++. Firstly, generic

parameters must be classes not primitives. Secondly, only one copy

of code is created without considering number of instantiations,

called raw methods. Thirdly, restrictions can be applied to

parameter that can be passed to generic method or abstract data

type, called bounds. Finally, wildcards are also supported for any

collection type.

C# support generics in the similar way as of Java except there is

no wild card support. Ada and C++ as shown in Figure 23 (Code

Listing 38) support both generic subprograms and abstract data

types. A separate copy of subprogram is created at compile time

for each different type, while the binding of actual and formal

parameters is static. Fortran has incorporated the support of

generics in its recent versions. Modula-2, Pascal, and C do not

support generics. Table 12 provides the details of our considered

programming languages in terms of the discussed contemporary

features.

Easy Transition. A good FPL should allow the transition to

learn any new programming language in a smooth fashion.

Concepts learned with the FPL should be easily transferable to

another language [32]. As an example, if one learns C++ as FPL,

then the transition to Java is very smooth, since both language

share many similar constructs and furthermore, these languages

have almost comparable syntax. In order to evaluate our

considered languages for this feature, we use three parameters.

Firstly, paradigm shift is considered, i.e. shifting from imperative to

Object Oriented paradigm incurs one unit of cost, whereas, vice

versa does not have any cost, as Object Oriented languages are

imperative. Similarly, shifting from non-concurrent to concurrent

language incurs one unit cost. Secondly, a transition bears one unit

of cost if the source language is statically typed, and destination

language is dynamically typed, and vice versa. Lastly, the

evolution of languages presented in Figure 1 is considered, which

shows the influences that one language has on the other languages.

As we are computing the transition cost and certainly the

language with overall minimum cost should be ranked higher. In

order to map these values to our proposed qualitative measures we

define a simple criterion, which assigns a category to a language

based on the overall transition cost of a language to all other

languages, as shown in Table 13, where ‘N’ is the number of the

considered languages. The value of third parameter is equal to

minimum number of hops (edges) between two languages in the

evolution graph. For the total score per language we added up all

values in the column see Table 14, where we present all three costs

in the following format: paradigm shift/static-dynamic type shift/hop

count.

Readable Syntax. The syntax of the language should be

readable and consistent [26][33]. The regular cases of errors are

discovered in programs only because the programmer does not

understand code written by others due to its poor readability [3].

Both beginner and experienced programmers, take advantage of

good readability. In particular, for the novice programmer, it

makes the learning of the language easier, helps to reduce the

number of errors, and makes the code easier to maintain [34][35].

In order to evaluate the readability of a language we use the

following three parameters: i) Identifier’s name should neither be

length dependent, nor declared implicitly; ii) Consistent com-

pound statement; iii) Meaning of constructs is not context

dependent.

The first evaluation parameter for readability ensures that the

names of the identifiers should not be length dependent and there

should not be any implicit declaration. e.g. in Fortran 77, the

length of an identifier can have 6 characters at most. It also allows

implicit declaration, and identifier names starting with

I,J,K,L,M,N are implicitly declared to be integer, and others are

considered as real. Python infers the type of all kind of variables

based on the value assigned, whereas, in C# local variables can be

given an inferred type of var instead of an explicit type.

There should be a clear and consistent syntax for each type of a

compound statement. For instance, the usage of special keywords

for signaling the start and end of each compound statement e.g. end

if for if statement, end loop for loop termination, end procedure-name for

procedures, and end program for program helps a great deal towards the

better readability of a program. In our considered languages

Fortran, Modula-2, and Ada support this feature. The code in

Figure 24 (lines 4, 7, 11, 12 - Code Listing 39) shows how Ada

supports this concept. The rest of the languages do not have

corresponding ending keywords for compound statements, rather

most of them use ‘‘{}’’ or ‘‘begin end’’ to represent a compound

statement.

Figure 16. ‘‘Hello World’’ program in Modula-2 and Java.
doi:10.1371/journal.pone.0088941.g016

Figure 17. ‘‘Hello World’’ program in C# and Fortran.
doi:10.1371/journal.pone.0088941.g017

Evaluation of First Programming Language

PLOS ONE | www.plosone.org 13 February 2014 | Volume 9 | Issue 2 | e88941

Another consideration for the evaluation of readability is that

the forms and meaning of construct should not be appearance or

context dependent [21]. In our considered FPLs most of the

languages adhere to this requirement, however, C, C++, and

Fortran do not conform to this requirement. For example, in C

static keyword has different meaning if declared inside and outside

function. Similarly, in Fortran ‘‘INTEGER :: a’’ is considered as

declaration statement for the declaration of variable ‘a’ of type

Integer, whereas, ‘‘INTEGER = a’’ is an assignment statement

where the value of a is assigned to another variable named

INTEGER. C# loosely conforms to this requirement as it

supports context dependent keywords. Such ambiguous semantics

create poor readability for novices. Unary operators are strongly

discouraged due to poor readability [18][36] as shown in Figure 25

(line 3 -Code Listing 40). Example in Figure 25 (line 4 - Code

Listing 41) gives different results on different compilers. Table 15

shows the evaluation of the considered programming languages for

readability.

Quality Coding Standards. The main objective of the

coding standard is maintainability. Other important things that

relate to the strength of the quality standards include simplicity,

consistency, portability, extensibility, clarity, safety, and correct-

ness [51][52]. Stroustrup [41] states that production of quality

code should be elevated to a central role in software development.

When in doubt, the programmer should endeavor for clarity

rather than efficiency [37]. The style of writing directly impacts

the readability and understandability of the end product [38]. By

enforcing languages to implement the coding standards we can

save cost of code review and minimize the human dependency and

obviously minimize the possibility of bad coding practices and

explicitly improve the readability of our source code. Indentation,

comments, braces, naming conventions, and parentheses are most

commonly considered as quality coding standard attributes

[37][38][39][49]. Certainly, it is imperative to introduce the

novice programmers about the coding standards from the

beginning [51].

There exist coding standards like QP/C++ TM, MISRA-C++
[46][47] which provide a guideline for writing quality code. In this

work, we evaluate the quality coding standards from the

perspective of an FPL, we consider the following parameters: i)

support for comments; ii) avoidance of dangling else problem; iii)

use of proper naming convention; iv) use of parentheses in

expressions.

All programmers including novices are encouraged to comment

the code so as to remind themselves of the tricky logic

implemented in a particular part of the code. Comments are also

used to provide documentation of the code. Table 16 shows

differernt types of comments supported by programming languag-

es. Generally, different types of comments are useful, but the

coding standards discourage block comments as they are prone to

errors. One serious problem in block comment is that novice

programmer may accidently forget to end the comment which

may swallow useful code. It will be swallowed as shown in Figure

26(code listing 42) (line 1-4).

Apparently, the comments may look to be a minor issue in a

language; however, an unsafe comment format in a language may

become a source of nasty errors particularly for novices. C++ uses/

* characters for starting a block comment, while these characters

are also used as multiply (*) operator, divide (/) operator, and

pointer redirection. An unusual code may result into undesired

erroneous programs as shown in Figure 27 (Code Listing 43),

where comment syntax clashes with that of a pointer. The syntax/

* denotes the start of comment and compiler will return error.

Therefore, in this case the use of a space character is very

significant. Correct code can be written with one space between/

and * or use parentheses for *ptr as shown in Figure 27 (Code

Listing 44). Therefore, the coding standards also discourage the

usage of block comments [46].

Among different types of comments the end of Line Comment

(In-Line Comments) is the most unambiguous and preferable

comment [46]. Similarly, C offers mega comments, another type of

comment, which helps in activation and deactivation of a

particular part of code during execution. This type of comments

is used for debugging the code. Furthermore, newer languages are

equipped with documentation comments, which are useful in

managing the documentation for language APIs.

In our evaluation we rate the languages higher if they facilitate

the programmers with end-of-line, documentation, and mega comments,

while we denounce the usage of block comments in a language.

Although mega comments are useful, yet this is not considered

among the mainstream types of comments. Hence, in our

evaluation, we encourage the presence of mega comments in a

language, but treat their absence unnoticed.

Based on the above discussion and supported code listings we

conclude that the languages C, Modula-2, and Pascal partially

support the comments. The reason is that C supports mega

comment, but also has notorious block comment. Modula-2 and

Pascal just support the block comment. Only Python supports

clean comments and thus fully supports comments, while the rest

of the languages have cleaner comments as well as block

comments, and hence they adhere most of the comments.

It is highly recommended in major quality coding standards to

use compound statement in if, else structures and, while and for

loops. For example use compound statement after then and else part

as shown in Figure 28 (Code Listing 45), even if there is only a

single statement in else and then part, preferable style is to use

compound statement as the coding standards. MISRA/C++ [46]

Figure 18. ‘‘Hello World’’ program in C and C++.
doi:10.1371/journal.pone.0088941.g018

Figure 19. ‘‘Hello World’’ program in Python.
doi:10.1371/journal.pone.0088941.g019

Evaluation of First Programming Language

PLOS ONE | www.plosone.org 14 February 2014 | Volume 9 | Issue 2 | e88941

and QP/C++ TM [47] also define these rules, and such rules can

be verified by checkers like PC-Lint [48], and also protect code

from dangling else problem as shown in Figure 28(Code Listing

45).Most of the leading FPLs suffer from dangling else problem as

shown in Figure 29 (line 9 - Code Listing 46), where an else

statement links with unwanted if statement. Python solves

Table 9. Console Input and Output.

Language Console Input Console Output

Ada Ada.Integer_Text_IO.get (a); Ada.Text_IO.put(‘‘value of a = ’’);

Ada.Integer_Text_IO.put (a); Ada.Text_IO.new_line;

C scanf(‘‘%d’’,&a); printf(‘‘value of a = %d\n’’,a);

C++ cin..a; cout,,‘‘value of a = ’’,,a,,endl;

C# Method 1 System.Console.WriteLine(‘‘value of a = ’’+a);

string str = Console.ReadLine();

int a = Convert.ToInt32 (str);

Method 2

int a = int.Parse(Console.ReadLine());

FORTRAN read *, a Method 1

PRINT *, ‘value of a = ’, a

Method 2

Write (*,*) ‘value of a = ’, a

Java Method 1

Scanner s = new Scanner(System.in); System.out.println(‘‘value of a = ’’+a);

int a = s.nextInt();

Method 2

BufferedReader keyboard;

try {

keyboard = new BufferedReader(new InputStreamReader(System.in));

int a = Integer.parseInt (keyboard.readLine());

}catch(IOException e){

System.out.println (‘‘Error reading input!’’);

}

Modula-2 a: = RdInt(); WrStr(‘value of a = ’);

WrInt(a);

WrLn;

Pascal read(a); Writeln(‘value of a = ’,a);

Python a = int(input()) Print(‘value of a = ’,a, ‘\n’)

doi:10.1371/journal.pone.0088941.t009

Table 10. Effort required for writing simple program.

Language
Learning overhead
not required

Easy Console
Input

Easy Console
Output

Ada Partially Mostly Partially

C Partially Partially Partially

C++ Partially Fully Fully

C# No Partially Mostly

Fortran Mostly Mostly Mostly

Java No No Mostly

Modula-2 No Fully Partially

Pascal Partially Fully Fully

Python Fully Mostly Fully

doi:10.1371/journal.pone.0088941.t010

Table 11. Demand in Industry.

Languages
No. of Code
Repositories No. of Jobs

% of Appearance in
Web Searches

Ada 109 0 0

C 67706 120 18.16%

C++ 78327 164 8.37%

C# 32170 343 6.02%

Fortran 1269 0 0

Java 157618 1164 16.52%

Modula-2 0 0 0

Pascal 0 0 0.72%

Python 95002 203 3.11%

doi:10.1371/journal.pone.0088941.t011

Evaluation of First Programming Language

PLOS ONE | www.plosone.org 15 February 2014 | Volume 9 | Issue 2 | e88941

Figure 20. Multithreading in Python and Java.
doi:10.1371/journal.pone.0088941.g020

Figure 21. Exception propagation and cascade aborts.
doi:10.1371/journal.pone.0088941.g021

Figure 22. Packages in Java and C#.
doi:10.1371/journal.pone.0088941.g022

Figure 23. Generics in Java and C++.
doi:10.1371/journal.pone.0088941.g023

Evaluation of First Programming Language

PLOS ONE | www.plosone.org 16 February 2014 | Volume 9 | Issue 2 | e88941

dangling-else problem by requiring indentation of else keyword with

its matching if keyword as shown in Figure 30(Code Listing 47).

Modula-2, Ada and Fortran solve the dangling else problem by

using end if keywords. C, C++, C#, Pascal and Java suffer from

dangling else problem.

The use of proper naming conventions enhances readability and

comprehensibility, and it reduces the maintenance of the code

[39]. Approximately, 70% of the source code of a software system

consists of identifiers [70]. Knuth noted that descriptive identifiers

strongly indicate the code quality and comprehensibility [71]. Java

quality standard follows different naming convention for class

identifiers, variables, function names and constants as shown in

Figure 31 (Code Listing 48). Unfortunately, naming conventions

cannot be enforced by programming languages [70], however

some languages like Java and C# implicitly encourage the

programmer to get used to quality naming conventions [50], as

both languages involve rigorous usage of APIs which follow the

coding standards.

Use of parentheses in expressions enhances readability and code

quality. Most of the coding standards enforce writing parenthesis

in expressions [49][52], e.g. if the programmer wants to write

c = (a+d)b it will generate error. Changing it with c = a+d*b requires

proper understanding of operator precedence and associatively

rules. Preferable style is to use proper parentheses in expression in

order to enhance code quality as shown in Figure 32 (Code Listing

49). Parentheses can easily be enforced in programming language

design. It will enhance readability and help saving the novice

programmer from accidental use of operators without a strong

knowledge of operator associativity and precedence.

Some considerations in the coding standards cannot be enforced

implicitly by a programming language but others can be enforced

by changing language design as described by Table 17.

Table 12. Contemporary Features.

Languages Support OOP Support Multi-threading Exception Handling Support Packages Generic Programming

Ada Fully Fully Partially Fully Fully

C No Partially No Mostly No

C++ Fully Partially Mostly Fully Fully

C# Fully Fully Fully Fully Fully

Fortran Fully Partially No Mostly Mostly

Java Fully Fully Fully Fully Fully

Modula-2 No Partially No Mostly No

Pascal No Partially No Mostly No

Python Fully Mostly Fully Fully Fully

doi:10.1371/journal.pone.0088941.t012

Table 13. Criteria for transition cost (‘N’ is total considered languages).

Fully Mostly Partially No

Total Cost , = 2N 2N , Total Cost , = 2.5N 2.5N , Total Cost , = 3N 3N , Total Cost

N = 9 Total Cost , = 18 18 , Total Cost , = 22.5 22.5 , Total Cost , = 27 27 , Total Cost

doi:10.1371/journal.pone.0088941.t013

Table 14. Easy Transition (each comparison cell shows the costs paradigm shift/static-dynamic type shift/hop count).

Ada C C++ C# Fortran Java Modula-2 Pascal Python Total Cost Rating

Ada - 3/0/0 2/0/0 3/0/0 3/0/0 3/0/0 1/0/0 1/0/0 2/0/1 19 Mostly

C 3/1/0 - 1/1/0 1/1/0 2/1/0 2/1/0 2/1/0 2/1/0 1/1/1 23 Partially

C++ 2/0/0 1/0/0 - 1/0/0 3/0/0 1/0/0 2/0/0 3/0/0 1/0/1 15 Fully

C# 3/0/0 2/0/0 1/0/0 - 4/0/0 1/0/0 2/0/0 2/0/0 2/0/1 18 Fully

Fortran 3/1/0 2/0/0 3/1/0 4/1/0 - 4/1/0 3/1/0 2/1/0 3/1/1 32 No

Java 3/0/0 2/0/0 1/0/0 1/0/0 4/0/0 - 2/0/0 3/0/0 1/0/1 18 Fully

Modula-2 1/1/0 2/0/0 2/1/0 2/1/0 3/1/0 2/1/0 - 1/1/0 1/1/1 22 Mostly

Pascal 1/1/0 2/0/0 3/1/0 3/1/0 2/1/0 3/1/0 1/1/0 - 2/1/1 25 Partially

Python 2/0/1 1/0/1 1/0/1 2/0/1 3/0/1 1/0/1 1/0/1 2/0/1 - 21 Mostly

doi:10.1371/journal.pone.0088941.t014

Evaluation of First Programming Language

PLOS ONE | www.plosone.org 17 February 2014 | Volume 9 | Issue 2 | e88941

None of the leading FPLs completely supports quality coding

standards that can be implemented with slight modification in

syntax and semantics and leaves this issue to the software

engineers. Due to poor quality of code a software engineer spends

many hours on code inspection, debugging, and maintenance

[10]. Table 18 shows the conformance of the considered languages

to the quality coding standards.

User-Friendly Integrated Development Environment. In

order to evaluate the user friendly integrated development

environment (IDE) we consider the following parameters: i)

structured editor; ii) pretty printer; iii) static checker; iv) debugger;

v) novice programming environment. Every programming lan-

guage must have a good graphically integrated development

environment [7]. These environments facilitate both the novice

and seasoned programmer to write, indent, and visualize the code

easily. Furthermore, some researchers consider that for choosing

an appropriate FPL, the programming environment alone would

probably be as important as the programming language itself

[7][18][40].

Structured editing feature in source code editor helps the

programmer avoid syntactic mistakes by automatically correction

and by suggesting corrections. This helps novice programmer to

concentrate on problem solving rather than focusing on syntactic

issues [72][73]. All considered FPLs support this feature.

Pretty Printer handles the formatting of source code, also known

as code beautifier, and involves indentation, lexeme coloring, font

size adjustment, block collapse and expansion. The inclusion of

such features in the text editor helps the novice programmer a

great deal to improve the readability of a program [74][75].

Except Fortran, all languages are supported by the support of

pretty printers.

Static checking involves the identification of unused variables,

unused functions, and violation of custom naming conventions.

This helps increasing the conformance of code to the coding

standards. There are several checker tools for Java (Checkstyle,

FindBugs, GrammaTech Code Sonar), C/C++(CppCheck,

cpplint, lint, PC-Lint), Pascal (Undertstand), Ada (AdaControl,

LDRA Testbed) and Python(Pychecker, Pylint). Except Fortran all

other considered FPLs facilitate static checking.

The debuggers allow a programmer to examine the state of the

variables at a certain point by stopping the execution of a

program. The most widely offered features of a debugger are to

add watch, insert breakpoints, running program step by step, and

continue execution at different locations in program. This helps

the novice programmers to find errors in their programs.

Furthermore, it is highly recommended that the novice program-

mers should learn debugging strategies [76][77]. All considered

FPLs are equipped with debuggers.

A novice visual programming environment is also imperative in

terms of teaching and learning an FPL. There are several rich and

user friendly novice programming environments for many

considered FPLs. The list of some of the programming environ-

ments is as follows [83]: Ada (Lego Mindstorm, Ada GIDE), C/

C++(BlockC, Ch), Fortan(GNOME), Java (BlueJ, CourseMaster,

Greenfoot, Jeliot), and Pascal (Genie, GPCeditor, Emile, ModelIt),

and Python(Alice98, Python Turtle). Some of the IDEs also

support drag and drop coding (BlockC) options which help the

novices to write code without syntax errors. Table 19 shows the

ratings of our considered programming languages based on the

provision of user friendly IDEs.

Scoring Function

In this section we formally define a simple scoring function for

the evaluation of a programming language as an appropriate FPL.

Figure 24. If statement in Ada.
doi:10.1371/journal.pone.0088941.g024

Figure 25. Ambiguous semantics of unary operators.
doi:10.1371/journal.pone.0088941.g025

Table 15. Readability of syntax in FPLs.

Languages

Identifier’s name
should not be length
dependent and
implicitly declared

Consistent
compound
statement

Meaning of
constructs is not
context dependent

Ada Fully Fully Fully

C Fully No No

C++ Fully No No

C# Mostly No Mostly

Fortran No Fully No

Java Fully No Fully

Modula-2 Fully Fully Fully

Pascal Fully No Fully

Python Partially No Fully

doi:10.1371/journal.pone.0088941.t015

Evaluation of First Programming Language

PLOS ONE | www.plosone.org 18 February 2014 | Volume 9 | Issue 2 | e88941

This scoring function helps in computing a quantitative score for

each language, which essentially is a quantified suitability score,

and reflects the strength of a language as an appropriate FPL.

Previously, Parker et al. [5] presented a method to compute

quantitative suitability score for an FPL. However, the criterion

presented in this work has not been discussed with sufficient

technical details of the involved measures, which can be useful for

evaluation and scoring purposes. Our proposed scoring function

considers both technical and environmental features of the proposed

framework, and assigns scores to a language based on its

conformance to the criterion against each parameter. We map

all four qualitative measurements for each considered parameter

to a quantified score using criteria given in Table 20. The

mappings of Fully to 1, and No to 0 are very simple and intuitive, as

0 means no conformance, while 1 means full conformance to the

criterion of a feature. In the same way, the other mappings are also

supporting the criterion used for qualitative measurements as the

mapping of Mostly to 0.66 reinforces the logic that majority of the

features are being supported, and similarly, the mapping of

Partially to 0.33 reflects that few of the requirements are justified

and most of them are not supported by a language. The technical

parameter ‘‘High Level’’, and environmental parameter ‘‘Demand in

Industry’’ are given a special consideration, as they are already

presented in quantitative terms, so we have considered their

quantitative values after bring the values to ½0,1� interval, by

dividing all values by the maximum for each sub-feature. This in

turn, makes the score values of these features compatible with the

rest of features.

Consider a language L for which we need to compute the

suitability score,LS , based on its characteristics. As mentioned

above, the proposed framework categorizes the evaluation

criterion into two main categories, technical and environmental.

However, while computing the score we have grouped all

parameters in one block. Based on the discussion in previous

section, we map the qualitative measure to quantitative score for

each parameter, using Table 20. We define the score of a language

L against a parameter ‘i’ asL
(i)
S .

We can also observe from the discussion in the previous section

that the evaluation of certain parameters, for example, ‘‘user

friendly integrated environment’’, ‘‘contemporary features’’ etc. is

based on multiple characteristics, which results into variably

different values for these parameters. Therefore, while mapping

the qualitative measures onto the quantitative score, the resultant

score of a parameter may become unbounded, as theoretically

speaking, there may be any number of sub-parameters to evaluate

a particular parameter. Furthermore, the parameters with wider

range of possible scores may start overwhelming the other

parameters. In order to restrict the score of each parameter in a

closed interval, and to avoid the aforementioned overwhelming

affect, we normalize the score of such parameters by dividing the

score of a parameter by maximum possible score for that

parameter. As an example, the parameter ‘‘user friendly IDE’’ is

valuated on the basis of 5 sub-parameters, and for each parameter

a language can have maximum score 1, thus the score obtained for

this parameter is divided by 5. This results in restricting the score

value for each parameter in ½0,1� closed interval.

In reality every user may have different priorities for each

parameter. Therefore, we define a weight for each parameter

which a user may assign to the parameter so as to prioritize it. As

an example, one may be more interested in ‘‘user friendly IDE’’ as

compared to the ‘‘orthogonality’’ of a language, in which case, the

scoring function allows the user to assign a higher weight to one

parameter and lower to the other. By default, each parameter ‘i’

carries weight 1, i.e. v(i)~1. The score for parameter ‘i’ is

computed by multiplying the weight v(i) with the score of the

parameter L
(i)
S , for the language L. Now, in order to compute the

overall suitability score LS for a language L, we define a simple

Figure 26. Run-away comment.
doi:10.1371/journal.pone.0088941.g026

Table 16. Supported comments and their types.

Language Comment Syntax Comment Type

Ada — (two dashes) End-of-Line Comment

C /* …..*/ Block Comment

#if 0 …..#endif Mega Comment

C++ // End-of-Line Comment

/* ……*/ Block Comment

#if 0 …..#endif Mega Comment

Fortran C in Position 1 Full Line Comment (now obsolete)

! (exclamation) End-of-Line Comment

Java // End-of-Line Comment

/* ……*/ Block Comment

/** Documentation Comment

*

*/

Python # End-of-Line Comment

‘‘‘‘‘‘doc String’’’’’’ Documentation Strings

Modula-2 (*…*) Block Comment

Pascal (*…*) Or {… } Block Comment

C# // End-of-Line Comment

/* ……*/ Block Comment

/// Documentation Comment

doi:10.1371/journal.pone.0088941.t016

Figure 27. (Code Listing 43) Comment syntax vs. Pointer syntax clash. (Code Listing 44) Significance of space in C++.
doi:10.1371/journal.pone.0088941.g027

Evaluation of First Programming Language

PLOS ONE | www.plosone.org 19 February 2014 | Volume 9 | Issue 2 | e88941

score aggregation function. This function sums the score of a

language against every parameter, and the final score is computed

as follows:

LS~
Xn

i~0

v(i):L(i)
S

Where, ‘n’ is the total number of parameters in the language

evaluation framework, which in our defined framework are 13.

LS gives us the suitability score for language L as an appropriate

FPL. Hence, the above mentioned scoring function, and discussion

in the previous section help us computing the score for all

languages, and the language with maximum suitability score turns

out to be the most suitable FPL.

We have further processed the suitability score by dividing the

obtained score by the sum of the weights of all parameters which

helps restricting the overall suitability score in the ½0,1� interval.

This bounded or normalized score, with the default weight settings,

implicitly reflects the overall percentage of conformance of a

language to the proposed framework, i.e. 0.81 score reflects 81%

conformance to the defined framework, similarly the difference of

0.02 should be treated as 2% less conformance. On the other

hand, the benefit of using an unbounded score is that it reflects the

differences in higher quantitative terms, but it fails to show the

level of conformance to underlying proposed framework. We leave

it to the user to choose any of the two score variants.

L
0
S~LS

,Pn
i~0

v(i)

Furthermore, in order to separately highlight the strength of a

language from technical and environmental perspectives we have also

computed technical and environmental scores in unbounded

(LTECH
S ,LENV

S), and normalized (L0STECH,L0SENV) versions, as

shown in Table 21. Here, ‘t’ is the number of technical parameter,

Figure 28. The usage of if instruction with and without
compound statement.
doi:10.1371/journal.pone.0088941.g028

Figure 29. Dangling Else problem.
doi:10.1371/journal.pone.0088941.g029

Figure 30. Matching of else keyword with outer if keyword
using indentation in Python.
doi:10.1371/journal.pone.0088941.g030

Figure 31. Naming conventions in Java.
doi:10.1371/journal.pone.0088941.g031

Figure 32. Use of parenthesis in expressions.
doi:10.1371/journal.pone.0088941.g032

Evaluation of First Programming Language

PLOS ONE | www.plosone.org 20 February 2014 | Volume 9 | Issue 2 | e88941

and ‘e’ is the number of environmental parameters in the framework,

and ½tze~n�.

Score Computation for the Considered Languages and
Discussion

In this section, we compute the quantitative scores of the

considered FPLs using the above mentioned scoring function. We

obtain the scores against the parameters of each category based on

the discussion in previous section. Table 22 shows the scores of all

technical features for these languages; Table 23 shows the same for

environmental features. Lastly, the scores of these features are

Table 17. Coding standards that can or cannot be implemented by programming language.

Coding Standard Enforced by Programming Language

Indentation Can be enforced by language design (e.g. Python)

Comments Cannot be enforced by language design but erroneous comments (like block comment) can be removed by changing
lexical design of language

Braces Can easily be enforced by programming language through slight change in its syntax

Quality Naming Conventions like Java Cannot be enforced by programming language

Parenthesis in expressions Can easily be enforced by programming language through slight change in its syntax

Dangling else problem Can easily be enforced by programming language through slight change in its syntax

doi:10.1371/journal.pone.0088941.t017

Table 18. Quality coding standards enforced by considered FPLs.

Language Comments Support Avoids Dangling Else Problem
Enforce Naming
Conventions

Parenthesis in
expressions

Ada Mostly Fully No No

C Partially No No No

C++ Mostly No No No

C# Mostly No Partially No

Fortran Mostly Fully No No

Java Mostly No Partially No

Modula-2 Partially Fully No No

Pascal Partially No No No

Python Fully Fully No No

doi:10.1371/journal.pone.0088941.t018

Table 19. Support of user friendly integrated environment.

Language Structured Editor Pretty Printer Static Checker Debugger
Novice Programming
Environment

Ada Fully Fully Fully Fully Partially

C Fully Fully Fully Fully Mostly

C++ Fully Fully Fully Fully Mostly

C# Fully Fully Fully Fully No

Fortran Fully Mostly Mostly Fully Partially

Java Fully Fully Fully Fully Fully

Modula-2 Fully Fully Fully Fully Partially

Pascal Fully Fully Fully Fully Mostly

Python Fully Fully Fully Fully Partially

doi:10.1371/journal.pone.0088941.t019

Table 20. Mapping of the qualitative measure onto the
quantitative score.

Qualitative Measurement Quantitative Score

Fully Supported (Fully) 1

Mostly Supported (Mostly) 0.66

Partially Supported (Partially) 0.33

Not Supported (No) 0

doi:10.1371/journal.pone.0088941.t020

Evaluation of First Programming Language

PLOS ONE | www.plosone.org 21 February 2014 | Volume 9 | Issue 2 | e88941

combined while using the default weights in Table 24. This table,

in turn, shows the suitability score for each language.

It is clear from Table 24 that Java has obtained overall highest

score and thus, with default settings, it is the most suitable

programming language using our defined scoring function. Python

and Ada are next most suitable languages based on their obtained

scores. However, one significant point is that Python is technically

most equipped language as shown in Table 22. The reason is that

it shows its strengths in many technical features i.e. it is Orthogonal,

High Level, and Secure language, and also requires Less Effort in

Writing the code. Whereas, Java ranks highest, w.r.t. the environmental

features as shown in Tables 23, by a significant margin. This is

because of the facts that Java is highly demanded in industry,

supports most of the contemporary features, provides easy

transitions to the other languages, and has sufficient support in

the form of user friendly development environments.

Table 1 shows that C++ is still following Java as the most widely

used FPL, whereas Table 24 shows that it only has 48%

conformance to the defined framework with default settings.

However, Table 23 shows that it has strong support from the

perspective of environmental features, and Table 22 shows that it

lacks strength from the technical feature set, as it relies on efficiency

rather than reliability. However, the reason for its popularity lies in

strong support for environmental factors, as it supports contemporary

features, easy transition, and there are several use friendly IDEs for

this language.

As the default weight settings do not conform to the original

popularity index of the languages, so there should be a different

weighting criterion. However, it is very hard to come up with a

generic and correct weighting criterion. Therefore, the scoring

function should be customizable and the user should be able to

tune the weight of each feature based on her preferences. As an

example, consider the fact that Ada holds 3rd position in overall

scoring, but is not being considered among highly used FPLs as of

now, as shown in Table 1. The most probable reason seems to be

that it fails to create any impact from the perspective of Industrial

Demands, as shown in Table 23. Based on this observation a user

may consider ‘‘demand in industry’’ and ‘‘easy transition’’ more

important than the rest of the parameters, and assigns them

weights of 3, and 2, respectively. Then, as shown in Table 25, the

ranks of C#, C++, and C are elevated, whereas, Ada, Modula-2,

Pascal, and Fortran are degraded with this weighting scheme,

while Java and Python are not affected on the ratings list, though

their degrees of conformance is affected with the new weights. This

certainly shows the strength of our proposed framework and

scoring function, as it re-ranks the languages based on the

customized settings. Hence, every user can look for an appropriate

language based on her personal preferences. However, based on

the discussion in the previous section, it is clear that the user of this

framework should have a reasonable understanding of the

language theory to evaluate the language from technical perspective,

T
a

b
le

2
2

.
Sc

o
re

b
as

e
d

o
n

te
ch

n
ic

al
fe

at
u

re
s

(s
o

rt
e

d
b

as
e

d
o

n
L s

T
E

C
H

).

L
a

n
g

u
a

g
e

H
ig

h
L

e
v

e
l

O
rt

h
o

g
o

n
a

li
ty

S
tr

o
n

g
ly

T
y

p
e

d
E

n
fo

rc
e

a
b

il
it

y
o

f
G

o
o

d
H

a
b

it
s

S
e

cu
ri

ty
F

e
a

tu
re

U
n

if
o

rm
it

y

L
e

ss
E

ff
o

rt
fo

r
w

ri
ti

n
g

si
m

p
le

p
ro

g
ra

m
s

L
s

T
E

C
H

L
s
’T

E
C

H

P
y

th
o

n
1

1
0

.3
3

0
.5

3
0

.6
7

0
.5

0
.8

9
4

.9
1

0
.7

0

Ja
v

a
0

.8
6

0
.8

9
0

.3
3

0
.7

3
0

.6
7

0
.6

7
0

.2
2

4
.3

6
0

.6
2

P
a

sc
a

l
0

.5
7

0
.6

7
0

.5
0

.6
7

0
.1

3
1

0
.7

8
4

.3
1

0
.6

1

A
d

a
0

.9
3

0
.6

7
0

.3
3

0
.5

3
0

.3
3

1
0

.4
4

4
.2

3
0

.6
0

M
o

d
u

la
-2

0
.5

7
0

.6
7

0
.5

0
.6

7
0

.2
7

1
0

.4
4

4
.1

1
0

.5
9

C
#

0
.8

6
0

.7
8

0
.3

3
0

.5
3

0
.6

7
0

.3
3

0
.3

3
3

.8
3

0
.5

5

F
o

rt
ra

n
0

.5
7

0
.1

1
0

.3
3

0
.6

0
0

.5
0

.6
7

2
.7

8
0

.4
0

C
++

0
.8

6
0

.3
3

0
.3

3
0

.1
3

0
.2

0
0

.7
8

2
.6

3
0

.3
8

C
0

.3
6

0
.3

3
0

.1
7

0
.0

7
0

.2
0

0
.3

3
1

.4
5

0
.2

1

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

o
n

e
.0

0
8

8
9

4
1

.t
0

2
2

Table 21. Unbounded and bounded (normalized) technical
and environmental scores of languages.

Unbounded Scores Bounded (normalized) Scores

Technical
LTECH

S ~
Pt
i~0

v(i):L(i)
S L

0
STECH~LTECH

S

�Pt
i~0

v(i)

Environmental
LENV

S ~
Pe
i~0

v(i):L(i)
S L

0
SENV~LENV

S

�Pe
i~0

v(i)

doi:10.1371/journal.pone.0088941.t021

Evaluation of First Programming Language

PLOS ONE | www.plosone.org 22 February 2014 | Volume 9 | Issue 2 | e88941

and should have up-to-date information about tools, and statistics

related to the language to evaluate environmental factors. But, the

anticipated users of this framework are the personnel who are

either course instructors, or curriculum designers, who in our

opinion, possess sufficient background knowledge to use and

customize such frameworks.

Finally, the defined framework and scoring function are generic

and flexible in two ways: firstly, any language can be evaluated on

the given criterion; secondly, we have equipped the framework

with many features, however, more features can seamlessly be

incorporated with new advancements in the domain of program-

ming languages.

Conclusion and Future Directions

In this article, we have proposed a comprehensive framework

for the evaluation of a programming language in terms of its

suitability as an FPL. This framework mainly comprises of two

main categories of features, namely technical and environmental

feature sets. The technical features deal with the intrinsic and

language theoretical aspects, whereas, the environmental features

discuss the external factors. We have defined each feature and its

corresponding sub-features, and have presented the evaluation

criterion for each sub-feature. Furthermore, we have presented a

scoring function to compute a quantified suitability score for a

language based on our framework. In addition to this, based on

the language evaluation and scoring function, we have computed

the suitability scores for widely used FPLs. We have also used

different parameter settings for computing the suitability scores,

and give the users leverage to customize the weightage of different

features, which reflects the flexibility of our proposed scoring

function. This framework not only helps in the evaluation of a

language as an FPL, but can also be used as a guideline for

designing new FPLs.

The potential future directions of this work include the

customization of a programming language so as to make it more

suitable FPL w.r.t. the technical feature set. Similarly, our work

highlights the drawbacks of the languages in terms of environmental

feature set, and hence, new tools can be developed to increase the

conformance of a language to the environmental features like

quality coding standards, user friendly environment, and readability.

Supporting Information

Appendix S1

(DOCX)

Table 23. Score based on environmental features (sorted based on Ls
ENV).

Language
Demand in
Industry

Contemporary
Features Easy Transition

Readable
Syntax

Quality
Coding

User Friendly
Environment Ls

ENV Ls’ENV

Java 0.97 1 1 0.67 0.25 1 4.89 0.82

Ada 0 0.87 0.66 1 0.42 0.87 3.81 0.64

Python 0.32 .93 0.66 0.44 0.5 0.87 3.72 0.62

C# 0.28 1 1 0.44 0.25 0.8 3.77 0.63

C++ 0.37 0.80 1 0.33 0.17 0.93 3.60 0.60

Modula-2 0 0.2 0.66 1 0.33 0.87 3.06 0.51

C 0.51 0.2 0.33 0.33 0.08 0.93 2.39 0.40

Pascal 0.01 0.2 0.33 0.67 0.08 0.93 2.22 0.37

Fortran 0 0.53 0 0.33 0.42 0.73 2.02 0.34

doi:10.1371/journal.pone.0088941.t023

Table 24. Overall score for widely used programming
languages (sorted based on score with default weights).

Languages Ls Ls’

Java 9.24 0.71

Python 8.63 0.66

Ada 8.04 0.62

C# 7.60 0.58

Modula-2 7.17 0.55

Pascal 6.54 0.50

C++ 6.23 0.48

Fortran 4.79 0.37

C 3.84 0.30

doi:10.1371/journal.pone.0088941.t024

Table 25. Overall score for widely used programming
languages (sorted based on score with customized weights).

Scores with higher weightage of ‘‘Demand in Industry’’ and ‘‘Easy
Transition’’

Languages Unbounded Ls Bounded Ls’

Java 12.18 0.76

Python 9.92 0.62

C# 9.15 0.57

Ada 8.70 0.54

C++ 7.96 0.50

Modula-2 7.83 0.49

Pascal 6.89 0.43

C 5.20 0.32

Fortran 4.80 0.30

doi:10.1371/journal.pone.0088941.t025

Evaluation of First Programming Language

PLOS ONE | www.plosone.org 23 February 2014 | Volume 9 | Issue 2 | e88941

Acknowledgments

We are thankful to the anonymous reviewers whose valuable and

constructive review comments helped us improving this manuscript.

Author Contributions

Conceived and designed the experiments: MSF SAK AA. Performed the

experiments: MSF SAK AA. Analyzed the data: MSF SI FA AA.

Contributed reagents/materials/analysis tools: MSF. Wrote the paper:

MSF. Revised the manuscript: MSF SAK AA.

References

1. Stroustrup B (2009) Programming in an undergraduate CS curriculum, In

Proceedings of the 14th Western Canadian Conference on Computing
Education (WCCCE ’09). ACM, New York: 82–89.

2. Stroustrup B (2010) Viewpoint: What should we teach new software developers?

Why? Communications of the ACM, 53(1): 40–42.

3. Hoare CAR (1980) The Emperor’s Old Clothes. ACM Turing Award Lecture.

ACM.

4. Reid R J First-Course Language for Computer Science Majors, http://www.
panix.com/,dictum/reference/language-lists/. Accessed 5 December 2013.

5. Parker KR, Ottaway TA, Chao JT, Chang J (2006) A Formal Language

Selection Process for Introductory Programming Courses, Journal of Informa-
tion Technology Education. 5:133–151.

6. Gupta D (2004) What is a good first programming language? Crossroads.

10(4):7–7.

7. McIver L (2002) Evaluating languages and environments for novice program-

mers. In 14th Workshop of the Psychology of Programming Interest Group:100–
110.

8. Clarke S (2001) Evaluating a new programming language. In 13th Workshop of

the Psychology of Programming Interest Group:275–289.

9. Farooq MS, Khan SA, Abid A (2012) A Framework for the Assessment of a First

Programming Language. Journal of Basic and Applied Scientific Research.

2(8):8144–8149.

10. Holtz NM, Rasdorf WJ (1988) An evaluation of programming languages and

language features for engineering software development. Engineering with

Computers. 3(4):183–199.

11. Phipps G (1999) Comparing observed bug and productivity rates for Java and

C++. Software-Practice and Experience. 29(4): 345–358.

12. Hadjerrouit S (1998) Java as first programming language: a critical evaluation.
SIGCSE Bull. 30(2): 43–47.

13. Gries D (1974) What should we teach in an introductory programming course?.
In Proceedings of the 4th SIGCSE Technical Symposium on Computer Science

Educatio. ACM Press :81–89.

14. Schneider GM (1978) The introductory programming course in computer
science: ten principles. In Papers of the 9th SIGCSE/CSA Technical

Symposium on Computer Science Education. ACM Press :107–114.

15. Palumbo D (1990) Programming language/problem-solving research: a review
of relevant issues. Review of Educational Research. 60(1): 65–89.

16. Roberts ES (1993) Using C in CS1: evaluating the Stanford experience. In
Proceedings of the 24th SIGCSE Technical Symposium on Computer Science

Education. ACM Press:117–121.

17. Feldman MB (1992) Ada experience in the undergraduate curriculum.
Communications of the ACM. 35(11):53–67.

18. Kölling M, Koch B, Rosenberg J (1995) Requirements For A First Year Object-

Oriented Teaching Language. Proceedings SIGCSE’95. Nashville. Tennessee.
ACM Press:173–177.

19. Mahmoud QH, Dobosiewicz W, Swayne D (2004) Making Computer

Programming Fun and Accessible. IEEE. (Innovative Technology for Computer
Professionals) COMPUTERS.37(2):106–108.

20. Jones C (1996) Applied Software Measurement: Assuring Productivity and
Quality. Second Edition. McGraw-Hill.

21. Sebesta R (2012) Concepts of Programming Languages. 10th Edition. Addison-

Wesley.

22. Wirth N (2002) Pascal and Its Successors. Software Pioneers. Springer-Verlag.

23. Stroustrup B (1995) The Design and Evaluation of C++. Addison-Wesley.

24. Jacquot JP (2002) Which use for Java in introductory courses? In Proceedings of
the second workshop on Intermediate representation engineering for virtual

machines:119–124.

25. Stephenson C, West T (1998) Language: Choice and Key Concepts in CS1.
Journal of Research on Computing Education 31(1):89.

26. Wirth N (1975) An Assessment of the Programming language Pascal. IEEE

Transaction on Software Engineering: 192–198.

27. Salus HP (1998) Handbook of Programming Languages Vol. I: Object Oriented

Programming Languages. Macmillan Technical Publishing.

28. Eckel B (2000) Thinking in Java (Second Edition). Prentice Hall.

29. Biddle R, Tempero E (1998) Java Pitfalls for Beginners. SIGCSE Bulletin. Vol

30(2):48–52.

30. Martin P (1998) Java, the good, the bad and the ugly. ACM SIGPLAN
Notices.33(4): 34–39.

31. Pirkelbauer P, Dechev D, Stroustrup B (2010) Support for the Evolution of C++
Generic Functions. 3rd International Conference on Software language
Engineering. 123–142.

32. Howell K (2003) First computer languages, Journal of Computing Sciences in
Colleges. 18 (4): 317–331.

33. Wirth N (1974) On Design of the programming language, IFIP CONGRESS.

386–393.

34. Kölling M (1999) The Problem of teaching Object Oriented Programming
Part1: Languages. Journal of Object Oriented Programming. 11(8): 8–15.

35. Dijkstra E (1979) The humble programmer. In Classics in software engineering.
Yourdon Press:111–125.

36. Pohl I, Edelson D (1988) A to Z: C language shortcomings, Comput. Languages.

13(2):51–64.

37. The Corelinux Consortium (2000) C++ Coding Standards http://www.

literateprogramming.com/cppstnd.pdf. Accessed 9 April 2013.

38. Johnson K A, Pettit IV, Opdahl S B (1997) Ada 95, Quality and Style:

Guidelines for Professional Programmers. Lectures Notes in Computer Science.
Springer.

39. Java Code Conventions by Sun Microsystems (1997) www.oracle.com/

technetwork/java/codeconventions-150003.pdf. Accessed 5 April 2013.

40. Kölling M (1999) The Problem of teaching Object Oriented Programming Part

2: Environments. Journal of Object Oriented Programming. 11(9):6–12.

41. Stroustrup B (2012) Software Development for Infrastructure. Computer.
45(1):47–58.

42. Kölling M (2013) This much I know: thoughts on the past, present and future of
educational programming tools. In Proceeding of the 44th ACM technical symposium on

Computer science education (SIGCSE ’13):5–6.

43. Stroustrup B (2012) Foundations of C++. Proc. 22nd European Symposium on

Programming (ESOP). Springer LNCS:1–25.

44. Kölling M, Utting I (2012) Building an open, large-scale research data repository
of initial programming student behaviour. In Proceedings of the 43rd ACM

technical symposium on Computer Science Education (SIGCSE ’12): 323–324.

45. Wheeler DA (1997) Ada, C, C++ and Java vs. the Steelman. ACM Sigada Ada

Letters. XVII(4):88–112.

46. MISRA (2008) C++ Guidelines for the use of the C++ language in critical

systems. ISBN 978-906400-03-3.

47. Samak M (2008) Practical UML Statecharts in C/C++. Event-Driven
Programming for Embedded Systems. Second Edition. Newnes.

48. PC-lint for C/C++ (1985) http://www.gimpel.com/html/index.htm. Accessed 7

September 2013.

49. C# Coding Conventions (C# Programming Guide) http://msdn.microsoft.

com/en-us/library/vstudio/ff926074.aspx. Accessed 10 November 2013.

50. Philips Healthcare (2009) C# Coding Standard. Version 2.0.Philips Healthcare.

51. Li X, Prasad C (2005) Effectively teaching coding standards in programming. In

Proceedings of the 6th conference on Information technology education:239–
244.

52. General Software Development Standards and Guidelines (2007) Version 3.5.
NOAA National Weather Service NWS/OHD. Science Infusion Software

Engineering Process Group (SISEPG).

53. Donovan A, Kiezun A, Tschantz MS, Ernst MD (2004) Converting java

programs to use generic libraries. In OOPSLA ’04: Proceedings of the 19th
annual ACM SIGPLAN conference on Object-oriented programming, systems,

languages, and applications.

54. Vandevoorde D, Josuttis N (2002) C++ templates: the Complete Guide.

Addison-Wesley Professional.

55. Stroustrup B (2013) The C++ Programming Language. 4th edition. Addison-
Wesley Professional.

56. Parnin C, Bird C, Murphy-Hill E (2011) Java generics adoption: how new

features are introduced, championed, or ignored. In Proceedings of the 8th

Working Conference on Mining Software Repositories ACM:3–12.

57. Ryder BG, Soffa ML, Burnet M (2005) The impact of software engineering
research on modern progamming languages. ACM Trans. Softw. Eng.

Methodol. 431–477.

58. Denvir BT(1979) On orthogonality in programming languages. SIGPLAN

Not:18–30.

59. The Ada Compiler Validation Capability (ACVC) Test Suites: http://archive.

adaic.com/docs/flyers/acvc.html. Accessed 2 december 2013.

60. Boxing and Unboxing (C# Programming Guide) (2013) http://msdn.microsoft.
com/en-us/library/vstudio/yz2be5wk.aspx. Accessed 8 december 2013.

61. Autoboxing and Unboxing (The JavaTM Tutorials). http://docs.oracle.com/
javase/tutorial/java/data/autoboxing.html. Accessed 6 december 2013.

62. Tucker AB, Noonan R (2009) Programming Languages. 2nd edition. McGraw-

Hill.

63. Hoare CAR (1973) Hints on Programming Language Design. Technical Report.

Stanford University. Stanford. CA. USA.

64. Ari B, Mordechai B (1982) Principles of Concurrent Programming. Prentice-
Hall.

65. Hoare CAR (1978) Communicating Sequential Processes. Comm. ACM. Vol.
21. 666–677.

Evaluation of First Programming Language

PLOS ONE | www.plosone.org 24 February 2014 | Volume 9 | Issue 2 | e88941

http://www.panix.com/∼∼
http://www.panix.com/∼∼
http://www.literateprogramming.com/cppstnd.pdf
http://www.literateprogramming.com/cppstnd.pdf
www.oracle.com/technetwork/java/codeconventions-150003.pdf
www.oracle.com/technetwork/java/codeconventions-150003.pdf
http://www.gimpel.com/html/index.htm
http://msdn.microsoft.com/en-us/library/vstudio/ff926074.aspx
http://msdn.microsoft.com/en-us/library/vstudio/ff926074.aspx
http://archive.adaic.com/docs/flyers/acvc.html
http://archive.adaic.com/docs/flyers/acvc.html
http://msdn.microsoft.com/en-us/library/vstudio/yz2be5wk.aspx
http://msdn.microsoft.com/en-us/library/vstudio/yz2be5wk.aspx
http://docs.oracle.com/javase/tutorial/java/data/autoboxing.html
http://docs.oracle.com/javase/tutorial/java/data/autoboxing.html

66. CORPORATE Rice University (1993) High performance Fortran language

specification. SIGPLAN Fortran Forum.12(4):1–86.
67. Romanovsky A, Sandén B (2001) Except for exception handling. ACM SIGAda

Ada Letters - Exception handling for a 21st century programming language

proceedings. XXI(3):19–25.
68. Weimer W, Necula GC (2008) Exceptional situations and program reliability.

ACM Trans. Program. Lang. Syst. 30(2).51 pages.
69. Goodenough JB(1975) Exception handling: issues and a proposed notation.

Commun. ACM 18(12): 683–696.

70. Deissenboeck F, Pizka M (2006) Concise and consistent naming. Software
Quality Journal. 14(3):261–282.

71. Knuth D (2003) Selected papers on computer languages. In: Center for the
Study of Language and Information (CSLI Lecture Notes. no. 139). Stanford.

CA.
72. Vollebregt T, Kats LC, Visser E (2012) Declarative specification of template-

based textual editors. In Proceedings of the Twelfth Workshop on Language

Descriptions, Tools, and Applications. ACM. USA. Article 8. 7 pages.
73. Shani U (1983) Should program editors not abandon text oriented commands?

SIGPLAN Notices. 18(1):35–41.
74. Rendel T, Ostermann K (2010) Invertible syntax descriptions:unifying parsing

and pretty printing. In Proceedings of the third ACM Haskell symposium on

Haskell. ACM:1–12.
75. Reiss SP (2007) Automatic code stylizing. In Proceedings of the twenty-second

IEEE/ACM international conference on Automated software engineering.
ACM. USA:74–83.

76. Bennedsen J (2008) Teaching and learning introductory programming—A

model-based approach. PhD thesis. University of Oslo.

77. Bennedsen J, Schulte C (2010) BlueJ Visual Debugger for Learning the

Execution of Object-Oriented Programs? Trans. Comput. Educ. 10(2). Article 8.

22 pages.

78. Siegfried RM, Greco D, Miceli N, Siegfried J (2012) Whatever Happened to

Richard Reid’s List of First Programming Languages? Information Systems

Education Journal. 10(4):24–30.

79. Scoy FV (2006). The Reid List 25. http://groups.google.com/group/comp.

edu/browse_thread/thread/4f00b5f437ce261a/3267514419052033?q = Reid+
List#3267514419052033, Accessed 2 december 2013.

80. Pears A, Seidman S, Malmi L, Mannila L, Ad-ams E, et al. (2007) A Survey of

Literature on the Teaching of Introductory Programming. ACM SIGCSE

Bulletin.39(4):204–223.

81. Davies S, Polack-Wahl J A, Anewalt K (2011) A Snapshot of Current Practices

in Teaching the Introductory Programming Se-quence. ACM SIGCSE Bulletin

43(1):625–630.

82. Brusilovsky P, Calabrese E, Hvorecky J, Kouchnirenko A, Miller P (1997) Mini-

languages: A Way to Learn Programming Principles. Education and

Information Technologies 2 (1):65–83.

83. Kelleher C, Pausch R (2005) Lowering the Barriers to Programming: a

taxonomy of programming environments and languages for novice program-

mers, ACM Computing Surveys. 37(2):83–137.

Evaluation of First Programming Language

PLOS ONE | www.plosone.org 25 February 2014 | Volume 9 | Issue 2 | e88941

http://groups.google.com/group/comp.edu/browse_thread/thread/4f00b5f437ce261a/3267514419052033?q=Reid+ist#3267514419052033
http://groups.google.com/group/comp.edu/browse_thread/thread/4f00b5f437ce261a/3267514419052033?q=Reid+ist#3267514419052033
http://groups.google.com/group/comp.edu/browse_thread/thread/4f00b5f437ce261a/3267514419052033?q=Reid+ist#3267514419052033
http://groups.google.com/group/comp.edu/browse_thread/thread/4f00b5f437ce261a/3267514419052033?q=Reid+ist#3267514419052033

