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Abstract

The recent interest in network analysis applications in personality psychology and psychopathology has put forward new
methodological challenges. Personality and psychopathology networks are typically based on correlation matrices and
therefore include both positive and negative edge signs. However, some applications of network analysis disregard
negative edges, such as computing clustering coefficients. In this contribution, we illustrate the importance of the
distinction between positive and negative edges in networks based on correlation matrices. The clustering coefficient is
generalized to signed correlation networks: three new indices are introduced that take edge signs into account, each
derived from an existing and widely used formula. The performances of the new indices are illustrated and compared with
the performances of the unsigned indices, both on a signed simulated network and on a signed network based on actual
personality psychology data. The results show that the new indices are more resistant to sample variations in correlation
networks and therefore have higher convergence compared with the unsigned indices both in simulated networks and with
real data.
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Introduction

Network analysis is a family of powerful tools that constitute the

basis of important insights in many fields of science (for

introductions to network analysis, see [1–5]). A network is an

abstract and flexible representation of several entities, represented

as a set of nodes or vertices (V), and of their relationships,

represented as a set of edges (E) that connect the nodes. Networks

are used to represent various systems, such as friendships [6],

scientific collaborations [7], the world-wide-web [8], the co-

expression of genes [9], air transportation [10] and the brain [11].

Recently, network analysis has been applied to psychological

phenomena such as personality and psychopathology [12–16].

A network is said to be unweighted or binary if any edge i,jð Þ[E
can be either absent or present, whereas if the intensity of the ties

is coded, the network is said to be weighted. An unweighted

network of size n can be represented by an n|n adjacency matrix

(A) whose elements a i,jð Þ[ 0,1f g convey information about the

presence or the absence of an edge. In this paper, we deal only

with undirected networks; therefore, a(i,j) is assumed equal to a(j,i).

All of the diagonal elements a(i,i) are assumed equal to zero. A

weighted network can be represented by a matrix of weights (W )

that associates a value w i,jð Þ to the edges. For the sake of simplicity

and without loss of generality, we consider max (wij)~1.

Weighted networks provide a more accurate representation of

phenomena characterized by a non-negligible heterogeneity in the

intensity of the connections. For instance, weighted networks allow

for representing the importance of a stable scientific collaboration

compared with an occasional coauthorship or the importance of a

stable connection between two airports that can carry thousands of

passengers a day compared with connections that are operated

occasionally [17]. The necessity of more precise models has led

researchers to increase their interest in weighted networks and

therefore to include edge weights in the computation of key

network statistics (e.g., [17–19]).

In the typical applications of network analysis, the weights

represent the intensity or the capacity of a relationship and are

therefore positive numbers (e.g., [1,17]); however, a network can

also include relationships that are naturally represented by

considering both positive and negative edges. Examples are social

networks in which both liking and disliking relationships are

allowed [20–23]. A signed network can be represented by a signed

adjacency matrix whose elements take value as i,jð Þ~1 if i and j are

connected by a positive edge, if i and j are connected by a negative

edge, and as i,jð Þ~0 if no edge connects the nodes. A signed

weighted network can be represented by a signed weights matrix

Ws that associates to each edge a weight reflecting both the sign

and the strength (i.e., absolute value) of the connection.

The meanings of nodes, ties and weights vary among different

applications of network analysis: this contribution focuses espe-

cially on networks in which nodes are defined by variables and ties

are defined by their correlations. This type of network has been

used often in the field of weighted gene co-expression network

analysis [9], and it is at the basis of the definition of networks in

personality psychology and psychopathology [13,14,24]. The

correlation coefficient naturally assumes both positive and negative

values, but for some applications, edge signs are typically
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neglected: the clustering coefficient [19,25] represents a primary

example of such a strategy [9,14,24]. The clustering coefficient

assesses the connectivity in a node’s neighborhood: a node has a

high clustering coefficient if its neighbors tend to be directly

connected with each other. The coefficient is fundamental to

assessing the small-world property [26], and it can be interpreted

as an index of the redundancy of a node [5,27–29]. This last

property is particularly important in personality and psychopa-

thology networks. These networks are usually based on personality

questionnaires: nodes represent questionnaire items and edges

represent their correlations [13]. Given that questionnaire items

can sometimes tap into similar issues, the identification of the most

redundant nodes in a network could help in identifying items that

do not add unique information to the network.

The aim of this article is to generalize clustering coefficients to

signed correlation networks. The remainder of this paper is

organized as follows. First, we formally present the clustering

coefficient for both unweighted and positively weighted networks.

Second, we discuss why a generalization to the signed case is

needed. Third, we propose modifications of the indices to extend

their use to signed correlation networks. Finally, we show the

performance of the new indices using both simulated networks and

networks based on real data.

Definition of the Clustering Coefficient for Unweighted
and Weighted Networks
A triangle is a subgraph of three nodes all connected to each

other. It can be conceived of as a direct connection of a node j with

a node q, given by (j, q), plus an indirect connection that travels

through another node, i, given by (j, i, q). If the direct edge (j, q) is

null, the indirect path that travels through i is especially important

because it conveys unique information about the relationship

between j and q. In this case, the missing direct edge between j and

q is said to constitute a structural hole [28]. Conversely, if the

direct edge (j, q) is present, the importance of the indirect path is

reduced and i can be considered redundant in establishing a

connection between j and q. This idea can be applied to the whole

neighborhood of a node i; the local clustering coefficient was

initially defined by Watts and Strogatz [25] for unweighted

networks as the number of connections among the neighbors of a

focal node over the maximum possible number of such connec-

tions,

Ci,W~

P
j,q (a j,ið Þa i,qð Þa j,qð Þ)

ki ki{1ð Þ , ð1Þ

where ki is the degree of node i [30]. The clustering coefficient can
be equivalently conceived of as the number of triangles in the

neighborhood of a focal node (ti), normalized by the maximum

possible number of such triangles,

Ci,W~
2ti

ki ki{1ð Þ ð2Þ

and it can be interpreted as a measure of how much a focal node i

is redundant in establishing connections in its neighborhood

[5,29].

Several generalizations of the clustering coefficient have been

proposed for positively weighted networks [19]. We consider here

two generalizations that are well-known, proposed by Onnela and

colleagues [31] and from Zhang and Horvath [9,32]. Onnela and

colleagues defined the intensity of a subgraph in a network as the

geometric average of its edge weights and proposed a weighted

version of the clustering coefficient by substituting the number of

triangles in the numerator of (1) with the sum of triangle intensities

Ci,O~

P
j,q w j,ið Þw i,qð Þw j,qð Þ
� �1

3

ki ki{1ð Þ : ð3Þ

This index requires an underlying binary network for comput-

ing the unweighted degree in the denominator [32] and takes into

account the weights of all edges in the triangles [19].

Zhang and Horvath [9] generalized the clustering coefficient to

networks with positive weights,

Ci,Z~

P
j,q w j,ið Þw i,qð Þw j,qð Þ
� �

P
q w i,qð Þ

� �2

{
P

q w
2
i,qð Þ

: ð4Þ

The numerator of (4) is a generalization of Watts and Strogatz’s

clustering coefficient [25] to a matrix of weights instead of to the

adjacency matrix, whereas the denominator represents the

maximum possible value that can be obtained by the numerator,

such that Ci,Z[ 0,1½ �. It can be equivalently expressed with the

formula

Ci,Z~

P
j,q (w j,ið Þw i,qð Þw j,qð Þ)P

j=q w j,ið Þw i,qð Þ
: ð5Þ

Both Ci,Z and Ci,O coincide with Ci,W if binary edge weights {0,

1} are considered [19,32]. In contrast to Onnela’s formulation,

Ci,Z is not influenced by the weights of all the edges, being

insensitive to the weights of the edges incident to i [19].

Why is a Generalization of Clustering Coefficient to
Signed Networks Needed?
In the framework of balance theory, the sign of a cycle is the

product of the signs of its lines, and the degree of balance of the

network has been defined as the proportion of positive cycles [20].

Starting from this framework, Kunegis and colleagues operatio-

nalized the concept of multiplicative transitivity for signed

networks as the tendency for any two incident edges ‘‘to be

completed by a third edge having as a weight the product of the

two edges’ weights’’ [21]. Relying on the concept of multiplicative

transitivity, they also showed that it is possible to predict the edge

signs in a social network by using the signs in the square adjacency

matrix A2
s , in which each entry is the sum of the signs of the

length-2 paths between any pair of nodes i and j. If there are more

positive than negative paths joining two nodes, then the predicted

direct path between them is positive. Otherwise, the predicted

direct path is negative. Consider the task of guessing whether two

individuals, John and Paul, are friends or enemies by knowing

their relations with other people. If they have many friends and/or

many enemies in common, it is also likely that they are friends

themselves, while if the friends of Paul are in general the enemies

of John and vice versa, John and Paul are more likely to be foes.

Similarly, the evolution of a social connection between two

individuals can be modeled as a function of the product of the

signed links among the two focal individuals and their common

neighbors [23]. If Mary and Anne have many friends and/or

enemies in common, it is likely that they will become friends

Clustering Coefficients in Signed Networks
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themselves, while if the enemies of Mary are the friends of Anne

and vice versa, it is likely that they will become foes.

The distinction between positive and negative triangles is

relevant not only in social networks but also in correlation

networks, especially for assessing the redundancy of a node. Ci,W ,

Ci,O and Ci,Z can all be interpreted as measures of redundancy

[5,29], but this interpretation is only meaningful as long as the

presence of a direct path (j, q) makes the indirect path (j, i, q) less

important or less informative. Conversely, when the sign of the

direct path is different from the sign of the indirect path (computed

as the product of the edge signs), if one attempted to predict the

sign of the direct edge using just the indirect path [21], one would

hypothesize a relationship of exactly the opposite sign between j

and q relative to the one expressed by the direct edge. In this case,

the information conveyed by the indirect path cannot be

considered redundant with regard to that of the direct path. In

the case of correlation networks, in which nodes represent

variables and edge weights their connections, note that simply

reversing one or more variables cannot convert a negative triangle

into a positive one. Reversing a variable changes the signs of two

of the connections of the triangle, but being the sign of a triangle

defined by the product of the signs of its edges, this modification

leaves the sign of the triangle unchanged. Reversing a variable can

change the sign of the direct edge and of the indirect path

together, but not the sign of one of the two independently of the

other.

When Ci,W , Ci,O and Ci,Z are applied to a signed network

considering the absolute values of weights, they do not distinguish

negative from positive triangles and cannot be interpreted as

indices of redundancy for those nodes that are involved in negative

triangles. Therefore, in this work, we propose adaptations of Ci,W ,

and Ci,Z such that positive triangles are considered positively and

negative triangles are considered negatively in the summation.

The signed clustering coefficient of a node i is high (low) if the pairs

of nodes that have a connection of the same sign to i are also

connected by a positive (negative) edge and if the pairs of nodes

that have a connections of opposite signs with i are more likely to

be connected by a negative (positive) edge. The signed clustering

coefficient is high if the node i is generally involved in triangles

with 0 or 2 negative edges and is low if i is generally involved in

triangles with 1 or 3 negative edges.

An important reason to consider signed versions of Ci,W , and

Ci,Z is that the signed indices are expected to be more resistant

than the corresponding unsigned indices to the presence of noise.

Correlation networks are typically based on sample estimation:

especially when the sample size is not large, many small

correlations might still be unstable estimates of the population

values [33]. These small correlations tend to form a large number

of very small triangles that are expected to be equally distributed

among positive and negative: although in the computation of the

unsigned indices they can have a large influence, their effect

should cancel out when computing the signed indices given that

the negative triangles are subtracted and the positive triangles are

added in the computation of the indices.

The New Signed Indices of the Clustering Coefficient
The unweighted clustering coefficient can be generalized to

signed networks by simply replacing the unsigned adjacency values

with the signed values in the formula

ĈCi,W~

P
j,q (as j,ið Þas i,qð Þas j,qð Þ)

ki ki{1ð Þ , ð6Þ

where the degree (ki) in the denominator is computed considering

the unsigned values. The index ĈCi,W varies in [21,1] and assumes

the values 1 and -1 when all of the i’s neighbors are directly

connected in pairs and these pairs form only, respectively, positive

and negative triangles with i. The value zero indicates that i

participates in positive and negative triangles in equal number or

that no edge connects i’s neighbors to each other.

Additionally, Ci,O can be similarly generalized to signed

networks by replacing the unsigned weights with the signed ones

in Formula (3): in Formula (7), when the sign of a triangle is

negative, the intensity of that triangle is subtracted in the sum

ĈCi,O~

P
j,q (ws j,ið Þws i,qð Þws j,qð Þ)

1=3

ki ki{1ð Þ : ð7Þ

ĈCi,O varies in [21,1] and takes value 1 if all of i’s pairs of

neighbors form only positive triangles with i and the weights of all

such connections are equal to one in absolute value; it takes value

21 if all of i’s pairs of neighbors form only negative triangles with i

and the weights of all such connections are equal to one in

absolute value, and it takes value 0 if the positive and negative

triangles in which i participates are balanced or if the neighbors of

i are all disconnected from each other. In correlation networks,

exactly null correlations are unlikely: if one considers all the non-

null correlations in the computation of the degree in (3) and (7), the

denominator becomes a constant that is dependent solely on the

size of the network. The alternative possibility would be to set the

correlations that are below a threshold to zero; however, this

procedure has important theoretical disadvantages [9]. Moreover,

although small correlations can be individually unreliable

estimates of the population values, they can convey reliable

information when they are considered together (e.g., [34]), and

their exclusion from the computation would ultimately result in

loss of information. Therefore, we suggest considering all of the

edges in the computation of both the numerator and the

denominator.

The generalization of Ci,Z is slightly less straightforward. In its

original formulation, Ci,Z includes the weights of the indirect paths

both in the numerator and in the denominator, making the index

particularly sensitive to the direct paths (j, q) of the triangles, which

is included in the numerator but not in the denominator (cf.

Formula 5). If the unsigned weights were replaced with the signed

weights both in the numerator and in the denominator, the index

would be dependent especially on the sign of the direct paths in the

neighborhood of i. Making the index sensitive to the sign of the

direct path would be particularly problematic in correlation

networks, in which nodes represent variables and reversing a

variable can arbitrarily change the signs of the direct path and of

the indirect path, even if it cannot change the sign of the triangle.

This would make the sign of the clustering coefficient dependent

on the variable orientation. For instance, recoding a variable from

‘‘extraversion’’ to ‘‘introversion’’ and changing the signs of the

correlations consequently would change the clustering coefficients.

Therefore, we propose a generalization in which the numerator

considers the signed weights and the denominator considers the

weights in absolute value:

ĈCi,Z~

P
j,q (ws j,ið Þws i,qð Þws j,qð Þ)P

j=q Dws j,ið Þws i,qð ÞD
: ð8Þ

Clustering Coefficients in Signed Networks

PLOS ONE | www.plosone.org 3 February 2014 | Volume 9 | Issue 2 | e88669



ĈCi,Z varies in [21,1] and takes value 1 if all of i’s pairs of

neighbors form only positive triangles with i and the absolute

weights of the edges between the neighbors are equal to 1

(irrespective of the absolute weights of the indirect paths); it takes

value 21 if all of i’s neighbors form only negative triangles with i

and all of the absolute weights of the direct edges between i’s

neighbors are equal to 1, and it takes value 0 if the positive and

negative triangles in which i participates are balanced or if i’s

neighbors are disconnected from each other.

Kunegis and colleagues [21] introduced a measure of global

clustering coefficient for signed networks, CS(G). CS(G) and ĈCi,Z

differ in the fact that whereas the first is a property of the network

(global clustering coefficient, e.g., [53]), the second is a property of

each node in the network (local clustering coefficient). Some

similarities between ĈCi,Z and CS(G) become apparent if we

express CS(G) as

CS(G)~

P
i

P
j,q

(ws j,ið Þws i,qð Þws j,qð Þ)

P
i

P
j=q

Dws j,ið Þws i,qð ÞDz
P
i

P
j

Dws i,jð Þws j,ið ÞD
ð9Þ

and compare it with Formula (8). The numerator of CS(G) is

equal to the sum of the numerators of ĈCi,Z for all of the nodes,

whereas the denominator of CS(G) is equal to the sum of the

denominators of ĈCi,Z of all of the nodes plus the termP
i

P
j

Dws i,jð Þws j,ið ÞD. In undirected networks, in which

ws i,jð Þ~ws j,ið Þ, this last term is equal to the sum of all of the

squared elements of the weight matrix.

Figure 1 shows the values of the unsigned and the signed indices

for the case in which the focal node participates in a single

negative triangle. The examples are those shown in Saramäki

et al. (2007, fig. 1), with the main difference that one edge in each

triangle is negative. To illustrate the properties of the proposed

indices of the clustering coefficient, we tested them on simulated

networks and on networks based on real data. Based on the

definitional features of these indices, we hypothesize that:

1. The signed and the unsigned indices of the clustering

coefficient should have an increasingly strong correlation as a

function of the presence of positive triangles in the network,

and they should diverge as a function of the presence of

negative triangles.

2. The signed indices of the clustering coefficient should be

consistently more resistant to the presence of noise in

correlation networks, compared with the unsigned indices,

and should therefore show higher agreement.

The analyses were performed with R using packages qgraph [35],

WGCNA [36,37], Matrix [38] and psych [39]. Functions for

computing the new indices of clustering coefficient have been

included in package qgraph.

Study 1: Simulated Networks

The aim of this simulation was to inspect how the unsigned and

signed formulations of the clustering coefficient converge in

correlation networks as a function of the proportion of negative

triangles in the network. Furthermore, we manipulated the

presence of noise in the network to test how the indices were

affected by the presence of completely random correlations.

Method
We generated a simple correlation network in which we

regulated the proportion of negative triangles. To create the

network, we first generated a matrix of N=100 random variables

(1000 observations) from a standard normal distribution. For each

variable i, we imposed a positive correlation with variable i+1, the
Nth variable being correlated to the first variable (correlations

were imposed by multiplying a pair of variables by a random

variable from a standard normal distribution). We additionally

imposed a positive correlation between each variable i and the

variable i+2, the variable N21 being correlated with the first one

and variable N being correlated with the second one. The matrix

Ws was defined as the correlation matrix, with the diagonal

elements set to zero, the nodes therefore represented the variables

and the edge weights represented their correlations. This network

could be straightforwardly represented using a circular layout

(Figure 2A), in which each node i was connected to nodes in

positions i-2, i21, i+1 and i+2. In this initial network, each node i

participated in three triangles whose edges were intentionally

controlled (we call them main triangles) and that had all positive

signs. For each node i, the three main triangles had vertices i-2, i2

1, i; i21, i, i+1; and i, i+1, i+2. We considered any node i as the

reference point of the main triangle of vertices i21, i and i+1 and

used node i to define univocally one indirect path (i21, i, i+1) and
one direct edge (i21, i+1) for the triangle. We stress that, because

of the particular structure of the network, each direct edge

corresponded to one and only one main triangle and vice versa,

therefore the modification of the direct edge of a main triangle

affected only that specific main triangle. We progressively

modified the signs of the main triangles, one at a time in random

order, by reversing the signs of only the direct edges of the

triangles. The proportion of negative triangles was varied until all

the main triangles had negative signs. The output of the simulation

included 101 networks in which the proportion of negative main

triangles ranged from 0% to 100% (Figure 2A).

Figure 1. Examples of clustering coefficients for different sign
and weight configurations. Ci,W , Ci,O and Ci,Z are the clustering

coefficient indices proposed by [25], [31] and [9], respectively. ĈCi,W , ĈCi,O

and ĈCi,Z are the corresponding indices generalized to the signed case.
Solid lines (–) represent edges of weight equal to 1 in absolute value,
and dashed lines (–) represent edges of weight close to 0. Green lines
are positive and red lines are negative. Edge weights are ignored in the

computation of the unweighted clustering coefficients Ci,W and ĈCi,W .
In each triangle one edge is negative. Note however that it is irrelevant
for the value of the signed clustering coefficients which of the three
edges is the negative one. We considered the case of a negative
triangle with one negative edge, but we could have equally considered
the case of a negative triangle with three negative edges without
affecting the results.
doi:10.1371/journal.pone.0088669.g001
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Figure 2. Correlation (r) between clustering indices as a function of the proportion of negative triangles (p). Ci,W , Ci,O and Ci,Z are the

clustering coefficient indices proposed by [25], [31] and [9], respectively. ĈCi,W , ĈCi,O and ĈCi,Z are the corresponding indices generalized to the signed
case. A Scaled model of the simulated networks. Green lines represent positive edges and red lines represent negative edges. The network in figure
includes only 10 nodes, but in the actual simulation we considered larger networks (100 nodes). Moreover, only the edges that were intentionally
manipulated are represented. B Correlations between the corresponding signed and unsigned indices of the clustering coefficient in the noise-
present condition. C Correlations between the corresponding signed and unsigned indices of the clustering coefficient in the noise-absent condition.
D Correlations between different clustering coefficient indices, both signed and unsigned, in the noise-present condition. E Correlations between
different clustering coefficient indices, both signed and unsigned, in the noise-absent condition.
doi:10.1371/journal.pone.0088669.g002
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On average, the absolute weight of the manipulated links was.20

(SD= .03). The networks, however, included noise because of

correlations that were not intentionally controlled, which had an

average weight of.03 (SD= .02) in absolute value and which were

equally distributed among positive and negative edges. Therefore,

each node participated additionally in
99
2

� �
{3~4848 triangles

whose signs were not manipulated but whose weights were small

(we call them random triangles). In the noise-present condition, we

computed all of the statistics without removing the random

triangles from the network, whereas in the noise-absent condition, all

edges lower than.1 were set to zero before computing all of the

indices of the clustering coefficient, therefore removing most

random triangles. The threshold of.1 seems a reasonable choice in

the light of the weights distribution. However, we are aware that

any fixed threshold has a degree of subjectivity and that other

choices could be valid as well. Therefore, we repeated the analyses

using a less subjective method by fixing to zero all edges that were

not intentionally controlled irrespective of their weight. The

pattern of results was substantially similar (see Figure S1), however

this procedure did not allow the computation of correlations

involving Ci,W because the index does not vary across nodes. The

simulation was repeated 1000 times.

Results
We computed Ci,W , Ci,O and Ci,Z , as well as the corresponding

signed indices, , ĈCi,O and ĈCi,Z , respectively, for each node in each

network. In the noise-present condition, for the computation ofCi,W

and , an edge was considered present if its weight was higher

than.1 in absolute value, absent otherwise. For the computation of

the denominator of Ci,O and ĈCi,O, we considered all of the

nonzero edges as present in the adjacency matrix. Figure 2B and

Figure 2C report the correlation between the corresponding

signed and unsigned indices of the clustering coefficient in the

noise-present and noise-absent conditions, respectively, as a

function of the proportion of negative main triangles induced in

the networks. Because the same threshold of.1 was used to

manipulate the presence of noise and to compute the unweighted

indices of the clustering coefficient, the correlations between Ci,W

and were identical in the noise-present and the noise-absent

conditions, being close to r=1 when only positive main triangles

were present, null when both positive and negative main triangles

were present in equal proportion, and close to r=21 when only

negative main triangles were induced. In the noise-present

condition, this pattern was similar, albeit less accentuated forCi,Z

and ĈCi,Z . No systematic variation in correlations was present for

Ci,O and ĈCi,O as a function of the proportion of negative main

triangles because of the exponents in the numerators of Formulas

(3) and (7), which make Ci,O and ĈCi,O relatively more sensitive

than Ci,Z and ĈCi,Z to triangles that are small in absolute weight.

Conversely, in the noise-absent condition (Figure 2B), the pattern

of correlations was substantially identical for the three indices.

Figures 2D reports the correlation among the different indices

in the noise-present condition. The correlation between the

unsigned indices was close to zero or negative. In particular, the

correlation between Ci,Z and Ci,O was negative and ranged

between r = -.40 and r = -.29. A negative correlation may appear

surprising between indices that are meant to assess a similar

property, but it can be explained by the different effect that many

random triangles have on the two indices, despite their small

weight. A positive variation in the absolute weight of the random

triangles incident to a node i appreciably increases Ci,O because of

the exponent in the numerator of (3) that magnifies the small

triangles, but it decreases Ci,Z because its effect is stronger in

increasing the denominator of (4) than the numerator. Conversely,

the correlations between the two signed measures ĈCi,Z and ĈCi,O

were all positive and ranged between r = .44 and r = .70. The

correlation between the signed indices was high and positive, with

the exception of the correlation between ĈCi,O and , which was

close to zero. This is because whereas was computed only

considering triangles with weights higher than.1, ĈCi,O was also

affected by triangles with smaller weights.

Figure 2E reports the correlation among the different indices in

the noise-absent condition. Removing the noise from the network

increased the correlations both between the signed and between

the unsigned indices of the clustering coefficient. The correlation

between the signed indices was always higher than or equal to the

correlation between the corresponding unsigned indices. The

reversed ‘‘U’’ shape of the pattern of correlations between the

signed indices was attributable to the restriction of range when

almost only positive or almost only negative main triangles were

present.

Discussion
To test Hypothesis 1, we inspected the correlations between the

corresponding signed and unsigned indices of the clustering

coefficient. As expected, the correlations between the clustering

coefficient indices varied according to the proportion of negative

main triangles. Even a small proportion of negative triangles in a

network can make a substantial difference between the indices of a

clustering coefficient computed considering or disregarding the

edge signs. Consider, for instance, that when the proportion of

negative main triangles increased from 0% to 25%, the correlation

between the corresponding signed and unsigned indices decreased

from (Textranslationfailed) to rv:25 for all of the indices. This

trend, however, was apparent for ĈCi,O and was more accentuated

for ĈCi,Z only when the noise was removed from the network

because of the influence of many small random triangles on the

unsigned weighted indices Ci,Z and Ci,O.

To better understand the influence of small random triangles on

the weighted indices, we inspected the correlation between the

weighted indices that considered or disregarded the signs in the

noise-present condition (Figure 2D). Whereas the signed indices

ĈCi,Z and ĈCi,O clearly converged, the unsigned indices Ci,Z and

Ci,O showed a marked divergence. In the computation of the

signed indices, positive and negative random triangles tend to

cancel each other; conversely, they have an additive effect on the

unsigned indices that can obscure the effect of systematic variation.

In the noise absent condition, after removing the random triangles,

all the indices showed a much stronger convergence (Figure 2E).

In conclusion, Hypothesis 2 was also confirmed: the signed indices

of the clustering coefficient were more resistant than were the

unsigned indices to the presence of random edges.

Study 2: Clustering Coefficient on Personality
Psychology Data

The simulation showed the behavior of the unsigned and the

signed indices in a simplified and idealized condition. We tested

the behavior of the indices on a real dataset of personality data in

which the correlation coefficients could not be divided a priori into

random and systematic edges.

Method
There-hundred-fifty-five participants (275 female and 76 male,

M age= 23.4, SD=6.4, plus four participants who did not
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indicate gender and age) were administered the HEXACO-60

[40], a short 60-item inventory that assesses six major dimensions

of personality: honesty-humility, emotionality, extraversion, agree-

ableness vs. anger, conscientiousness and openness to experience

[41]. Moreover, for each dimension there are four facet scores,

lower-order traits that are subsumed by the major dimensions:

facet scores can be computed as the average of two or three items,

depending on the facet [40].

For the item labeling, we followed this convention both in the

text and in the figures. We used a letter to indicate the personality

dimension that the item measures: H indicates honesty-humility, E

indicates emotionality, X indicates extraversion, A indicates

agreeableness vs. anger, C indicates conscientiousness and O

indicates openness to experience. The items are then numbered in

order of administration, the same as was reported by Ashton and

Lee [40], in which the complete item content is available.

Twenty-nine items of the HEXACO-60 assessed the negative

poles of the traits and were therefore reverse-scored. Reverse-

scoring is a typical procedure in scoring questionnaire items that

consists in subtracting the item’s score, in this case expressed on a

scale from 1 to 5, from the sum of the maximum possible value

plus the minimum possible value (in this case, 6). The reverse score

expresses the item score as if it assessed the positive pole of the

trait.

Ethics statement: The study was approved by the Ethics

Committee of the University of Milan-Bicocca. Informed written

consent was obtained before testing from all participants involved

in the study.

Results
The Ws matrix was defined as the correlation matrix between

the HEXACO-60 items, and the diagonal elements were set to

zero. The resulting network is represented in Figure 3 using the R

package qgraph [35]. The number of positive edges was 1206, and

the number of negative edges was 564. The number of positive

triangles was 20600, and the number of negative triangles was

13620. These numbers show that negative triangles are substan-

tially present in empirical data that can be considered typical in

personality psychology. However, positive triangles were on

average higher in weight than were negative triangles. We defined

the weight of a triangle as the product of its edge weights, in

absolute value. The average weight of a positive triangle was

higher (M= .0018, SD= .0047) than was the average weight of

negative triangles (M= .0005, SD= .0007), and this difference was

largely significant, as emerged from an independent samples t-test,

t(34218) = 32.97, p,10215.

The indices of the weighted clustering coefficient Ci,O and Ci,Z,

ĈCi,O and ĈCi,Z were computed for each node (the values are

reported in Table S1). We inspected the correlation among all the

unsigned and signed measures of the clustering coefficient

(Table 1). The correlations among the corresponding signed and

unsigned indices were substantial both between Ci,Z and,ĈCi,Z and

between Ci,O and ĈCi,O. As expected, the signed indices ĈCi,O and

ĈCi,Z showed a much stronger agreement than the unsigned indices

Ci,O and Ci,Z, for which the correlation did not reach statistical

significance.

For the computation of Ci,W and , a dichotomization was

necessary; however, in contrast with the simulation study, it was

not possible to select a value that would easily divide the edges into

random and systematic. Therefore, we chose to examine the

results as a function of different thresholds. Figure 4 shows the

correlations between the unweighted indices Ci,W and and the

weighted indices Ci,Z, ĈCi,Z , Ci,O and ĈCi,O when the threshold

varied between a minimum value of.01 and a maximum of.17.

Using higher thresholds would not have guaranteed the presence

of two neighbors for each node, which is essential to computing the

clustering coefficient for every node. Figure 4 shows that the most

substantial correlations between the signed indices were reached

for low thresholds, but important variations in the agreement of

both signed and unsigned indices arose as a function of the

threshold.

One reason it is important to consider signed indices is in their

potential implications in terms of understanding and interpreting

network relations. To provide a psychologically meaningful

example, we present a triangle that emerged from the data that

can provide some insight on possible interpretative differences

between considering and disregarding triangle signs. The triangle

(Figure 5) contains nodes C08 (‘‘I often push myself very hard

when trying to achieve a goal’’), E35 (‘‘I worry a lot less than most

people do’’; this item is reverse-scored, indicating greater worries)

and X04 (‘‘I feel reasonably satisfied with myself overall’’). The

triangle is discussed from the perspective of node C08 as the focal

node (one could equally interpret the direct and the indirect paths

using another node as the focal one). The indirect path (E35, C08,

X04) suggests that anxiety (E35) is positively related to diligence

(C08), which in turn is positively related to social self-esteem (X04).

Therefore, if one attempted to predict the direct path (X04, E35)

with no knowledge other than the indirect path, one would

hypothesize a positive relationship between social self-esteem and

anxiety. However, social self-esteem (X04) and anxiety (E35) are

negatively correlated: the direct path and the indirect path are not

redundant. If one considers the edge signs, one may hypothesize

that nodes E35 and X04 are negatively connected despite the effect

of diligence (C08) but not that they are connected because of it.

The same pattern is also present at the level of facets (for facets in

the HEXACO, see [40,41]), with anxiety being positively related

to diligence (r = .26, p,.01), diligence positively related to social

self-esteem (r = .18, p,.01) and social self-esteem negatively

related to anxiety, r = -.34 (p,.01). One could speculate that this

triangle reflects a negative feedback loop, as described by Cramer

and colleagues [13]. A reasonable level of anxiety can help in

focusing one’s goals (e.g., [42]), and pursuing goals may lead to

higher self-esteem (e.g., [43,44]), which in turn reduces anxiety

and reinstates the equilibrium. Negative feedback loops are

essential in maintaining homeostasis, yet this relationship pattern

would have been lost or misinterpreted by disregarding the edge

signs when computing the clustering coefficient in correlation

networks. In short, disregarding signs can entail the loss or

misinterpretation of important information.

Discussion
This analysis showed how the indices of the clustering

coefficient performed when applied to real data from a personality

network. Among the weighted indices, the signed indices ĈCi,Z and

ĈCi,O converged with each other whereas the unsigned indices Ci,O

and Ci,Z did not show a significant convergence. Hypothesis 2

therefore was also confirmed with real data: a higher convergence

was reached when negative triangles were considered with

negative signs.

With the real data, it was not possible to find a convincing

binary division between systematic and random edges. For the

computation of the unweighted indices Ci,W and , we examined

different possible thresholds: the indices, and therefore their

convergence with the other clustering indices, were noticeably

dependent on the selection of the threshold parameter.
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Conclusions

We presented three modified indices of clustering coefficient

especially conceived for correlation networks, that account for

negative interactions. The new measures have both theoretical and

practical advantages: they distinguish positive from negative

triangles, which have a different meaning in correlation networks

and in psychological data in particular. Moreover, they are more

resistant than are the unsigned measures to random sample

variation in correlation matrices. The first measure that we

introduced, , does not take weights into account and is particularly

indicated in the analysis of signed unweighted networks or for

those situations in which it is sensible to divide the edges of a

weighted network into systematic and random to obtain a binary

network. The other two measures, ĈCi,O and ĈCi,Z , take both

weights and signs into account and are particularly useful for the

analysis of correlation networks based on real data, in which a

clear division between systematic and random edges cannot be

performed without substantially affecting the results.

In the psychological data that we considered, positive triangles

showed on average higher weights than did negative triangles,

causing higher correlations between the signed and the unsigned

measures of the clustering coefficient. Personality questionnaires

are typically assembled relying on techniques based on the concept

of simple factor structure (e.g., [45,46]): a factor analysis or a

principal component analysis is performed, the initial factorial

structure is rotated to achieve the simplest possible factor structure

given the data, and those items are finally selected that show high

primary loadings and low secondary loadings (i.e., the highest

item-factor correlation should be much stronger than the second

highest) [40,47]. The strongest correlations in the matrix are

therefore among items belonging to the same factor, which form

only positive triangles with each other: this is likely to determine

the much stronger weight of positive triangles in these networks.

Personality questionnaires that have been assembled using

different criteria (e.g., [48–51]) are expected to produce stronger

negative triangles and should be targeted by future research.

The application of network analysis to personality psychology is

recent, but it is stimulating important insights in the field that

would not have been possible without it [14]. The use of the

network approach as a tool for analyzing personality data elicits

further substantive considerations on how the network concepts

are operationalized and what inferences they allow one to draw

[52]. The aim of this contribution is to tailor a number of tools by

bearing in mind the specific issues and data that are typical of

Figure 3. Graphical representation of the network of the HEXACO-60. Items are grouped by the personality factor that they assess. Green
lines represent positive correlations, and red lines represent negative correlations.
doi:10.1371/journal.pone.0088669.g003

Table 1. Correlations between the clustering coefficient
indices computed on the HEXACO-60.

Ci,O Ci,Z ĈCi,O ĈCi,Z

Ci,O 1 .10 .79** .31*

Ci,Z .07 1 .19 .82**

ĈCi,O
.84** .08 1 .58**

ĈCi,Z
.38** .80** .58** 1

*p,.05,
**p,.01. N = 60. Spearman-rank correlations are reported above the diagonal;
Pearson’s correlations are reported below the diagonal. Ci,O and Ci,Z are the

clustering coefficient indices proposed in [31] and [9], respectively. ĈCi,O and

ĈCi,Z are the corresponding indices generalized to the signed case.
doi:10.1371/journal.pone.0088669.t001
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research in this field with the aim of further extending the use of

network analysis as well as of generating novel insights. Although

the signed generalizations of the clustering coefficient have

originated from this perspective, their potential usefulness and

applicability go beyond the realm of personality psychology. In

brief, whenever negative triangles can be expected to be present in

a network, such as in social networks [21] or biological networks

[32], using indices based on signed correlation networks can be

quite valuable. They can be particularly useful when there is some

level of random noise in the correlation matrix because we have

shown that they are much more resistant to such noise than are

equivalent unsigned indices. We suspect that these conditions can

be present in several other network analysis application contexts

and therefore that these proposed indices can have a wide range of

applicability for other domains and topics.

Supporting Information

Figure S1 Correlation (r) between clustering indices in
the alternative noise-absent condition. The correlations are
represented as a function of the proportion of negative triangles (p).

The noise-absent condition was obtained by excluding all of the

edges that were not intentionally controlled in the network. This

manipulation of noise is an alternative to the exclusion of the edges

of weight lower than a threshold, which is presented in Figures 2C

and 2E. Correlations involving Ci,W are not represented because

this index does not vary across nodes in the alternative noise-

absent condition.

(TIF)

Table S1 Descriptive statistics and clustering coeffi-
cient by item.
(DOC)
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Figure 4. Correlation (r) between the unweighted and the weighted indices of clustering coefficient. Ci,W , Ci,O and Ci,Z are the

clustering coefficient indices proposed by [25], [31] and [9], respectively. ĈCi,W , ĈCi,O and ĈCi,Z are the corresponding signed indices. Ci,W and are

unweighted because they do not depend on edge weights and require a binary network, whereas Ci,O , ĈCi,O , Ci,Z and ĈCi,Z consider edge weights.
The correlations are shown as a function of the threshold used for the dichotomization of the network to compute Ci,W and .
doi:10.1371/journal.pone.0088669.g004

Figure 5. An example of a triangle that emerged from real data.
**p,.01. Edge weights are defined as the Pearson’s correlation
coefficients among the three items. The letters indicate the personality
dimension assessed by the item, C= conscientiousness, E = emotionality
and X = extraversion, and the numbers indicate their order of
administration on the questionnaire (see [40]).
doi:10.1371/journal.pone.0088669.g005
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