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Abstract

Introduction: The culture in many team sports involves consumption of large amounts of alcohol after training/
competition. The effect of such a practice on recovery processes underlying protein turnover in human skeletal muscle are
unknown. We determined the effect of alcohol intake on rates of myofibrillar protein synthesis (MPS) following strenuous
exercise with carbohydrate (CHO) or protein ingestion.

Methods: In a randomized cross-over design, 8 physically active males completed three experimental trials comprising
resistance exercise (865 reps leg extension, 80% 1 repetition maximum) followed by continuous (30 min, 63% peak power
output (PPO)) and high intensity interval (10630 s, 110% PPO) cycling. Immediately, and 4 h post-exercise, subjects
consumed either 500 mL of whey protein (25 g; PRO), alcohol (1.5 g?kg body mass21, 1262 standard drinks) co-ingested
with protein (ALC-PRO), or an energy-matched quantity of carbohydrate also with alcohol (25 g maltodextrin; ALC-CHO).
Subjects also consumed a CHO meal (1.5 g CHO?kg body mass21) 2 h post-exercise. Muscle biopsies were taken at rest, 2
and 8 h post-exercise.

Results: Blood alcohol concentration was elevated above baseline with ALC-CHO and ALC-PRO throughout recovery (P,
0.05). Phosphorylation of mTORSer2448 2 h after exercise was higher with PRO compared to ALC-PRO and ALC-CHO (P,0.05),
while p70S6K phosphorylation was higher 2 h post-exercise with ALC-PRO and PRO compared to ALC-CHO (P,0.05). Rates
of MPS increased above rest for all conditions (,29–109%, P,0.05). However, compared to PRO, there was a hierarchical
reduction in MPS with ALC-PRO (24%, P,0.05) and with ALC-CHO (37%, P,0.05).

Conclusion: We provide novel data demonstrating that alcohol consumption reduces rates of MPS following a bout of
concurrent exercise, even when co-ingested with protein. We conclude that alcohol ingestion suppresses the anabolic
response in skeletal muscle and may therefore impair recovery and adaptation to training and/or subsequent performance.
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Introduction

The focus of the early post-exercise period (i.e., 1–8 h) is to

enhance physiological processes that are critical for reversing the

exercise-induced disturbances to homeostasis and physiological

function and for promoting adaptations to training [1]. Recom-

mended nutritional strategies to maximize recovery in skeletal

muscle include protein for enhancing rates of protein synthesis and

carbohydrate for replenishing glycogen stores [2,3]. Muscle

contraction and the intake of leucine-rich protein sources activate

independent but complimentary signaling responses that converge

at the mechanistic target of rapamycin (mTOR) to stimulate

protein translation enhancing rates of muscle protein synthesis [4–

6]. The ingestion of ,20–25 g of high quality protein soon after

exercise [7], repeated every 4 h [8] has been shown to maximise

the anabolic response in skeletal muscle.

The cultural environment surrounding some sports often

involves the intake of large amounts of alcohol after training and

competition, with athletes in several team sports being particularly

at risk of ‘‘binge drinking’’ practices [9–11]. Indeed, a number of

studies have reported that athletes are more likely than the general

population to drink alcohol to excess, with a large proportion

(,50–65%) consuming intakes above the threshold classified as
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hazardous drinking [12,13]. The outcomes of binge drinking after

exercise are likely to include the direct effect of alcohol on

physiological processes as well as the indirect effect on the athlete’s

recovery due to not eating or resting adequately as a result of

intoxication. Although the concurrent consumption of carbohy-

drate can partially offset the deleterious effects of alcohol intake on

post-exercise glycogen resynthesis [14], the effect of alcohol

consumption on muscle protein synthesis is unknown.

Studies by Barnes and colleagues (2010, 2011) have investigated

the effects of post-exercise alcohol consumption on human muscle

function and performance [15,16]. However, data on the effects of

alcohol intake on skeletal muscle protein synthesis is limited to

work in rodents. These studies show that both acute and chronic

alcohol ingestion can have a detrimental effect on cell signaling

and protein synthesis in skeletal muscle [17–21]. The aim of the

current study was to determine the effect of alcohol intake on

anabolic cell signaling and rates of myofibrillar protein synthesis

(MPS) in humans during recovery from a bout of strenuous

exercise approximating stresses an athlete may experience in

training and performance for various team sports such as various

football and rugby codes, and court sports. We hypothesized that

compared to post-exercise protein intake, co-ingestion of alcohol

would down-regulate translation initiation signaling and decrease

rates of MPS.

Methods

Subjects
Eight healthy physically active male subjects (age 21.464.8 yr,

body mass (BM) 79.3611.9 kg, peak oxygen uptake (VO2peak)

48.164.8 mL?kg21?min21, leg extension one repetition maximum

(1RM) 104620 kg; values are mean 6 SD) who had been

participating in regular exercise (3 times wk21 for .6 months)

volunteered for this study. The experimental procedures and

possible risks associated with the study were explained to each

subject, who each gave written informed consent before partici-

pation.

Ethics statement
All subjects were informed of the purpose of the study, the

experimental procedures involved and all the potential risks

involved before giving written consent. No minors were involved

in this study as subjects were required to be 18 years of age at the

time of participation due to the legal age for alcohol consumption

in Australia. All subjects were deemed healthy based on their

response to a routine medical screening questionnaire. The study

was approved by the Human Research Ethics Committee of

RMIT University (43/11) and was carried out according to the

NHMRC National Statement on Ethical Conduct in Human

Research (2007) and the Australian Code for the Responsible

Conduct of Research (2007).

Study Design
The study employed a randomized counter-balanced, cross-

over design in which each subject completed bouts of consecutive

resistance, continuous and intermittent high-intensity exercise with

either post-exercise ingestion of alcohol-carbohydrate (ALC-

CHO), alcohol-protein (ALC-PRO) or protein only (PRO)

beverages on three separate occasions. Each experimental trial

was separated by a two week recovery period, during which time

subjects maintained their habitual physical activity pattern. Given

the data showing little/no effect of carbohydrate ingestion on

myofibrillar protein synthesis, the ALC-CHO treatment was used

as an iso-energetic control. The decision not to use parallel groups

was based on a within subject crossover design adding strength to

the interpretation and conclusions of the study but limited the total

number of treatments such that an exercise only trial was not

undertaken. Finally, we based our exercise protocol incorporating

the different metabolic stresses approximating those experienced

in team sports due to published reports of the increased incidence

of excessive alcohol consumption following performance in team/

group sport [13].

Preliminary Testing
VO2peak. VO2peak and peak power output (PPO) were

determined during an incremental test to volitional fatigue on a

Lode cycle ergometer (Groningen, The Netherlands). The

protocol has been described in detail previously [22].
Maximal strength. Quadriceps strength was determined on

a plate-loaded leg extension machine until the 1RM load was

established. Repetitions were separated by a 3-min recovery and

were used to establish the maximum load/weight that could be

moved through the full range of motion once, but not a second

time.

Diet/exercise control
For the 48 h prior to an experimental trial subjects were

instructed to refrain from strenuous exercise/training. Subjects

were provided pre-packaged food and drinks (,6000 kJ; 3.1 g

CHO?kg21 BM, 0.5 g fat?kg21 BM, 0.4 g protein?kg21 BM) to be

consumed for the last meal prior to an experiment. A food diary to

record dietary intake was used to ensure adherence to the final

meal and overall daily intake for the 24 h prior to an experiment

day.

Experimental Procedure
The study employed a randomized cross-over design in which

each subject completed three experimental trials. Each trial was

separated by 14 d, during which subjects maintained their

habitual level of physical activity and their normal diet. The three

trials compared post-exercise protein synthesis with three different

treatments: a post-exercise feeding regimen providing protein

intake for optimal muscle protein synthesis [8] (2 feedings of 25 g

high quality protein at 0 and 4 h of recovery: PRO), a trial in

which the subjects consumed 1.5 g?kg21 BM ethanol plus an

energy match for recommended protein feedings in the form of

carbohydrate (ALC-CHO), and ALC-PRO in which the same

amount of alcohol was consumed in addition to protein intake in

PRO also ingested at 0 and 4 h post-exercise (see Figure 1). All

trials involved a further standardised carbohydrate-rich meal

(1.5 g CHO?kg21 BM) at 2 h post-exercise as post-event fuelling/

eating.

On the morning of an experimental trial, subjects reported to

the laboratory after a ,10-h overnight fast. After resting in a

supine position for ,15 min, catheters were inserted into the

antecubital vein of each arm and a baseline blood sample (,4 mL)

was taken from one arm. A primed constant intravenous infusion

(prime: 2 mmol?kg21; infusion 0.05 mmol?kg21 min21) of L-

[ring-13C6] phenylalanine (Cambridge Isotopes Laboratories,

Woburn, MA, USA) was then administered to the contralateral

arm for the duration of the experiment. Under local anaesthesia

(1% Xylocaine) a resting biopsy from the vastus lateralis of one leg

was obtained 3 h after commencement of the tracer infusion using

a 5-mm Bergstrom needle modified with suction, during the first

trial only. This procedure was undertaken once during subjects

first experimental trial to obtain resting fractional synthetic rates

using the previously validated single biopsy method [23]. During

subsequent trials tracer infusion commenced 1 h prior to the
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exercise protocol. The exercise bout incorporated the concurrent

stimuli of resistance, continuous and intermittent high-intensity

exercise to represent the key features of team sport activities. The

specific protocol involved a standardized warm-up (5 repetitions at

50% and 5 repetitions at 60% 1RM) on a leg extension machine

before the resistance exercise protocol was commenced. Resistance

exercise consisted of eight sets of five repetitions at ,80% of 1RM.

Each set was separated by a 3-min recovery period during which

the subject remained seated. After completion of the final set,

subjects rested for 5 min before commencing 30 min of contin-

uous cycling at ,63% PPO (,70% VO2peak). Upon completion,

subjects rested on the bike for 2 min before undertaking 10630 s

high intensity intervals at ,110% of PPO, with 30 s active

recovery (,50% PPO) between each work bout.

Immediately following exercise and after 4 h recovery, subjects

ingested a 500 mL solution of either protein (PRO, 25 g whey

protein powder; ISO8, Musashi, Melbourne, VIC Australia) or an

energy-match in the form of CHO (25 g maltodextrin, Interna-

tional Health Investments, Helensvale, QLD Australia). Further-

more, a CHO-based meal (1.5 g?kg21 BM) was consumed ,2 h

post-exercise, immediately after the muscle biopsy, according to

recommendations for post-exercise glycogen recovery [24].

Protein beverages included L-(ring-13C6] phenylalanine at 4% to

prevent marked disturbance in isotopic enrichment and to

maintain steady state enrichment. Blood (,4 mL) was collected

immediately post-exercise and at regular intervals (30–60 min)

throughout an 8 h recovery period, with additional muscle

biopsies from separate incisions taken at 2 and 8 h post-exercise.

Samples were stored at 280uC until analysis. The 8 h time frame

represents an important phase of post-exercise recovery [1] as well

as the period during which blood alcohol concentrations are likely

to be elevated by a post-event drinking binge [14]. The alcohol

dose in the present study represented the mean intake of alcohol

reported by team athletes during a drinking binge [9,10] and an

amount previously investigated in relation to post-exercise

refuelling [14]. The alcohol ingestion protocol (1.5 g?kg21 BM;

1262 standard drinks) began 1 h post-exercise and was consumed

in 6 equal volumes of 1 part vodka (,60 mL) to four parts orange

juice (,240 mL, 1.8 g CHO?kg21 BM) during a 3 h period. For

the PRO condition, orange juice was consumed with a matched

volume of water in place of the alcohol. Subjects ingested the

beverages within 5 min every 30 min.

Analytical Procedures
Blood glucose and plasma ethanol

concentrations. Whole blood samples (,25 mL) were immedi-

ately analysed for glucose concentrations using an automated

analyser (YSI 2300, Yellow Springs, OH, USA). Blood samples

were then centrifuged at 3,000 g at 4uC for 10 min, with aliquots

of plasma frozen and stored at 280uC. On a separate occasion,

plasma samples (,25 mL) were thawed and analysed for ethanol

concentration using an automated analyser (YSI 2900, Yellow

Springs, OH, USA).

Plasma amino acids and enrichment. Plasma amino acid

concentrations and enrichments were analyzed by gas chroma-

tography-isotope ratio mass spectrometry (MAT252; Finnigan,

Breman, Germany) using EZ:faast kit (Phenomenex, CA, USA).

Rates of Myofibrillar Protein Synthesis. A single pre-

infusion plasma sample, extracted by acetonitrile, was utilized as

the baseline enrichment in tracer naı̈ve subjects [23]. For the one

non-tracer naı̈ve subject a pre-infusion muscle biopsy was used for

baseline enrichment. Muscle tissue was processed as previously

described [7].

Calculations. The fractional synthetic rate (FSR) of myofi-

brillar protein synthesis was calculated using the standard

precursor–product method:

FSR(%:h{1)~½(E2b{E1b)=(EIC|t)�|100

Where E2b - E1b represents the change in the bound protein

enrichment between two biopsy samples; EIC is the average

enrichment of intracellular phenylalanine between the two biopsy

samples; and t is the time between two sequential biopsies. The

inclusion of ‘tracer-naive’ subjects permitted use of the pre-

infusion blood sample (i.e. single biopsy method) as the baseline

enrichment (E1b) for the calculation of resting MPS.

Western Blots. Intracellular signaling proteins were extract-

ed, isolated and quantified as previously described [25]. The

amount of protein loaded in each well was 50 mg. Polyclonal anti-

phospho mechanistic target of rapamycin (mTOR) Ser2448

(no. 2971), elongation factor 2 (eEF2) Thr56 (no. 2331), 4E-BP1

Thr37/46 (no. 2855), monoclonal anti- 59 adenosine monophos-

phate-activated protein kinase (AMPK) a Thr172 (no. 2535) and

p70S6K Thr389 (no. 9234) were from Cell Signalling Technology

(Danvers, USA). Data represent the volume and intensity

quantified via densitometry and phosphorylation data and are

expressed relative to a-tubulin reference protein expression at the

equivalent time point on the same membrane (no. 3873, Cell

Signalling Technology, Danvers, USA) in arbitrary units. All

samples for each subject were run on the same gel.

Real Time PCR. Skeletal muscle (,20 mg) tissue RNA

extraction, reverse transcription and real-time polymerase chain

reaction (RT-PCR) was performed as previously described [25].

TaqMan-FAM labeled primer/probes (Applied Biosystems, Carls-

bad, CA, USA) for muscle ring finger 1 (MuRF-1) (Cat

Figure 1. Schematic representation of the experimental trial. Subjects reported to the laboratory after an overnight fast where a constant
infusion of L-[ring-13C6] phenylalanine was commenced (3 h in first trial; 1 h in trial 2/3), and subjects completed the concurrent exercise (865
repetitions at 80% one repetition maximum (1RM), 5 min rest, 30 min cycling at ,63% peak power output (PPO), 2 min rest, 10630 s high intensity
intervals at ,110% PPO). Immediately after exercise completion, and 4 h later, subjects consumed 500-mL of protein (25 g whey) or carbohydrate
(25 g maltodextrin).
doi:10.1371/journal.pone.0088384.g001
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No. Hs00261590) and Atrogin (Cat No. Hs01041408) were used

in a final reaction volume of 20 mL. Glyceraldehyde- 3-phosphate

dehydrogenase (GAPDH, HS9999- 9905_m1) was used as the

housekeeping gene. The relative amounts of mRNAs were

calculated using the relative quantification (DDCT) method [26].

Statistical Analysis
Blood, cell signaling and mRNA data were analyzed by two-

way ANOVA (two factor: time 6 treatment) with repeated

measures and myofibrillar protein synthesis was analyzed by one-

way ANOVA with repeated measures. All data underwent

Student-Newman-Keuls post hoc analysis when P,0.05 (Sigma-

Plot for Windows; Version 12.5). All data are expressed as mean 6

SD and the level of statistical significance was set at P,0.05.

Results

Blood Alcohol and Glucose Concentration
There were main effects for time and treatment for blood

alcohol concentration (P,0.05; Figure 2). Blood alcohol concen-

tration peaked 4 h post-exercise (ALC-CHO 0.0596

0.017 g?100 mL21; ALC-PRO 0.05660.019 g?100 mL21) and

remained elevated above rest throughout the 8 h recovery period

(ALC-CHO: 0.023–0.059 g?100 mL21; ALC-PRO: 0.029–

0.056 g?100 mL21; P,0.05). Blood alcohol concentration was

higher (P,0.05) with ALC-CHO compared with ALC-PRO at

6 h (ALC-CHO: 0.055 g?100 mL21; ALC-PRO: 0.047 g?

100 mL21) and 8 h (ALC-CHO: 0.043 g?100 mL21; ALC-

PRO: 0.033 g?100 mL21) post-exercise. Blood glucose concentra-

tion increased above all time-points at 0.5 h (,17–41%) and 4.5 h

(,16–40%) in the ALC-CHO treatment (P,0.05; Figure 3) but

was not different from resting in ALC-PRO and PRO treatments.

The blood glucose concentration measured in the ALC-CHO

treatment was also different from ALC-PRO (,27–41%) and

PRO (,26–42%) at 0.5, 1, 4.5 and 5 h post-exercise (P,0.05).

Plasma Amino Acids Concentration
There were main effects for time and treatment for plasma

EAA, BCAA and leucine concentrations (P,0.05; Figure 4).

Protein intake increased AA concentration at 1 h post-exercise:

AA concentrations for ALC-PRO (EAA ,109%, BCAA ,118%,

leucine ,203%) and PRO (EAA ,151%; BCAA ,170%; leucine

,274%) treatments were different to all other time-points within

treatments (P,0.05). Post-exercise concentrations of EAA and

leucine with PRO were elevated above resting values at 1 h

(,39%), 2 h (,98%) and 6 h (,61%) time-points, respectively

(P,0.05). Leucine concentration remained above resting values

2 h (,90%) and 6 h (,102%) post-exercise, and EAA and BCAA

were also higher than rest after 6 h recovery (EAA ,77%; BCAA

,38%) in the ALC-PRO treatment (P,0.05). Compared to ALC-

CHO treatments, AA concentration were higher for ALC-PRO

and PRO at 1 h (ALC-PRO: ,115–305%, PRO: ,163–394%),

2 h (,56–168%, ,83–179%) and 6 h (,81–253%, ,75–181%)

post-exercise time-points (P,0.05). There were no changes in AA

concentration in the ALC-CHO treatment.

Intracellular and Plasma Tracer Enrichments
Phenylalanine enrichments showed a stable precursor pool

throughout the infusion period in all groups (Figure S1). Linear

regression analysis indicated that the intracellular (mean r2 = 0.08)

and plasma (mean r2 = 0.03) enrichments in ALC-CHO, ALC-

PRO and PRO treatments demonstrated isotopic plateau.

Cell Signaling
mTOR-p70S6K. There were main effects for time and

treatment for mTORSer2448 phosphorylation (P,0.05,

Figure 5A). mTOR phosphorylation increased above rest at 2 h

(P,0.05) for all treatments (ALC-CHO: ,125%, ALC-PRO:

,157%, PRO: ,297%) and at 8 h (P,0.05) for ALC-CHO

(,111%) and ALC-PRO (,127%). mTOR phosphorylation with

PRO was higher (P,0.05) than ALC-CHO (,76%) and ALC-

PRO (,54%) at 2 and 8 h post-exercise, and PRO at 8 h post-

exercise (,168%).

There were main effects for time and treatment for

p70S6KThr389 phosphorylation (P,0.05, Figure 5B). p70S6K

phosphorylation was greater at 2 h (P,0.05) compared to rest and

8 h post–exercise in ALC-PRO (,418–585%) and PRO only

(,438–468%). p70S6K phosphorylation was also higher at 2 h

Figure 2. Blood alcohol levels after alcohol intake during
recovery following a single bout of concurrent training. Data
were analysed using a 2-way ANOVA with repeated measures and
Student-Newman-Keuls post hoc analysis. Values are mean 6 SD.
Significant effect of treatment (P = 0.02), time (P,0.01) with no
interaction (P = 0.20). Significantly different (P,0.05) vs. (a) rest, and
(*) between treatments (ALC-CHO vs. ALC-PRO).
doi:10.1371/journal.pone.0088384.g002

Figure 3. Blood glucose concentrations before and duringre-
covery following a single bout of concurrent training. Drink =
25 g of whey protein (PRO and ALC-PRO) or 25 g maltodextrin (ALC-
CHO); Meal = 1.5 g?kg21 BM. Data were analysed using a 2-way ANOVA
with repeated measures and Student-Newman-Keuls post hoc analysis.
Values are mean 6 SD. Significant effect of treatment, time and
interaction (all P,0.01). Significantly different (P,0.05) (d) from 1 h
within treatment, (j) from 5 h within treatment, ($) between treatments
(ALC-CHO vs. ALC-PRO, PRO). ({) between treatments (ALC-CHO vs.
PRO), (`) between treatments (ALC-CHO vs. ALC-PRO).
doi:10.1371/journal.pone.0088384.g003
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post-exercise in PRO (,276%) and ALC-PRO (,242%) treat-

ments compared to ALC-CHO treatment (P,0.05).

eEF2-4E-BP1-AMPK. There were decreases in eEF2 phos-

phorylation (Figure 5C) below rest at 2 h and 8 h post-exercise in

ALC-CHO (,66–74%; P,0.05) and ALC-PRO (,61–67%; P,

0.05). No changes in 4E-BP1Thr37/46 (Figure 5D) or AMPKThr172

phosphorylation [data not shown] were observed across treat-

ments or times.

Atrogene mRNA expression
There were increases above rest in MuRF-1 mRNA (Figure 6A,

P,0.05) at 2 h for all treatments (ALC-CHO: ,404%; ALC-

PRO: ,399%; PRO: ,474%). However, there were no

differences between treatments, and MuRF1 mRNA returned to

resting levels under all conditions after 8 h (P,0.05). There was a

main effect for time for atrogin-1 abundance (P,0.05, Figure 6B).

Atrogin-1 mRNA expression at 8 h decreased below rest (,37–

52%; P,0.05) and 2 h (,46–61%; P,0.05) with all treatments.

Rates of muscle protein synthesis
Rates of myofibrillar FSR were increased above rest

(0.02560.002%?h21) with ALC-CHO (0.03260.005%?h21,

,29%), ALC-PRO (0.03960.008% h21, ,57%) and PRO

(0.05260.008%?h21, ,109%) treatments throughout 2–8 h of

recovery (P,0.05; Figure 7). However, compared to PRO alone,

there was a hierarchical reduction in myofibrillar FSR with ALC-

PRO (24%, P,0.05) and ALC-CHO (37%, P,0.05). ALC-CHO

resulted in a lower FSR compared to ALC-PRO (,18%, P,0.05).

Discussion

The first novel finding of this study was that mTOR signaling

and rates of myofibrillar protein synthesis (MPS) following

concurrent resistance, continuous and intermittent high-intensity

exercise, designed to mimic the metabolic profile of many team

sports, were impaired during the early (8 h) recovery phase by the

ingestion of large amounts (1.5 gNkg21 BM) of alcohol. These

outcomes were most evident (37% reduction in rates of MPS)

when alcohol was consumed in the absence of post-exercise

protein intake, as is likely to occur when intoxication reduces the

athlete’s compliance to sound recovery practices. However, a

second finding was that even when protein was consumed in

amounts shown to be optimally effective to stimulate MPS [8]

during post-exercise recovery, the intake of alcohol reduced MPS

by ,24%, representing only a partial ‘rescue’ of the anabolic

response compared with protein alone.

The alcohol consumption protocol used in the current study,

representing the mean intake of alcohol that has been self-reported

in several studies of binge drinking practices of team athletes

[9,10], elicited blood alcohol concentrations that exceeded the

0.05 g?100 mL21 legal limit for driving in Australia (Figure 1).

Although peak post-exercise blood alcohol values were lower than

we have previously reported [14], such differences can, in part, be

explained by different alcohol ingestion protocols and feeding

regimens. The subtle differences in blood alcohol concentration

were likely a result of the different macronutrient composition

consumed and the aminoacidemia in PRO and ALC-PRO was

similar and significantly different to that seen with the carbohy-

drate treatment (Figure 4).

Despite alcohol having little effect on blood amino acid profiles,

myofibrillar FSR was significantly different between treatments

(Figure 7). The maximal FSR was measured when protein was the

only nutrient ingested, and is similar to other studies incorporating

resistance-type exercise with protein feeding [25,27]. However,

this study is the first to have measured FSR after consecutive bouts

of resistance, continuous and high-intensity exercise when alcohol

was consumed during recovery. While several studies examining

the effects of alcohol intake have been undertaken in rodents, the

relative quantity of alcohol administered in these investigations is

several fold higher than in the current human study [18,21,28–

30]. Furthermore, there are differences in techniques used to

measure rates of protein synthesis in animals versus humans.

Notwithstanding these differences, Lang et al. [28] reported a 25%

decrease in rates of muscle protein synthesis with alcohol

administration in rodents, a value in close agreement with the

current study. Our results show alcohol ingestion in humans

suppresses the elevated rates of protein synthesis in skeletal muscle

induced by exercise and protein ingestion.

Figure 4. Plasma EAA (A), BCAA (B), leucine (C) concentration
following a single bout of concurrent training. EAA – essential
amino acids; BCAA – branched-chain amino acids. Data were analysed
using a 2-way ANOVA with repeated measures and Student-Newman-
Keuls post hoc analysis. Values are mean 6 SD. Significant effect of
treatment, time and interaction (all P,0.01) for (A), (B), and (C).
Significantly different (P,0.05) vs. (#) all timepoints for ALC-CHO and
ALC-PRO treatments, (*) vs. rest within treatments, and ($) compared to
ALC-CHO.
doi:10.1371/journal.pone.0088384.g004
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The mechanistic target of rapamycin complex 1 (mTORC1) is a

central node for integrating nutrient (i.e. amino acid) and exercise/

contraction signal transduction [31,32]. Post-exercise phosphory-

lation of mTORSer2448 was attenuated when alcohol was co-

ingested with either carbohydrate or protein compared to protein

ingestion alone. Interestingly, there was discordance in phosphor-

ylation responses between mTOR and its downstream signaling

targets (p70S6K and 4E-BP1). The mechanism through which

alcohol may attenuate mTOR complex 1 activity is still poorly

defined. Recent evidence has implicated several upstream

regulatory mechanisms of mTOR signaling including the Rag

family of GTPases [33,34], phosphatidic acid [35] and the DNA

damage response 2 (REDD2) protein [36]. The inhibitory effects

of alcohol on mTOR phosphorylation in skeletal muscle have

been attributed to increases in the mRNA/protein content of the

negative mTOR regulator REDD1 with acute intoxication and

that alcohol may also generate greater association of mTOR with

raptor to down regulate mRNA translation [20,37]. Thus it is

plausible that several mechanisms may act synergistically upstream

of mTOR in response to alcohol ingestion to modulate mTOR

activity. Nevertheless, our findings indicate that the observed

alcohol-induced attenuation of MPS was likely mediated, at least

in part, by effects on mTORC1-mediated signaling.

p70S6K enhances translation of mRNAs encoding ribosomal

proteins and elongation factors [38] and has been proposed as a

‘surrogate’ marker associated with rates of muscle protein synthesis

[39–42]. Lang and co-workers have previously shown reduced

p70S6K signaling following alcohol ingestion in rat skeletal muscle

[18,29]. We present new information in human skeletal muscle to

demonstrate the exercise and nutrient-induced increase in

Figure 5. mTORSer2448 (A), p70S6KThr389 (B), eEF2Thr56 (C), 4E-BP1Thr37/46 (D) phosphorylation at rest and following a single bout of
concurrent training. Images are representative blots for each protein from the same subject and values are expressed relative to a-tubulin and
presented in arbitary units. Data were analysed using a 2-way ANOVA with repeated measures with Student-Newman-Keuls post hoc analysis. Values
are mean 6 SD. Significant effect of time (P,0.01) and interaction (P = 0.02) but not treatment (P = 0.22) for (A); time (P,0.01) and interaction
(P = 0.02) but not treatment (P = 0.46) for (B); time (P,0.01) but not treatment (P = 0.14) or interaction (P = 0.56) for (C); no treatment (P = 0.86), time
(P = 0.24), or interaction (P = 0.77) effects for (D). Significantly different (P,0.05) vs. (a) rest, (e) ACL-PRO 8 h, (f) PRO 2 h, (g) PRO 8 h, and (*) 2 h
between treatments.
doi:10.1371/journal.pone.0088384.g005
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p70S6K phosphorylation is significantly reduced with alcohol

ingestion in the absence of the co-ingestion of protein. The

discordant mTOR-p70S6K phosphorylation with protein only

and protein feedings with alcohol is not unprecedented given we

[8] and others [43] have shown that mTOR-S6K phosphorylation

often parallels changes in MPS but does not always reflect either

the magnitude or duration of the increased MPS signal in humans.

An alternate mechanism through which alcohol may limit rates of

protein synthesis is endoplasmic reticulum stress and the resultant

unfolded protein response. Alcohol consumption generates oxida-

tive stress and inflammation and the potential to disrupt

endoplasmic reticulum homeostasis; a consequence of this

response is to limit the rate of protein synthesis [44,45]. The lack

of change in 4E-BP1Thr37/46 phosphorylation following exercise

and between treatments contrasts previous findings in rodents

[18,20,28]. However, these differences may, in part, be explained

by the 2.3 fold greater relative alcohol administration in rodents

versus humans. Finally, it must be acknowledged that our data are

potentially limited by providing only a single ‘snapshot’ during

recovery and the possibility exists that our muscle biopsy time-

points failed to coincide with peak phosphorylation responses of

signal transduction. To the best of our knowledge, this is the first

Figure 6. MuRF-1 (A), Atrogin-1 (B) mRNA abundance at rest and following a single bout of concurrent training. Values are expressed
relative to GAPDH and presented in arbitrary units (mean 6 SD, n = 7). Data were analysed using a 2-way repeated measures ANOVA with Student-
Newman-Keuls post hoc analysis. Significantly different (P,0.05) vs. (a) rest, (c,e,g) 8 h within treatments, and (b,d,f) 2 h within treatments.
doi:10.1371/journal.pone.0088384.g006
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study to investigate the effect of alcohol ingestion following

concurrent resistance, continuous and intermittent high-intensity

exercise in human skeletal and further studies are needed to better

understand the precise mechanisms through which alcohol

attenuates human skeletal muscle protein synthesis.

In contrast with the changes in cell signaling, muscle mRNA

responses of selected genes associated with muscle proteolysis and

catabolism were largely unchanged between treatments. MuRF-1

mRNA expression was elevated 2 h following exercise but had

returned to basal levels, by 8 h in all treatments. Whereas, atrogin-

1 mRNA expression did not change 2 h following exercise and was

significantly lower than rest and 2 h post-exercise at 8 h post-

exercise in all treatments. These results contrast findings by Vary

and colleagues [30] who found alcohol ingestion to increase

MuRF-1 and Atrogin-1 mRNA abundance in rat skeletal muscle.

Our data shows protein co-ingested with alcohol following exercise

induces comparable increases in atrogene mRNA expression

compared to protein ingestion alone in human skeletal muscle.

These increases are in agreement with previous findings demon-

strating increased atrogene mRNA expression following resistance

exercise [46,47]. Although we did not determine rates of muscle

protein breakdown, this process is up-regulated in mixed muscle

for up to 24 h after resistance exercise in the fasted state [48]. As

muscle damaging exercise has previously been reported to

decrease GLUT4 translocation and subsequent rates of muscle

glycogen resynthesis [49], the possibility that it also may impart a

negative effect on protein transporters and rates of protein

synthesis cannot be discounted. However, the atrogene results of

the current study indicate alcohol ingestion does not exert any

additional effects on ubiquitin ligase expression after exercise in

human skeletal muscle. Future studies investigating the time course

of atrogene expression and direct measures of skeletal muscle

proteasome activity and/or protein breakdown following alcohol

ingestion in humans are warranted.

In conclusion, the current data provide the novel observation

that alcohol impairs the response of MPS in exercise recovery in

human skeletal muscle despite optimal nutrient provision. The

quantity of alcohol consumed in the current study was based on

amounts reported during binge drinking by athletes. However,

published reports suggest intakes of some individuals can be

significantly greater [9,50], which is of concern for many reasons

related to health and safety [13]. Regrettably, there has been

difficulty in finding an educational message with alcohol

consumption related to sports performance that has resonance

with athletes. Given the need to promote protein synthesis that

underpins adaptation, repair and regeneration of skeletal muscle

the results of the current study provide clear evidence of impaired

recovery when alcohol is consumed after concurrent (resistance,

continuous and intermittent high-intensity) exercise even in the

presence of optimal nutritional conditions. We propose our data is

of paramount interest to athletes and coaches. Our findings

provide an evidence-base for a message of moderation in alcohol

intake to promote recovery after exercise with the potential to alter

current sports culture and athlete practices.

Supporting Information

Figure S1 Tracer enrichment of the muscle intra-
cellular protein pool (A) and blood plasma (B) following
a single bout of concurrent training.

(TIF)

Acknowledgments

The authors wish to thank Mr. Stephen Lane, Mr. Joshua Whittaker, Mr.

Jong-Sam Lee, Mr. William Manly, and Ms. Eliza Leverett for assistance

with experimental trials; Ms. Tracey Rerecich and Mr. Todd Prior for

their technical expertise; and the subjects for their time and effort.

Author Contributions

Conceived and designed the experiments: EBP LMB SMP JAH VGC.

Performed the experiments: EBP DMC JLA VGC. Analyzed the data:

EBP DMC JLA SMP JAH VGC. Contributed reagents/materials/analysis

tools: LMB SMP JAH VGC. Wrote the paper: EBP DMC JLA LMB SMP

JAH VGC.

References

1. Hawley JA, Burke LM, Phillips SM, Spriet LL (2011) Nutritional modulation of

training-induced skeletal muscle adaptations. J Appl Physiol 110: 834–845.

2. Phillips SM (2006) Dietary protein for athletes: from requirements to metabolic
advantage. Appl Physiol Nutr Metab 31: 647–654.

3. Stellingwerff T, Maughan RJ, Burke LM (2011) Nutrition for power sports:

middle-distance running, track cycling, rowing, canoeing/kayaking, and
swimming. J Sports Sci 29: S79–S89.

4. Coffey VG, Jemiolo B, Edge J, Garnham AP, Trappe SW, et al. (2009) Effect of
consecutive repeated sprint and resistance exercise bouts on acute adaptive

responses in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol

297: R1441–1451.

5. Coffey VG, Moore DR, Burd NA, Rerecich T, Stellingwerff T, et al. (2011)

Nutrient provision increases signalling and protein synthesis in human skeletal

muscle after repeated sprints. Eur J Appl Physiol 111: 1473–1483.

6. Koopman R, Saris W, Wagenmakers A, van Loon L (2007) Nutritional

interventions to promote post-exercise muscle protein synthesis. Sports Med 37:

895–906.

7. Moore DR, Tang JE, Burd NA, Rerecich T, Tarnopolsky MA, et al. (2009)

Differential stimulation of myofibrillar and sarcoplasmic protein synthesis with

protein ingestion at rest and after resistance exercise. J Physiol 587: 897–904.

8. Areta JL, Burke LM, Ross ML, Camera DM, West DW, et al. (2013) Timing

and distribution of protein ingestion during prolonged recovery from resistance

exercise alters myofibrillar protein synthesis. J Physiol 591: 2319–2331.

9. Burke L, Read R (1988) A study of dietary patterns of elite Australian football

players. Can J Sport Sci 13: 15–19.

10. O’Brien CP (1993) Alcohol and Sport: Impact of social drinking on recreational

and competitive sports performance. Sports Med 15: 71–77.

11. Watten R (1995) Sports, physical exercise and use of alcohol. Scand J Med Sci

Sports 5: 364–368.

12. Martens MP, Dams-O’Connor K, Beck NC (2006) A systematic review of

college student-athlete drinking: Prevalence rates, sport-related factors, and

interventions. J Subst Abuse Treat 31: 305–316.

Figure 7. Myofibrillar fractional synthetic rate (FSR) through-
out 2–8 h recovery following a single bout of concurrent
training. Data were analysed using a 1-way repeated measures ANOVA
with Student-Newman-Keuls post hoc analysis. Values are mean 6 SD
expressed as % h21, n = 8. Significantly different (P,0.05) vs. (a) rest, (b)
ALC-CHO, (c) ALC-PRO.
doi:10.1371/journal.pone.0088384.g007

Alcohol Impairs Muscle Recovery from Exercise

PLOS ONE | www.plosone.org 8 February 2014 | Volume 9 | Issue 2 | e88384



13. O’Brien KS, Ali A, Cotter JD, O’Shea RP, Stannard S (2007) Hazardous

drinking in New Zealand sportspeople: level of sporting participation and

drinking motives. Alcohol Alcohol 42: 376–382.

14. Burke LM, Collier GR, Broad EM, Davis PG, Martin DT, et al. (2003) Effect of

alcohol intake on muscle glycogen storage after prolonged exercise. J Appl

Physiol 95: 983–990.

15. Barnes MJ, Mündel T, Stannard SR (2010) Post-exercise alcohol ingestion

exacerbates eccentric-exercise induced losses in performance. Eur J Appl Physiol

108: 1009–1014.

16. Barnes MJ, Mündel T, Stannard SR (2011) A low dose of alcohol does not

impact skeletal muscle performance after exercise-induced muscle damage.

Eur J Appl Physiol 111: 725–729.

17. Kumar V, Frost RA, Lang CH (2002) Alcohol impairs insulin and IGF-I

stimulation of S6K1 but not 4E-BP1 in skeletal muscle. Am J Physiol Endocrinol

Metab 283: E917–E928.

18. Lang CH, Frost RA, Deshpande N, Kumar V, Vary TC, et al. (2003) Alcohol

impairs leucine-mediated phosphorylation of 4E-BP1, S6K1, eIF4G, and

mTOR in skeletal muscle. Am J Physiol Endocrinol Metab 285: E1205–E1215.

19. Lang CH, Frost RA, Svanberg E, Vary TC (2004) IGF-I/IGFBP-3 ameliorates

alterations in protein synthesis, eIF4E availability, and myostatin in alcohol-fed

rats. Am J Physiol Endocrinol Metab 286: E916–E926.

20. Lang CH, Frost RA, Vary TC (2008) Acute alcohol intoxication increases

REDD1 in skeletal muscle. Alcohol Clin Exp Res 32: 796–805.

21. Lang CH, Wu D, Frost RA, Jefferson LS, Kimball SR, et al. (1999) Inhibition of

muscle protein synthesis by alcohol is associated with modulation of eIF2B and
eIF4E. Am J Physiol Endocrinol Metab 277: E268–E276.

22. Hawley JA, Noakes TD (1992) Peak power output predicts maximal oxygen

uptake and performance time in trained cyclists. Eur J Appl Physiol Occup

Physiol 65: 79–83.

23. Burd NA, Groen BB, Beelen M, Senden JM, Gijsen AP, et al. (2012) The

reliability of using the single-biopsy approach to assess basal muscle protein

synthesis rates in vivo in humans. Metabolism 61: 931–936.

24. Burke LM, Hawley JA, Wong SH, Jeukendrup AE (2011) Carbohydrates for

training and competition. J Sports Sci 29: S17–S27.

25. Camera D, West D, Burd N, Phillips S, Garnham A, et al. (2012) Low muscle

glycogen concentration does not suppress the anabolic response to resistance

exercise. J Appl Physiol 113: 206–214.

26. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using

real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:

402–408.

27. West D, Burd N, Coffey V, Baker S, Burke L, et al. (2011) Rapid aminoacidemia

enhances myofibrillar protein synthesis and anabolic intramuscular signaling

responses after resistance exercise. Am J Clin Nutr 94: 795–803.

28. Lang CH, Frost RA, Kumar V, Wu D, Vary TC (2000) Impaired protein

synthesis induced by acute alcohol intoxication is associated with changes in

eIF4E in muscle and eIF2B in liver. Alcohol Clin Exp Res 24: 322–331.

29. Lang CH, Pruznak AM, Deshpande N, Palopoli MM, Frost RA, et al. (2004)

Alcohol intoxication impairs phosphorylation of S6K1 and S6 in skeletal muscle

independently of ethanol metabolism. Alcohol Clin Exp Res 28: 1758–1767.

30. Vary TC, Frost RA, Lang CH (2008) Acute alcohol intoxication increases

atrogin-1 and MuRF1 mRNA without increasing proteolysis in skeletal muscle.

Am J Physiol Regul Integr Comp Physiol 294: R1777–R1789.

31. Dreyer HC, Drummond MJ, Pennings B, Fujita S, Glynn EL, et al. (2008)

Leucine-enriched essential amino acid and carbohydrate ingestion following

resistance exercise enhances mTOR signaling and protein synthesis in human

muscle. Am J Physiol Endocrinol Metab 294: E392–E400.

32. Zoncu R, Bar-Peled L, Efeyan A, Wang S, Sancak Y, et al. (2011) mTORC1

senses lysosomal amino acids through an inside-out mechanism that requires the
vacuolar H+-ATPase. Science 334: 678–683.

33. Kim E, Goraksha-Hicks P, Li L, Neufeld TP, Guan KL (2008) Regulation of

TORC1 by Rag GTPases in nutrient response. Nature cell biology 10: 935–945.
34. Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, et al. (2008)

The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1.
Science 320: 1496–1501.

35. O’Neil TK, Duffy LR, Frey JW, Hornberger TA (2009) The role of

phosphoinositide 3-kinase and phosphatidic acid in the regulation of
mammalian target of rapamycin following eccentric contractions. J Physiol

587: 3691–3701.
36. Miyazaki M, Esser KA (2009) REDD2 is enriched in skeletal muscle and inhibits

mTOR signaling in response to leucine and stretch. Am J Physiol Cell Physiol
296: C583–C592.

37. Lang CH, Pruznak AM, Nystrom GJ, Vary TC (2009) Alcohol-induced decrease

in muscle protein synthesis associated with increased binding of mTOR and
raptor: Comparable effects in young and mature rats. Nutr Metab (Lond) 6: 4.

38. Wang X, Beugnet A, Murakami M, Yamanaka S, Proud CG (2005) Distinct
signaling events downstream of mTOR cooperate to mediate the effects of

amino acids and insulin on initiation factor 4E-binding proteins. Mol Cell Biol

25: 2558–2572.
39. Baar K, Esser K (1999) Phosphorylation of p70S6k correlates with increased

skeletal muscle mass following resistance exercise. Am J Physiol Cell Physiol 276:
C120–C127.

40. Burd NA, Holwerda AM, Selby KC, West DW, Staples AW, et al. (2010)
Resistance exercise volume affects myofibrillar protein synthesis and anabolic

signalling molecule phosphorylation in young men. J Physiol 588: 3119–3130.

41. Fry CS, Drummond MJ, Glynn EL, Dickinson JM, Gundermann DM, et al.
(2011) Aging impairs contraction-induced human skeletal muscle mTORC1

signaling and protein synthesis. Skelet Muscle 1: 11–11.
42. Kumar V, Selby A, Rankin D, Patel R, Atherton P, et al. (2009) Age-related

differences in the dose–response relationship of muscle protein synthesis to

resistance exercise in young and old men. J Physiol 587: 211–217.
43. Atherton PJ, Etheridge T, Watt PW, Wilkinson D, Selby A, et al. (2010) Muscle

full effect after oral protein: time-dependent concordance and discordance
between human muscle protein synthesis and mTORC1 signaling. Am J Clin

Nutr 92: 1080–1088.
44. Deldicque L, Hespel P, Francaux M (2012) Endoplasmic Reticulum Stress in

Skeletal Muscle: Origin and Metabolic Consequences. Exercise and Sport

Sciences Reviews 40: 43–49.
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