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Abstract

We introduce the concept of self-healing in the field of complex networks modelling; in particular, self-healing capabilities
are implemented through distributed communication protocols that exploit redundant links to recover the connectivity of
the system. We then analyze the effect of the level of redundancy on the resilience to multiple failures; in particular, we
measure the fraction of nodes still served for increasing levels of network damages. Finally, we study the effects of
redundancy under different connectivity patterns—from planar grids, to small-world, up to scale-free networks—on healing
performances. Small-world topologies show that introducing some long-range connections in planar grids greatly enhances
the resilience to multiple failures with performances comparable to the case of the most resilient (and least realistic) scale-
free structures. Obvious applications of self-healing are in the important field of infrastructural networks like gas, power,
water, oil distribution systems.
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Introduction

In the field of complex networks [1,2], most studies have been

focused on how to improve the robustness (i.e. the capability of

surviving intentional and/or random failures) of existing net-

works[3]. Much less has been done regarding the resilience (i.e. the

capability of recovering failures). In fact, implementing smart (as

well as economic) strategies aimed at maintaining high level of

performances is a crucial issue yet to be solved and represents one

of the most pressing and interesting scientific challenge. A most

important field of application for the results of such investigations

are infrastructural networks. Infrastructural networks are the

backbone of our society that critically depends on the continuity of

functioning of systems like power, gas or water distribution.

As a standard, infrastructural networks have been designed to

be resilient at least to the loss of a single component; on the other

hand, their constantly growing size of has increased the possibility

of multiple failures which often have not been considered in their

original design. In general, implementing the possibility of

recovering from any sequence of k failures requires an exponentially

growing effort in means and investments; it is therefore viable to

consider implementing systems that are able to recover from k
failures on average: in this paper we will follow such a statistical

approach.

In the field of communication [4–6] and wireless networks [7–

10] self-healing algorithms have recently been the subject of

massive investigation. In general, such strategies aimed at

maintaining network connectivity assume the possibility of

creating anew communications channels among the nodes of the

networks, often with no constraints on the number of new

connections available [11]. This is no the case in infrastructural

networks, where the possibility to create new links among nodes is

normally not available (at least in the short run), since links are

physical (fixed in advance) and creating new ones requires both

time and investments.

In general, self-healing in infrastructural networks should be

though as a constrained mechanism in which only a limited

amount of resources is available. An example of such an approach

can be found in material science where new polymeric compounds

are capable of self healing due to the presence of small amounts of

healing agents that gets released and activated upon cracking

[12,13]. An alternative strategy to ensure the continuity of a

system is to ensure redundancy in the interconnectivity of its

components; for example, when a hole is punched in a leaf, the

remaining vessels are capable to sustain the extra flow necessary to

keep the tissues alive [14].

Infrastructural networks are very well engineered systems

characterised by fluxes of commodities (from electric power to

drinking water). In this paper we consider a simplified description

of such systems in terms of complex networks with a simple

dynamical process describing the flow of a commodity from one or

more sources (production) to several sinks (consumption). We the

introduce a novel healing strategy based on the activation of fixed

redundant resources (backup links) via a generic routing algorithm

and study the resilience of the networks to multiple failures. The

presence of such backup links is customary in technological

networks; hence, our self-healing procedure is within the reach of

current technology. As an example, urban low-voltage distribution

power grids have an almost planar topology and are essentially

radial (tree-like) networks with few inactive backup-links that can

be activated (often manually) to restore power in case of failures.
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Results

Model
In our scenario the system is assumed to describe a network that

distributes some utility following flow conservation analogous to

Kirchoff’s current law; examples of systems following such

constrains are not only power grids, but also the flows of fluids

in distribution networks like water, gas, oil (at least at stationarity).

As a further simplification, we will consider a single node to be the

source of the commodity distributed on the network and we will

not consider any constrain on the amount of flow that can be

transported by any link; hence, connectivity among a sink and a

source in enough to have the sink served. In our scenario, all the

nodes (except the source) are considered to be potential sinks.

Hence, to serve as many nodes as possible, connectivity must be

maximized.

A further assumption is that at each instant of time, the topology

of the network distributing the commodity is a tree (the active tree);

in fact, such a structure meets the infrastructures’ managers needs

– i.e., to measure (for billing purposes) in an easy and precise way

how much of a given quantity is served to any single node of the

network. In networks – like drinking water – where such

assumption is not strictly true, very few loops (i.e. low meshedness)

are present [15].

To model active trees, we start from an underlying network

topology and build up a spanning tree. The set of all possible

redundant links is exactly the set of links in the network not

belonging to the spanning tree. In order to allow for recovery, we

also consider the presence of dormant backup links – i.e., a set of

links that can be switched on – as in the case urban of low-voltage

distribution power grids.

While commodities can be transported only via active links, in

order to implement our self-healing strategy we assume that nodes

are able to communicate by means of a suitable distributed

interaction protocol only with the set of neighbouring nodes, i.e.

the ones connected either via active or via dormant links.

According to our procedure, when either a node or a link failure

occurs, all the nodes that cannot be served – i.e. there is no path to

the source – disconnect from the active tree. Afterwards, unserved

nodes try to reconnect to the active tree by waking up (activating)

through the protocol some of their dormant backup links. Such a

process reconstructs a new active-tree that can restore totally or

partially the connectivity, i.e. heals the system. A more formal

description of the self-healing procedure and of the simulation

protocols are provided in the Methods section.

A natural metric to quantify the success of such a procedure is

the fraction of served nodes (FoS). In order to identify the system’s

properties that are able to maximize the FoS we study the effects

of varying the fraction of backup links (redundancy) according to

different underlying connectivity patterns with respect to multiple

random failures.

In order to stress the peculiarities of different network structures,

we generate class of graphs with different connectivity patterns (see

Methods). We start our investigation by focusing on the underlying

topology which often resembles the actual situation of infra-

structural networks – i.e. nodes disposed over a planar square grid

(SQ). Then, we stress the role of the underlying networks’

connectivity patterns by using the scale-free (SF ) topology

generated according to Barabasi-Albert [16] and the small-world

(SW ) topology generated according to Watts and Strogatz[17]. All

the initial network structures are generated by using the IGRAPH

library [18].

To generate the random spanning trees associated to each kind

of network structures, we use the flat sampling algorithm of Wilson

[19]. We take such spanning trees as the initial configuration of

our model distribution networks. The links not belonging to the

spanning trees form the set of the possible backup links of our

system; among such links, we choose a random fraction r of dormant

links that can be used to heal the system. We then simulate the

occurrence of uncorrelated multiple failures by deleting at random

k links of the initial active tree. Notice that link failures are the

most general ones, as a node failure is equivalent to the

simultaneous failure of all its links.

The source node – i.e, the root of the oriented active tree – is

chosen at random within all the nodes of the underlying network.

The only exception is the case of the SF networks where we use,

according to the preferential attachment principle, the natural

choice of having the node with the highest number of neighbours

(the central hub) as the source.

Our self-healing algorithm is a routing protocol (see Methods)

whose goal is to reconstruct the maximum spanning tree

connected to the source after that a failure has occurred; in doing

so, we use both the survived links of T and the dormant links D;

fig. 1 illustrates such procedure. After the recovery, we calculate

FoS the fraction of nodes connected to the source after the

recovery.

Effects of networks’ topology
In order to test the performances of our healing algorithm to

failures in terms of the service provided after the active tree

restoration, we simulate the model for increasing number of

failures. Recalling that each failure causes a cascade – i.e, each

node of sub-tree served by the broken link is unserved – we

investigate the role of redundancy r on different topologies.

We start our study by addressing planar square grid (SQ)

networks since they are the most similar to the real physical

networked infrastructures. In the first scenario, we generate

spanning trees on a square grids; fig. 2(a) shows the variation of the

restored FoS respect to the number of failures k for different

redundancies rs. For square grids, we do not observe any relevance

of the redundancy on the FoS; this means that a very small

fraction backup links (r~0:1, i.e. 10%) already suffice to attain the

maximum resilience.

The situation is completely different when the underlying

topology is a scale-free network generated through the Barabasi-

Albert model [16]. A widely diffused property of real networks is

that the connectivity pattern follows a scale-free power-law

distribution [1,20,21]. This feature has been found to be a

consequence of the so called preferential attachment – i.e networks

expand continuously through the addition of new vertices which

attach preferentially to already well connected nodes. Although

technological networks do not show power law degree distributions

due to economic and spatial constraints[22], we choose to

investigate SF networks for their marked robustness upon random

failures [23]. For SF networks, it is natural to choose the node

with the highest degree (the hub) as the source. The quality of

service restored by our self-healing algorithm on SF networks is

shown in fig. 2(b). As expected, we find that SF networks can

easily recover connectivity to all the nodes even for low

redundancies. Such error tolerance comes at a high price of being

extremely vulnerable to node targeted attacks: isolating the hub

disconnects the whole system. High error tolerance and targeted

attack vulnerability are indeed generic properties of SF networks

[24].

We then consider the case of small-world (SW ) networks

generated according the Watts-Strogatz rewiring procedure [17].

In the case of technological networks, small-world networks are

important since they highlight the effects of introducing long-range
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links in a planar topology. Starting from an initial graph (planar

square grids in our case), we rewire with a probability p a link with

a randomly selected node; in this way we can interpolate from the

case of SQ networks (p~0) to the case of a random graph (p~1).

As in the case of simple percolation [25], the rewiring procedure

introduces some long range links – i.e., between distant nodes on the

square grid) that improve the robustness to random failures.

In order to understand the role of the connectivity pattern we

study our model on different SW networks with different rewiring

probabilities. In fig. 2(c) we show the performances of our self-

healing strategy with respect to an increasing number of failures.

We see that a higher rewiring probability increases the number of

served nodes after the restoration through the backup network;

such a peculiarity shows up even if the clustering within

neighbouring nodes (normally associated to a local robustness

against failures) decreases; therefore long range links increase the

possibility of the network staying connected even after multiple

failures.

Finally, we compare in fig. 3 the effectiveness of the self-healing

protocol across different strategies. Notice that while distribution

grids based on the SF topology are the more robust, they should

be disregarded when considering the case of technological

networks since economic and geometric constraints make SF

networks unfeasible on planar topologies.

Discussion

In this paper we have introduced a minimal procedure of self-

healing in networks. Such procedure exploits the presence of

redundant edges to recover the connectivity of the system. Our

scenario is inspired by real-world distribution networks that are –

often for economic reasons – almost tree-like and at the same time

are provided with alternative backup links that can be activated in

case of malfunctioning. An example of such networks is the case of

urban low-voltage distribution networks [26].

Our strategy could be readily and easily implemented with the

current technologies. In fact, routing protocols represent a vast

available source of distributed algorithms able to maintain the

connectivity of a system; hence, our scheme could be implemented

by the standard procedure of coupling an ICT network to a pre-

existing infrastructure. Our strategy is an example in which

interdependencies among two networks enhance the resilience

instead of introducing catastrophic breakdowns [27].

By studying the performances of our procedure as a function of

the redundancy on different underlying network topologies, we

have shown that distribution networks akin to real world ones – i.e,

based on planar lattices – are the less resilient to random failures.

In fact, the most robust networks – as expected – are based on the

SF topology; however, such a topology is unrealistic for

technological networks. Our results on SW topologies hint that

a very effective strategy to strengthen realistic networks is to add

long range links. The feasibility of such a strategy would depend

on the cost-benefit analysis about the implementation of these

physical long-range links. A further direction of study would be to

consider the effects of more detailed structural characteristics of

the underlying network topologies [28] or even to consider

biologically inspired designs, like dynamic networks inspired by the

human brain [29].

While our minimal model considers only the connectivity of the

system, it can be easily expanded to take account of the magnitude

of the flows: in fact, routing algorithms can account for both the

capacity of the links and dynamically swap re-routing of flows.

Our model easily allows also for cold starts – i.e., for situations in

which the network has shut down due to some major events (like a

black-out) [30]. This is an important issue as one of the most time

(and money) consuming activity after a major event is the restoring

of the functionality of the network.

In this paper, we have considered only the single source case.

Next step is to consider a network served by multiple sources. In

fact, the possibility of separating the system in trees would solve the

who is serving who problem that appears as soon as more competitors

share the same physical line in bringing power to their customers

[31]. Moreover, the possibility for the system of dynamically

separating in time-varying trees would allow for introducing a

commodity market based on real-time economic competition

among the owners of the sources. This further goal is not yet

within the reach of current routing protocols and should be further

investigated if we want to have grids that are smart not only for

their ability to self-repair but also in optimizing consumptions and

prices. Finally, we believe that studying and designing self-healing

mechanisms in complex networks is a promising field of

Figure 1. Example of healing after single link failure. Notice that failure of a single node can be modelled as the failure of all its links; hence,
multiple links failure are the more general event to be considered. (Left Panel) In the initial state, the source node (filled square, upper left corner) is
able to serve all 16 nodes through the links of the active tree. The 4 dashed lines (green online) represent dormant backup links that can be activated
upon failure. The redundancy of the system is p~4=9 as only 4 of the 9 possible backup links are present. The link marked with an X is the one that is
going to fail. (Central panel) A single link failure disconnects all the nodes of a sub-tree; in the example, a sub-tree of 6 nodes (red online) is left
isolated from the source – i.e., the system has a damage D~6). (Right Panel) By activating a single dormant backup link, the self-healing protocol has
been able to recover connectivity for the whole system, in this case bringing back the number of served nodes at its maximum value 16. The link that
has recovered the connectivity is marked with an R.
doi:10.1371/journal.pone.0087986.g001
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investigation where also the dynamics of the systems should be

taken into account [32,33].

Materials and Methods

The Self-Healing procedure
We consider an abstract model of a physical networked

infrastructure described by the quadruple N~ V ,vS,EA,EDð Þ.
Here V are nodes of the network, vS[V is the source node, EA is

the set of active links among the nodes and ED denotes the set of

dormant links that can be activated in order to heal system failures

by re-connecting nodes. A node is considered to be served if it is

connected to a source through a path of active links; all the nodes

in V are initially connected to the source via a spanning tree. As

the basic metric for any quality of service assessment, we consider

the fraction of served nodes FoS counting the number of nodes in

the active graph – i.e connected to vS .

More formally, in the initial configuration, the graph

T~ V ,EAð Þ is an instance of the set RT (G) of all the random

spanning tree of the underlying graph G~ V ,Eð Þ. Thus, T before

the failures has jV j (active) nodes and jEAj~V{1 links among

them. The set ED of backup edges is taken form the remaining

edges of the underlying graph G, i.e. EA|ED(E and

EA\ED~ . The fraction r~jEDj= jEj{(jV j{1)½ � measures

the redundancy of N.

We then consider the occurrence of multiple link failures. A k-

failure is a subset EF5EA of k links chosen at random. The

system right after a failure is described by the forest

Tfail~ V ,EA{EFð Þ and by the set ED of dormant links available

for the healing. A healing protocol is any algorithm that, by

activating (waking up) a subset EW5ED of dormant edges, finds a

maximal tree T 0 of G0~ V ,ED|(EA{EFð Þ) containing the

source vS . If T 0 is spanning, then the system has fully recovered.

Figure 2. Self-healing results for networks of size 104. Panel (a): distribution networks based on square grids. The average fraction SFoST of
nodes that the self-healing protocol is able to restore decreases with the number of faults k with no relevant dependency on the redundancy; results
are shown for a 104 nodes network. Panel (b): distribution networks based on scale-free networks generated according to Barabasi-Albert[16]. The
average fraction of nodesSFoST of served nodes is plotted against the number of failures k. Even for a low 10% redundancy (r~0:1), the system can
almost totally heal after sustaining k*4|102 failures; as a comparison, for the same number of failures square grids loose *90% of the nodes. Panel
(c): distribution grids based on small-sworld networks obtained by rewiring a fraction p~0:2 of links according to Watts-Strogatz [17]. The average
fraction of nodesSFoST of served nodes is plotted against the number of failures k. At difference with square grids and scale-free networks, the
restored fraction of service FoS shows a marked dependency upon the redundancy parameter r. Similar results are obtained for p~0:1 and p~0:3.
doi:10.1371/journal.pone.0087986.g002
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For the robustness of the algorithm, we will assume that nodes

have only a local knowledge of the networks – i.e., only about the

state (active, dormant or failed) of their incoming links. To build

the maximal connected tree, nodes communicate with their

neighbors via a suitable distributed protocol allowing fault nodes

to join the active network by activating dormant edges. In other

words, nodes are endowed only with the minimal requirements of

routing needed to reconstruct a spanning tree [34]. In this paper,

we have applied the following simple distributed algorithm to

implement self-healing:

N~ V ,vS,EA,EDð Þ/ initial configuration

EF/ failed links

U/ unserved nodes

V 0/V{U

E0A/(EA{EF )\(V 0|V 0)
E0D/(ED{EF )|(EA{V 0|V 0)
EW ~

repeat

for all v[U do

choose a random neighbor a(v) connected to V through

any edge of E0D
for all v[U do

if a(v)= then

V 0~V 0zfvg
U~U{fvg
E0A~E0Azf a(v),vð Þg
E0D~E0D{f a(v),vð Þg
E0W ~E0W zf a(v),vð Þg

until V 0|Uð Þ\E0D~

E0D/E0D\ V 0|V 0ð Þ
return N 0~ V 0,vS,E0A,E0D

� �

By definition, the nodes in N 0 are the set of served nodes V 0.
Notice that the state V 0,vS,EAzEW {EF ,ED{EWð Þ still de-

scribes a network infrastructure; therefore, we can in general

describe the state of the system at time t by the quadruple

V (t),vS,EA(t),ED(t)ð Þ and the sequence of time failures between

Figure 3. Comparison among different network structures. Here
we show the performances of our self-healing algorithm with respect to
the quality of service for increasing number of removed links with the
redundancy r fixed to 0:3; for SW networks, the rewiring probability is
p~0:2. The average fraction of nodes SFoST of served nodes is plotted
against the number of failures k.
doi:10.1371/journal.pone.0087986.g003

Figure 4. Different network topologies. Upper panels, from left to right: planar square grid (SQ), small-world network (SW ) generated
according to Watts-Strogatz [17] and scale-free network (SF ) generated accordint to Barabasi-Albert [16]. Lower panels: random spanning trees
associated with the related underlying topologies in the upper panels.
doi:10.1371/journal.pone.0087986.g004
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time t and tz1 by EF (t). A general representation of such a

process can be given in terms of time varying graph [35].

Simulations
We analyse the response of the system to k-failures. To study the

effects of different topologies, we perform simulations on different

grids (fig.4 – upper panel).

Classically, engineered systems (especially in the power industry)

are built N{1 robust, i.e. they can survive to the single failure of

any of their components. While checking N{1 robustness

corresponds to checking all the N possible single failures, checking

the N{k robustness requires to consider N!=(N{k)!*Nk cases.

Therefore, checking the N{k robustness is infeasible even for

modest values of k due to the combinatorial explosion of the

number of possible cases. Thus, we choose to assess on

probabilistic ground whether a system would be able to sustain

k failures by a Monte Carlo investigation of the space of possible

failures.

Service operators are interested in maintaining their service

level agreements (contracts) with their customers; to such an aim,

customers must in first pace remain connected to the services.

Therefore, we calculate the average fraction of served customers

FoS after the occurrence and the healing of k random failures. To

do so, we choose at random k different links on the service tree

and delete them; after that, we apply the self healing procedure;

finally, we calculate the FoS as the fraction of nodes connected to

the source. We average such procedure over several network

realizations until the relative error of the average FoS is small

enough (less than 5%). As an example, for a grid of 104 nodes, we

must typically average over 100 sets of random failures to attain

the desired accuracy. Moreover, to average out the different

characteristics of the initial configurations, we repeat the

procedure over 100 different independently generated initial

configurations.

To generate a random spanning tree T associated to a graph G

(fig.4 – lower panel), we apply the exact algorithm of Wilson [19]

that samples uniformly the elements of RT (G). Such spanning

trees are taken as the initial configurations for our model

distribution networks. The links of the graph G that do not

belong to the initial configuration T form the set EB of the possible

backup links of our system; of such links, only a subset ED (the

dormant links) can be used to heal the system. The fraction

r~jEDj=jEBj of such dormant links characterizes the redundancy

of the system: for r~0 there are no links in ED and any failure

splits the tree, while for r~1 any of the links of G can be used to

recompose the system.

Notice that in our case it would be more correct to speak about

N{k resilience, since we don’t consider whether the system is robust

to k failures (i.e. whether it still functioning after k failures), but if it

can recover from k failures.
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