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Abstract

In the present study we aimed to analyze the bacterial community structure of oral biofilms at different maturation stages in
young healthy adults. Oral biofilms established on membrane filters were collected from 32 human subjects after 5 different
maturation intervals (1, 3, 5, 9 and 14 days) and the respective phylogenetic diversity was analyzed by 16S rDNA amplicon
sequencing. Our analyses revealed highly diverse entire colonization profiles, spread into 8 phyla/candidate divisions and in
15 different bacterial classes. A large inter-individual difference in the subjects’ microbiota was observed, comprising 35% of
the total variance, but lacking conspicuous general temporal trends in both alpha and beta diversity. We further obtained
strong evidence that subjects can be categorized into three clusters based on three differently occurring and mutually
exclusive species clusters.
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Introduction

High-throughput sequencing approaches have revolutionized

our prospects and knowledge on microbial communities. For

instance the human microbiome with its high variability between

host individuals and distinct species assemblies on different parts of

the human body was extensively examined [1–3]. Studies of these

communities may elucidate interactions among microbes, as well

as host-microbe interactions of ecological and clinical relevance.

This may aid, e.g., the prevention of detrimental biofilms in

prosthetics and dentistry. The oral microbiome is one of the most

diverse of the human body. More than 700 species are reported to

colonize multiple niches [4–6], including the soft tissue surfaces

and the sub- and supragingival surfaces of the teeth, as a

consequence of different environmental conditions (e.g., nutrients

or pH) [7,8]. While the majority of the oral community plays an

important role in preserving the oral and systemic health [6,9–12],

pathogens are also included at a low percentage. As a consequence

of environmental changes, host response and disturbance of

microbial homeostasis, an increase of the pathogenic community

might promote the development of oral diseases by leading to

inflammation and infection [8,13]. Even though periodontal

diseases are initiated by polymicrobial infection, several bacterial

species are commonly linked to particular oral diseases. The oral

microbiome is also associated with systemic diseases [14–17],

including for instance cardiovascular disease and atherosclerosis

[14,17]. Recently, we demonstrated that even experimentally

induced gingivitis - a low-level inflammation in response to

bacterial biofilm formation after a few days of suspended oral

hygiene - triggers a systemic increase of surrogate markers of

atherosclerotic plaque development [18]. However, the changes

from health to disease as well as the mechanisms responsible for

increased occurrence of pathogens are poorly understood.

Likewise, studies of the human microbiome revealed that even

healthy individuals could differ extremely in their bacterial

community structure in same habitats, with much of this inter-

individual difference remaining unexplained [2]. Thus, more

insight into ‘‘healthy’’ consortia in oral biofilms is crucial for

understanding development, prevention and treatment of oral

diseases.

To evaluate potential shifts in bacterial biofilm composition

during maturation and due to different bacterial colonizer pools in

various hosts, we investigated oral bacterial colonization profiles

close to the teeth in 32 young healthy adults (both male and

female) after 5 different maturation intervals between 1 and 14

days, by 16S rDNA amplicon sequencing using a high-throughput

sequencing approach.

Materials and Methods

Human Samples
All procedures related to subjects were approved by ethics

committee of Hannover Medical School, registered at the

International Clinical Trials Register Platform of the WHO (ID:

DKRS00003366) and follow the guidelines of the Declaration of

Helsinki. All participants gave written informed consent and were

recently involved in our earlier study that investigated the systemic

effects of experimental gingivitis.
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Criteria for Participation
Human subjects agreeing following criteria were selected: (a)

20–30 years of age, (b) non-smokers, (c) no clinical signs of gingival

inflammation, (d) no probing pocket depth .3 mm at any site and

(e) no alveolar bone loss. Criteria for exclusion were: (a) systemic

diseases (e.g. diabetes mellitus), (b) pregnancy or breastfeeding, (c)

history of drug abuse, (d) allergic diathesis, (e) medications (e.g.

antibiotics) within 3 months before entering the study, (f) untreated

carious lesions and/or insufficient restorations, implants, crowns

and (g) mouth breathing.

Biofilm Formation and Sampling
In order to obtain sufficient plaque material for sequencing

maxillary and mandibulary impressions were obtained and used to

fabricate individual acrylic splints. Membrane filters (Millipor-

eExpressH PLUS) were attached to the splints next to the teeth and

gingiva by surgical sutures. In each case four membranes on the

upper and four on the lower jaw on buccal and oral sides of the

teeth rows. Participants were advised to carry these splints for the

time intervals 1, 3, 5, 9 and 14 days and to store them in provided

humidified chambers during the meals and daily oral hygiene

procedures. On every sampling day all 8 filters were removed from

splints, washed with sterile PBS and immediately frozen in liquid

nitrogen until further processing.

Nucleic Acid Isolation
Genomic DNA of dental plaque was isolated from a pool of 2

different membrane filters using the RTPH Bacteria DNA Mini

Kit (STRATEC Molecular, Birkenfeld/Germany) following the

manufacturer̀s instruction (protocol 4).

PCR Amplification and Deep Sequencing Analysis
The hypervariable regions 1 to 2 (V1–2) of the 16S rRNA gene

was amplified from isolated genomic DNA using universal primer

Pyro_27F (59CTATGCGCCTTGCCAGCCCGCTCAGTCA-

GAGTTTGATCCTGGCTCAG39) and barcoded reverse primer

338R (59CGTATCGCCTCCCTCGCGCCAT-

CAGXXXXXXXXXXCATGCTGCCTCCCGTAGGAGT39).

The primer contained the 454 Life Sciences Adaptor B (forward)

and A (reverse) denoted by italics and the underlined sequences

represent the broadly conserved bacterial primers 27F and 338R.

A two-base linker sequence (TC/CA) and four-base key (TCAG)

were added as recommended by Roche (454). A unique 10mer

multiplex identifier (designated X) was added to every reverse

primer to tag each PCR product. Template DNA (100 ng) was

added to a 25 mL PCR reaction mix including Phusion Hot Start

DNA Polymerase (Finnzymes, Vantaa/Finland). Cycling condi-

tions started with an initial denaturation step for 30 s at 98uC,

followed by 35 cycles of 9 s at 98uC, 30 s at 55uC and 30 s at 72uC
and ended with a final extension for 10 min at 72uC. All reactions

were performed in duplicates and combined after PCR.

Amplicons were size-checked, purified with the MiniElute Gel

Extraction Kit (Qiagen, Hilden/Germany) and quantified with the

Quant-iT dsDNA Broad-Range Assay Kit (Invitrogen, Darm-

stadt/Germany) using a NanoDrop 3300 fluorometer. Equimolar

amounts of purified PCR product were pooled and further

purified using Agencourt AMPure XP (Beckman Coulter,

Krefeld/Germany). A sample of each library was run on an

Agilent Bioanalyzer prior to emulsion PCR and sequencing as

recommended by Roche. Amplicon libraries were sequenced on a

454 GS-FLX using Titanium sequencing chemistry (Roche,

Mannheim/Germany).

Sequence Processing
All steps of sequence processing were conducted with the

program mothur v1.27.0 [19]. Raw sequencing data in standard

flowgram format were first assigned to samples according to their

multiplex identifiers (MIDs) with the forward primer sequence

removed. Only reads between 360 and 720 flows, with a

maximum homopolymer count of 8 and no differences to

MIDs/forward primer were retained (command trim.flows). Data

were denoised (shhh.flows) and kept if their mean phred score

[20,21] was $25 after denoising (trim.seqs). Sequences were aligned

(align.seqs) to the SILVA reference alignment based on the SSURef

database (v102) of bacterial sequences [22] provided on http://

www.mothur.org/wiki/Silva_reference_files. The alignment was

optimized by deleting the shortest and longest 2.5% of the

sequences, respectively (screen.seqs), followed by removal of gap-

only columns as well as columns containing missing data at both

ends of the alignment (filter.seqs). The resulting alignment had 696

positions with sequence lengths ranging from 239 to 315

nucleotides. In order to further reduce PCR/pyrosequencing

errors, reads with one mismatch to a more abundant sequence

were merged with the latter (pre.cluster). Chimeras were eradicated

employing mothur’s implementation of Perseus [23] (chimera.per-

seus, remove.seqs). Initial sequence classification was conducted by a

Bayesian approach [24] using a k-mer size of 8 and a bootstrap

threshold of 60% (classify.seqs). The RDP [25] reference taxonomy

(http://www.mothur.org/w/images/4/4a/Trainset7_112011.

pds.zip) was used with reference sequences trimmed to the V1–V2

primer region to improve accuracy of the classification [cf. [26].

The dataset was screened for chloroplast sequences to be removed

(remove.lineage) as these sequences would obviously have originated

from vegetable food rather than from bacteria. A random subset of

1,042 sequences per sample (corresponding to the smallest number

of reads above 1,000 across samples) was generated (sub.sample) to

eliminate bias due to unequal sampling effort. A coverage of about

1,000 sequences per sample is suggested as a good balance

between number of samples and depth of sampling [27]. Three

samples (p35d01, p35d03, and p36d09) containing fewer sequenc-

es (855, 594, and 957, respectively) were kept in the dataset with

reservation. The aligned and subsampled dataset was used to

compute a distance matrix (dist.seqs) for binning sequences into

operational taxonomic units (OTU) by average neighbor cluster-

ing (cluster.split). Based on a 97% similarity threshold (roughly

corresponding to species level distinction) 1,779 OTUs were

identified. A sample-by-OTU table was generated (make.shared)

which for each sample states the number of sequences belonging to

a certain OTU. This table was the basis for subsequent

bioinformatic analyses. OTUs were classified according to the

CORE reference database, a phylogenetically curated 16S rDNA

database of the core oral microbiome [28], as described above for

the RDP reference taxonomy (classify.seqs, followed by classify.otu).

Sequence Abundance Plots
All downstream computations were performed in R v2.15.2

[29] with custom scripts (available from the authors on request).

Initial characterization of bacterial community composition was

performed by summarizing OTU abundances at genus level.

Genus-level abundances were normalized by dividing their

number by the total number of sequences per sample and

visualized as stacked bar plots.

Alpha Diversity Analysis
Effective OTU richness (also known as Shannon numbers

equivalent, 1D) [30,31] was calculated from the sample-by-OTU

table using the R package vegan [32]. Initial data visualization was

Mutual Exclusions in Oral Community Structures
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performed with the R package lattice [33]. The study design

corresponds to a mixed-effects model in which the fixed effect

‘‘Day’’ (i.e., maturation time of the biofilm) is nested within the

random effect ‘‘Subject’’. To estimate the effect of maturation time

on effective OTU richness, 1D was fitted to ‘‘Day’’ in a generalized

linear mixed model using function gamm of R package mgcv [34]

with either random intercept or random intercept and slope.

Models were compared by means of the Akaike Information

Criterion (AIC) with restricted maximum likelihood estimation as

described by Zuur et al. [35].

Beta Diversity Analysis
Redundancy Analysis (RDA) was used to explore the extent of

change in OTU composition (also known as turnover) in oral

microbial communities within subjects over time. OTU abun-

dances were subjected to Hellinger transformation in order to

make them compatible with RDA. This transformation down-

weights highly abundant OTUs, providing a good compromise

between linearity and resolution [36]. RDA was thus performed

on Hellinger distances between samples (i.e. Euclidean distance of

Hellinger-transformed data). The model was evaluated with

vegan’s function (rda) and consisted of the fixed effect ‘‘Day’’

and the ‘‘Subject’’ effect as conditioning term: OTU count data ,
‘‘Day’’ + Condition (‘‘Subject’’). The model was tested for

significance with function anova.cca using 1,000 random permuta-

tions stratified within subjects. Homoscedasticity of the fixed effect

was assessed using vegan’s betadisper function, followed by permutest

with permutations stratified within subjects.

Consensus Clustering of Species
OTU abundances were normalized by total counts per sample

and summarized at species level (henceforward called ‘species

abundances’ for simplicity). Taxa that could not be distinguished

at the species level or with terms ‘‘uncultured’’ or ‘‘unclassified’’

added to their names were removed from the dataset. Species

relative abundances were used for the resulting sample-by-species

table which was subjected to Principal Component Analysis (PCA)

after Hellinger transformation. Based on this ordination configu-

ration, weighted-average scores of species were calculated by

vegan’s (wascores) function for projection of species points into the

PCA space of samples (scaling 1). Consistent clusters of species

were determined by average-linkage clustering based on Spear-

man rank correlations of relative species abundances. Cluster

number and robustness were assessed by consensus clustering [37]

with package ConsensusClusterPlus [38] based on 1,000 random

species subsamples (drawing without replacement) with a sampling

proportion of 0.8. The optimal number of clusters was determined

by assessing the relative change in the area under the consensus

cumulative distribution function [cf. [37]. Robust cluster members

were defined as species whose item consensus was $0.6 for the

cluster they were assigned to and #0.4 for any other cluster. The

multivariate coefficient of variation (RV) was calculated for each

pair of robust species clusters based on rank-transformed species

abundances. Clusters of robust species were projected as ‘‘spider’’

graphs into the PCA space of the samples.

Consensus Clustering of Subjects
Partitioning of human subjects in relation to the clusters of

robust species was assessed as follows. For each subject, mean

relative species abundances were calculated across all time points.

The resulting subject-by-species table was subjected to PCA after

Hellinger transformation. The matrix of subjects’ PCA scores

(scaling 1) was subjected to consensus clustering as described above

with 10,000 random subject subsamples, using Partitioning

Around Medoids [39] as a robust grouping algorithm. The

resulting subjects’ partitioning was evaluated by Analysis of

Similarities (ANOSIM) on Euclidean distances of the Hellinger-

transformed subject-by-species table with 100,000 random per-

mutations.

3D Visualization
A 3D plot of combined clustering and ordination data was

produced in kinemage format [40] using the in-house developed R

package R2Kinemage and displayed in KiNG v2.21 [41].

Nucleotide Sequence Accession Numbers
Sequence data were submitted to the NCBI (National Center

for Biotechnology Information) Sequence Read Archive under

accession no. SRP027013. Table S1 of file S1 lists multiplex

identifiers and corresponding information for samples in the

respective sequence libraries.

Results

Characterization of Bacterial Biofilm Composition during
Maturation

Oral biofilm formation on membranes close to the gingiva was

monitored in 32 healthy adults over 14 days. Aiming to examine

the bacterial biofilm composition during the establishment, five

different time points in biofilm formation were collected (day 1, 3,

5, 9 and 14). A total of 160 biofilm samples were analyzed after

DNA extraction and amplifying the hypervariable region V1–V2

of the 16S rDNA by 454 pyrosequencing. 1,042 sequences per

sample were retained after random subsampling, binned into a

total of 1,779 operational taxonomic units (OTUs) of which about

only 15 were highly abundant across all samples (see Tables S2

and S3 for a list of raw OTU counts and corresponding taxonomy

in file S1, respectively). Variability of sample diversity was high,

ranging from 7 to 130 OTUs, distributed over 8 major phyla/

candidate divisions (Firmicutes, Proteobacteria, Actinobacteria,

Bacteroidetes, Fusobacteria, Spirochaetae, SR1 and TM7). The

phyla could further be subdivided into 15 identified classes (Bacilli,

Clostridia, Erysipelotrichi, Negativicutes, a-, b-, c-, e-Proteobac-

teria, Actinobacteridae, Coriobacteridae, Bacteroidia, Flavobac-

teria, Sphingobacteria, Fusobacteria, Spirochaetes) (see Table S4

in file S1). Comparison of the bacterial composition of all

individuals over all time points by relative abundance plots

revealed highly variable colonization profiles (Fig. 1).

One subject (p35) exhibited a conspicuously low level of

Streptococcus in combination with elevated levels of Prevotella,

Fusobacterium and other minor taxa over time in comparison with

the other subjects (Fig. 1). Since measures strongly deviating from

the mean can have adverse effects on regression-type analyses as

performed here, we chose to exclude subject p35 from subsequent

analyses.

As a measure of alpha diversity, we employed effective OTU

richness 1D. Initial data visualization did not reveal conspicuous

general trends in 1D with time (Fig. S1 in file S1). To check for a

possible less obvious temporal pattern, we fitted a generalized

linear mixed model with ‘‘Day’’ as fixed effect. Because residuals

showed clear deviation from normality (validated by visual

inspection of a quantile-quantile plot), a gamma distribution with

log link was used to model 1D. Comparison by AIC suggested the

random intercept model (the intercept of the regression line may

vary between subjects) as the best choice. While the model was

valid (no conspicuous residual patterns were observed), the effect

of variable ‘‘Day’’ was not significant (p = 0.13), thus no time-

related change in alpha diversity of oral microbiota was observed.

Mutual Exclusions in Oral Community Structures
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In beta diversity analysis, Hellinger-transformed OTU counts

were subject to RDA with ‘‘subjects’’ as conditioning term to

account for inter-individual variation. The effect of ‘‘Day’’ on the

change of individual OTU abundances between samples of the

same subject was not significant (p<0.1). Accordingly, adjusted R2

(a measure for the variance explained by the RDA model) was

only 0.5%. Hence there was no obvious and consistent time-

related change in relative OTU abundances within subjects. In

contrast, a comparatively large portion of variance (35%) was

attributed to the conditioning term ‘‘Subject’’, arguing for a large

inter-individual difference in microbial composition.

Evidence of Mutual Exclusions between Different
Bacterial Complexes

Since alpha and beta diversity analysis did not show any

significant time-related response in our data, we concentrated on

evaluating correlations between individual species across all data

points. For this purpose, we employed Spearman rank correlation

for species abundances combined with consensus clustering - a

simple and straightforward method of inferring robust clusters by

resampling - to obtain robust results. A combined consensus

clustering and unconstrained ordination analysis (Principal Com-

ponent Analysis) revealed three clusters of species mutually

excluding each other across subjects and time points (Fig. 2A, B;

see also Fig. S2 in file S1 for an interactive version of this image

with additional display options such as taxon names, subject codes

and individual subject time points; see Table S5 for a list

representation of species clusters in file S1). These three clusters of

species differed in their relative abundances (averaged over time)

in three corresponding subject clusters (Fig. 2C). Separation of the

latter was corroborated by a fairly large ANOSIM statistic

(R = 0.54) with high statistical significance (p,1025). The magen-

ta-colored species cluster was dominated by different Prevotella

species (‘‘Prevotella cluster’’), the green one contained b- and c-

Proteobacteria (‘‘Proteobacteria cluster’’) and the orange-colored

cluster mainly contained Streptococcus species (‘‘Streptococcus cluster’’).

The ‘‘Prevotella cluster’’ and the ‘‘Streptococcus cluster’’ showed a

strong multivariate correlation (RV = 0.3; p,0.01) and mutually

exclude each other. A weak but still significant multivariate

correlation (RV = 0.07; p,0.01) was observed between the

‘‘Proteobacteria cluster’’ and the contrasting ‘‘Prevotella cluster’’.

No significant correlation could be observed between the

‘‘Proteobacteria cluster’’ and the ‘‘Streptococcus cluster’’. Fig. 2C

shows the relative species abundances (averaged over time and

subjects) in the 3 detected subject clusters. Subject cluster 1 was

Figure 1. Mean bacterial composition of oral biofilms over time in individual subjects. Bacterial communities of oral biofilms in 32
different human subjects were analyzed by 16S rDNA amplicon deep sequencing (V1–V2 region). Taxa (mean relative abundance across subjects
$1%) are shown at class and genus levels.
doi:10.1371/journal.pone.0087449.g001
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dominated by the ‘‘Prevotella cluster’’ (60%) and ‘‘Streptococcus

cluster’’ (40%). In the second subject cluster the ‘‘Streptococcus

cluster’’ dominated (66%), followed by members of the ‘‘Prevotella

cluster’’ (32%) and a minority of the ‘‘Proteobacteria cluster’’ (2%).

The third subject cluster exhibited the largest occurrence of the

‘‘Proteobacteria cluster’’ (27%), while the ‘‘Prevotella cluster’’

represented about half of the counts (54%) and the ‘‘Streptococcus

cluster’’ was least abundant (20%).

Discussion

Oral microbial profiles in health and disease have been

investigated in numerous in vivo studies [11,12,42]. In this respect,

several bacterial species have been shown to be directly linked to

specific diseases [12,43,44]. However, the transitional stages from

health to disease as well as the mechanisms responsible for

appearance of those pathogens are poorly understood. Thus,

elucidating ‘‘healthy’’ complex consortia of oral biofilms in the

course of time is crucial. In the present investigation we addressed

this essential aspect by analyzing microbial composition of oral

biofilms of 32 healthy human subjects during maturation over 14

days at 5 different time points.

Analysis of Oral Biofilms Over Time Revealed High Inter-
individual Variation

Within the 16S rDNA amplicon sequencing approach of oral

biofilms we analyzed a highly diverse dataset with more than 1,700

different OTUs at the 97% similarity level, although only 15 of

them were highly abundant across all samples. The number of

OTUs within each sample ranged from only 7 up to 130

consequently already suggesting a large variation between

individuals. Further evidence for large inter-individual differences

in microbial composition was obtained by RDA. This is in

accordance with previous findings that the oral community is

especially diverse in contrast to other body habitats, e.g. the vagina

[2,45]. The consistency of our 16S rDNA profiles of oral biofilms

is comparable to the keratinized gingiva baseline at the phylum

level in healthy subjects as reported by the Human Microbiome

Project [46]. Comparison to a lower level is impaired by

differences due to methods and approaches used, e.g. primer set,

database, sequences per sample and number of subjects.

We did not detect any systematic time-related patterns, neither

in alpha nor in beta diversity. This suggests that both, the

cumulative number of OTUs as well as their individual turnover in

a subject, is influenced more by random (or unaccounted/

unknown) effects than by time in the course of biofilm formation

between 24 h and 14 days. These findings are in agreement with

previous reports that propose a high variability in the oral

microbiome between individuals [11,47] as well as a minimal

temporal variability in individuals [45]. The Human Microbiome

Project Consortium further reported on within-subject stability of

the human microbiome by sampling an additional time point after

approximately 220 days. They hypothesized that the stable

individual microbial community may be another feature of the

human microbiome specifically associated with health [2]. This

assumption is supported by previous studies of microbial diversities

of different body habitats, which has been linked to different

diseases [48–50]. For instance the complex stool communities

were markedly reduced in specific gut diseases and bacterial

vaginosis is associated with a high microbial diversity, whereas

healthy vaginal sides harbored simpler communities [2]. Our study

of oral biofilms in healthy subjects over time correlates favorably

with these findings and further supports the idea of stable complex

oral microbiota in health that obviously differ among subjects.

Figure 2. Species and subject clusters. Combined consensus
clustering and ordination (PCA) of robust species and human subjects.
(A) First (PC1) and second (PC2) axis and (B) first (PC1) and third axis

Mutual Exclusions in Oral Community Structures

PLOS ONE | www.plosone.org 5 February 2014 | Volume 9 | Issue 2 | e87449



Mutual Exclusion of Bacterial Consortia and their
Assignment to Corresponding Subject Clusters

The most remarkable result obtained from our data set is the

clustering of species into three groups that mutually exclude each

other and differ in their relative abundances in three correspond-

ing subject clusters (Fig. 2, Fig. S2 in file S1). To our best

knowledge, this is the first study providing culture-independent

evidence for species clusters in the human oral microbiome.

In particular, the strongest exclusionary relationship was

observed between the ‘‘Streptococcus cluster’’ and ‘‘Prevotella cluster’’.

Mutualistic interactions as well as interspecies competition among

microbial partnerships are often triggered simultaneously by

several members of oral biofilms and are in the focus of current

research [51–56]. A possible mechanism for such an ‘‘interspecies

defense’’ might be the release of bacteriocins produced by several

streptococci as well as by numerous Gram-negative bacteria of the

oral cavity. These effectively act against a variety of further

bacterial members within this habitat [57–60]. In addition,

hydrogen peroxide produced by oral streptococci has been shown

to inhibit the growth of other members of the oral cavity [54,61].

Certain oral streptococci have been shown to negatively impact

biofilm formation of Porphyromonas gingivalis [62,63]. While P.

gingivalis has not been detected in our dataset, this species is known

to coaggregate with Prevotella intermedia [64], which is indeed a

member of the ‘‘Prevotella cluster’’. Moreover, the ‘‘Prevotella

cluster’’ included other Porphyromonas spp. Hence, our study

provides additional evidence for the reciprocal exclusion of

streptococci and Porphyromonas spp.

Our results of cluster analyses are further in agreement with

previous findings obtained by a co-culture experiment with cluster-

representative species. Herein, Stingu et al. [65] observed signif-

icant bactericidal effects of oral streptococci, in particular S.

sanguinis and S. anginosus, on P. intermedia. Further studies of Stingu

and collaborators showed that the development of periodontitis is

associated with an increased colonization of two Prevotella species

(P. intermedia and P. nigrescens) as well as a reduced establishment of

S. sanguinis [66,67].

Despite of the high inter-individual microbial variation in oral

biofilms, our results revealed the existence of various colonizer

pools in different hosts. We assume that even in health, the oral

bacterial community features a broad potential compositional

spectrum. The obtained composition of the oral biofilm of a

certain individual may be indicative for this person’s ability to

resist pathogens or disease susceptibility. Although all species in

the identified clusters are members of the oral commensally

community, there is evidence that some of these microorganisms

are associated with gingivitis [68–70]. These include Gram-

positive species (e.g., Streptococcus ssp. and Parvimonas micra), as well

as numerous Gram-negative species (e.g., Campylobacter gracilis,

Fusobacterium nucleatum, Prevotella intermedia and Veillonella). Remark-

ably, all those bacteria are present in the identified ‘‘Prevotella

cluster’’. Moreover, another study [71] detected Capnocytophaga

ssp., which is also a member of the ‘‘Prevotella cluster’’, on the onset

of gingivitis and identified Prevotella spp. in areas with established

gingivitis. On the other hand, species that are associated with

periodontal health - such as primary or early colonizers (e.g.,

Streptococcus and Gemella) [9,72] - have been predominantly found in

the identified ‘‘Streptococcus cluster’’. Since we know from our

earlier study with the same subject cohort [18] that the human

subjects responded differently to an experimentally induced

gingivitis in terms of inflammation severity (Eberhard, unpublished

data), we hypothesize a potential association of species cluster

prevalence with disease susceptibility and inflammatory condition

of human subjects. However, future investigations are mandatory

to address this aspect.

Another conspicuity is the third subject cluster that consists of

only three test persons. This cluster was shown to host a substantial

proportion of the ‘‘Proteobacteria cluster’’, which exhibits another

- albeit weaker - contrasting relationship with the ‘‘Prevotella

cluster’’. The role of this cluster consisting primarily of aerobic b-

and c-Proteobacteria remains to be elucidated. However, in

sufficient quantity it appears to replace the ‘‘Streptococcus cluster’’.

Optimized Study Design and Application of Meta’omics
Approaches may Reveal Trends Related to Time and
Susceptibility to Inflammation

Due to the high inter-individual variability in microbial

composition, an optimized study design is crucial to observe a

potential time effect in oral biofilm formation. Even though our

subject group was quite homogenous in terms of age and health

status, several systemic and external factors such as diet, gender,

hormone status and stress known to have an impact on the oral

microbiome were not controlled for in the present study. This

contributed to the observed highly diverse colonization profiles. A

subsequent investigation with a stricter control of the subject set-

up, optimally over periods longer than 14 days, may reveal clearer

temporal trends in alpha diversity. Since a potential correlation

between the oral microbiome and inflammatory diseases such as

gingivitis might exist at the strain or even at the genomic/

metabolic level, this correlation may not be reflected by 16S rDNA

based phylogenetic analysis even after optimization of the

experimental set up. Consequently, more advanced tools such as

shotgun metagenomics or metatranscriptomics [73] should be

preferentially employed to uncover such relationships.

In summary, our results provide evidence that, despite high

microbial diversity in individuals, different consortia composition

of oral microbiota exist in healthy hosts. External factors as well as

physical predisposition of the host might be responsible and

determine the structure of these consortia. Moreover first

indications were obtained that community structures might be

indicative for host’s disease susceptibility.

Supporting Information

File S1 Table S1: Multiplex identifiers and corresponding

information on samples in the respective sequence libraries. Table

S2: OTU counts in subjects over time. Table S3: OTU taxonomy.

Table S4: Bacterial abundances at class-level in subjects over time.

Table S5: List of species names in species clusters. Fig. S1: Alpha

diversity analysis. Effective OTU richness 1D is shown within

individual subjects over time. Fig. S2: Kinematic image represen-

tation of the combined consensus clustering and ordination (PCA)

of robust species and human subjects shown in Fig. 2. Additional

display options comprise species names, subject codes, individual

subject time points, and means of time points over all subjects.

Note: The free KiNG display software (Kinemage, Next

Generation; http://kinemage.biochem.duke.edu/software/king.

php) is needed to view the image.

(PC3) of the ordination space of individual subject samples are shown.
Species data points (small spheres) are projected into the ordination
space as weighted averages and grouped into three clusters according
to species consensus clustering: ‘‘Prevotella cluster’’ (magenta), ‘‘Strep-
tococcus cluster’’ (orange), ‘‘Proteobacteria cluster’’ (green). Large
spheres represent the centroids of individual sample points for each
human subject, color-coded according to the result of subject
consensus clustering. (C) Relative species abundances in subject
clusters. Color coding of species clusters is analogous to (A) and (B).
doi:10.1371/journal.pone.0087449.g002
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