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Abstract

The low pH of the stomach serves as a barrier to ingested microbes and must be overcome or bypassed when delivering
live bacteria for vaccine or probiotic applications. Typically, the impact of stomach acidity on bacterial survival is evaluated
in vitro, as there are no small animal models to evaluate these effects in vivo. To better understand the effect of this low pH
barrier to live attenuated Salmonella vaccines, which are often very sensitive to low pH, we investigated the value of the
histamine mouse model for this application. A low pH gastric compartment was transiently induced in mice by the injection
of histamine. This resulted in a gastric compartment of approximately pH 1.5 that was capable of distinguishing between
acid-sensitive and acid-resistant microbes. Survival of enteric microbes during gastric transit in this model directly correlated
with their in vitro acid resistance. Because many Salmonella enterica serotype Typhi vaccine strains are sensitive to acid, we
have been investigating systems to enhance the acid resistance of these bacteria. Using the histamine mouse model, we
demonstrate that the in vivo survival of S. Typhi vaccine strains increased approximately 10-fold when they carried a sugar-
inducible arginine decarboxylase system. We conclude that this model will be a useful for evaluating live bacterial
preparations prior to clinical trials.
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Introduction

Live recombinant attenuated Salmonella vaccines (RASVs) for

humans are typically derived from Salmonella enterica serovar Typhi.

However, S. Typhi is host restricted to humans, thus preclinical

vaccine research and development relies on the closely related

Salmonella enterica serovar Typhimurium as a model, since S.

Typhimurium causes a disease in mice very similar to human

typhoid [1]. Use of the S. Typhimurium mouse model has led to a

large number of important insights into Salmonella pathogenesis

and methods to attenuate these bacteria. However, there are a

number of important differences between the two serovars and the

ways they interact with their respective hosts that, if not

understood and addressed, can result in failure at the clinic.

One such area that has been relatively overlooked is the impact of

the gastric environment on vaccine viability and subsequent

interactions with the host.

The gastric acid produced by the stomach serves an important

barrier function in preventing host infection by enteric pathogens

[2–4]. The pH of the gastric environment varies depending on the

host species, but is routinely very low [5]. The low pH rapidly

inactivates or kills the vast majority of ingested microbes [6]. To

cope with the challenge that a low pH gastric environment poses,

enteric microbes have evolved a variety of acid resistance

strategies. These include such systems as the highly potent urease

of Helicobacter pylori, amino acid decarboxylases such as glutamate,

arginine and lysine decarboxylases and the acid tolerance response

found in c-proteobacteria [7–12]. Induction of these systems,

usually by exposure to moderately acidic conditions, renders the

infecting microbe temporarily resistant to low pH [12–14]. The

level of protection from low pH provided by these systems depends

on the properties of the individual enzymes and the microenvi-

ronment of the low pH compartment, but generally, these are

highly successful strategies for transiting through the gastric

environment.

Problems arise when desirable microbes, such as RASVs, need

to be introduced into humans via the oral route. There is a

fundamental difference between S. Typhi and S. Typhimurium in

that S. Typhi is more acid-sensitive than S. Typhimurium [15].

There is also a fundamental difference in the gastric biology of

mice and humans. Prior to immunization, mice and humans fast

(usually 4–6 hours) to empty the upper portion of the gastroin-

testinal tract and reduce variations in vaccine invasion into M cells

of the gut associated lymphoid tissue (GALT) due to the presence

of food. In mice, fasting has the added benefit of increasing gastric

pH. The normal murine gastric pH is around 3.0, and rises to 4.0

following a fast [16]. In humans, however, the normal stomach pH

drops below 2.0 during fasting conditions [17,18]. In the context of

an oral immunization, the fasted mouse stomach poses a mild

challenge, while the fasted human stomach is hostile enough to

eradicate most (if not all) of the incoming vaccine cells.’’ To further
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complicate matters, RASVs are not usually cultured under

conditions that induce acid resistance, thus the cells enter the

host unprepared for the challenge the gastric environment presents

[19]. RASVs may also contain mutations that render them more

sensitive to acidic pH than wild-type strains [15,20]. These

problems make it difficult to reliably predict the survival of RASVs

following inoculation and may hamper our understanding of

Salmonella pathogenesis and RASV immunogenicity. Thus, a

mouse model that more closely mimics the low gastric pH of

humans may provide additional insights to guide the development

and formulation of RASVs for human use.

The problem gastric transit poses for RASVs has by no means

been overlooked. Vaccines are usually administered in conjunction

with a means to protect the cells from gastric acid, such as an

antacid [21–24] or in a gel-coated capsule [25,26]. These

formulations are effective, but they prevent the target microbe

from experiencing the low pH environment of the stomach and

thus the cells do not receive important positional signals that aid

them in preparing to colonize the intestine and invade host tissues

[27–31]. To address this issue, we have developed a regulated

acid-resistance strategy using arginine decarboxylase that dramat-

ically increases the survival of acid-sensitive Salmonella Typhi

vaccines strains at pH 3.0 and 2.5 in vitro [32]. However, for this

system to be effective in a vaccine context, it must increase survival

not only in vitro, but also during in vivo gastric transit.

In mice, the subcutaneous administration of histamine results in

a rapid and significant increase in hydrochloric acid secretion by

the parietal cells of the stomach via signaling through the H2

receptors [33–36]. Although originally designed to mimic acid

reflux in humans, this model may also be suitable for microbial

infection and immunization scenarios, as it was previously used to

establish the importance of low gastric pH as a barrier to infection

[4]. Thus, the purpose of this study was two-fold. The first goal

was to determine the suitability of the histamine mouse model as a

means to mimic the low pH environment of the human stomach

and gain insight into the impact of the in vivo gastric environment

on the survival of RASVs and other enteric microbes. The second

goal was to use the histamine mouse model to evaluate the in vivo

survival of attenuated S. Typhi strains containing a rhamnose-

regulated arginine decarboxylase acid resistance system. This

system significantly improves survival during in vitro low pH

challenge [32]. Thus, we hypothesized that the presence of this

system would also increase the ability of acid-sensitive strains of S.

Typhi to reach the intestinal tract in vivo. We found that survival

of a variety of wild-type bacteria in this low gastric pH mouse

model strongly correlated with their in vitro acid resistance profile

and that the arginine decarboxylase system provided approxi-

mately a 10-fold competitive advantage in the low pH gastric

environment for acid-sensitive strains of S. Typhi.

Materials and Methods

Animal use and ethics statement
This study was approved by the Arizona State University

Institutional Animal Care and Use Committee (IACUC). All

animals were housed in accordance with American Association for

Laboratory Animal Care (AALAC) standards, provided unlimited

access to food and water, and handled in accordance with the

Animal Welfare Act and Institutional Animal Care and Use

Committee (IACUC) regulations. Experiments involving animals

were conducted in a facility fully accredited by the Association for

Assessment and Accreditation of Laboratory Animal Care

International (Unit #000765) and an assurance is on file with

the Office for Laboratory Animal Welfare (#A3217-01). Exper-

iments were planned and conducted utilizing the three R’s

(reduce, replace and refine) which included environmental

enrichment, veterinary oversight and the use of appropriate

analgesics and anesthesia when appropriate. For surgical proce-

dures, mice were anesthetized using pentobarbital. Euthanasia at

the completion of experiments was carried out by carbon dioxide

asphyxiation or cervical dislocation while under pentobarbital

anesthesia.

Bacterial strains, plasmids and culture conditions
The bacterial strains and plasmids used in this study are listed in

Table 1. For routine use, strains were propagated in LB medium

(supplemented with 0.1% glucose) with shaking at 200 rpm at

37uC [37]. For acid resistance and gastric transit assays, cells were

also grown in tryptic soy broth (TSB) (BD Biosciences, Franklin

Lakes, NJ, USA) with 0.4% glucose at 37uC under static anaerobic

conditions or in minimal EGA medium (E medium containing

0.4% glucose and 0.1% casamino acids [32]) with shaking at

200 rpm at 37uC. For S. Typhi strains containing the rhamnose-

dependent arginine decarboxylase system, 0.1% rhamnose was

supplied in the growth medium. S. Typhi EGA medium cultures

were supplemented with 20 mg/ml L-tryptophan, 22 mg/ml L-

cysteine, and 0.1% casamino acids. Media for the growth of DaroD

strains x11548 and x11568 were additionally supplied with 50 mg/

ml L-phenylalanine, 20 mg/ml L-tyrosine, 2 mg/ml r-aminoben-

zoic acid and 2.5 mg/ml 2, 3-dihydroxybenzoate. For antibiotic

selection, streptomycin and kanamycin were used at 30 mg/ml,

while ampicillin was used at 100 mg/ml. All chemicals were

purchased from Sigma-Aldrich (St. Louis, MO, USA) or Thermo

Fisher Scientific (Pittsburgh, PA, USA) unless otherwise indicated.

Histamine mouse model and measurement of murine
intragastric pH

Six week old, female BALB/c mice (Charles River Laboratories,

Wilmington, MA, USA) were fasted without food or water for 6 h

prior to the start of the experiment. Mice received the histamine

H1-receptor antagonist chlorpheniramine (0.3 mg/kg) subcutane-

ously to prevent allergy/anaphylaxis symptoms. Gastric acid

secretion was induced by subcutaneous injection of histamine

dihydrochloride (10 mg/kg) [33,34]. For intragastric pH mea-

surements, mice were anaesthetized with pentobarbital (50 mg/kg

intraperitoneally), stomachs were excised and the pH of the gastric

contents was immediately measured using an Orion 9863BN

Micro pH electrode (Thermo Fisher Scientific). Care was taken

during pH measurement to fully immerse the pH probe in the

gastric contents without contacting the stomach mucosa. Mice

were euthanized immediately after pH measurements were taken.

Visualization of S. Typhi in the gastrointestinal tract
As a means to visualize the location of the microbial inoculum

following oral immunization, the plasmid pGEN-luxCDABE was

introduced into S. Typhi Ty2. pGEN-luxCDABE encodes the Vibrio

luciferase genes and emits a strong photon signal (56105 CFU

emit a visible signal) [38]. This plasmid was stable for .25

generations in S. Typhi. Mice were treated to induce low gastric

pH as described above and were orally inoculated with

16109 CFU of S. Typhi Ty2(pGEN-luxCDABE) 50 min after

histamine injection. Bacterial cells were administered in 20 ml PBS

(pH 7.4) supplemented with 0.1% casamino acids. At 30, 60 and

90 min after inoculation, mice were euthanized via cervical

dislocation and the GI tract excised and perforated to increase

oxygen availability during the imaging process. Luminescent

bacteria were detected using the IVIS Lumina pre-clinical in vivo
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imaging system (Xenogen, Alameda, CA, USA) using lumines-

cence settings with a 300 s exposure.

In vitro acid resistance assay
Acid resistance was determined essentially as described previ-

ously [39,40] with the following modifications. Wild-type strains

were propagated either under normal inoculation conditions

(grown to an optical density (OD600) of 0.9 in LB broth with 0.1%

glucose with aeration) or under acid resistance-inducing conditions

(in a static anaerobic TSB culture with 0.4% glucose for 17 h).

Cultures were normalized to the same OD600 value, then pelleted

and washed once in EG medium, pH 7.0 containing no growth

supplements [41]. Cells were pelleted a second time and

resuspended at a density of 16109 CFU/ml in EG medium at

pH 3.0 containing 0.1% casamino acids. Because the wild-type

strains use a variety of decarboxylase enzymes to resist low pH,

casamino acids were supplied in order to provide all strains with

the same combination of amino acids. Low pH challenge was

conducted at 37uC and samples were collected immediately after

resuspension (t = 0) and hourly for 4 h. Samples were serially

diluted and plated onto LB agar to assess viability during

challenge.

Gastric transit of wild-type enteric strains
Strains were grown under identical conditions as those used in

the acid resistance assay with two differences. First, strains used in

the gastric transit assays contained the low copy number plasmid

pWSK129 to allow for precise quantitation of strain numbers in

the non-sterile environment of the gastrointestinal tract. Second,

following the completion of growth, strains were pelleted and

resuspended in PBS [42] at a density of 561010 CFU/ml. Murine

gastric pH was lowered by histamine injection as described above

and groups of 5 mice were orally inoculated with 16109 CFU of

each strain 50 min after the administration of histamine. The

average gastric pH at the time of inoculation was 1.4660.25. Mice

were euthanized 1 h after inoculation and the entire small

intestine was removed, homogenized and serially diluted. Samples

were plated onto LB with kanamycin to determine the number of

viable bacteria present following low pH gastric transit.

Competition assay for acid-resistant and acid-sensitive S.
Typhi strains

The S. Typhi competition assay was performed the same as the

gastric transit assays with the following exceptions. First, compet-

itor strains contained one of two low copy number plasmids –

either pWSK129 or pGB2. No difference in gastric survival was

observed between strains containing these plasmids (data not

shown); however, to rule out any effect of antibiotic resistance on

gastric transit, each gastric passage experiment was repeated with

the plasmids switched. Second, following resuspension at

561010 CFU/ml, competitor strains were mixed to create an

inoculation material with equivalent numbers of each strain. The

cells of the inoculum were suspended in PBS containing 1 mM L-

arginine. After gastric transit, samples of homogenized intestinal

material were plated simultaneously onto LB agar with either

streptomycin or kanamycin to enumerate the number of each

strain present. Data are expressed as the competitive index for the

pair of strains. The number of acid-resistant microbes present was

divided by the number of acid-sensitive microbes and then

normalized by the initial inoculation ratio for each group.

Statistical analyses
Statistical calculations were performed using GraphPad Prism

version 6.00 for Windows (GraphPad Software, La Jolla, CA,

USA). Data are presented as the geometric mean 695%

confidence interval, with the exception of pH measurements

which are presented as the mean 6 SEM. 2-way ANOVA was

used to compare the performance of the fasted and histamine

mouse models over the entire strain set, and to compare the

difference between acid-adapted and unadapted cells. To deter-

Table 1. Bacterial strains and plasmids used in this study.

Strain Description/Genotypea Reference or Source

Escherichia coli O157:H7 278F2 Wild type [63]

Shigella flexneri 2457T Wild type [64]

Salmonella enterica serovar Typhimurium UK-1 Wild type [65]

Salmonella enterica serovar Typhimurium LT-2 Wild type, RpoS- [51,66]

Vibrio cholerae C6709 Wild type El Tor, Inaba [67]

Salmonella enterica serovar Typhi Ty2 Wild type, RpoS- [68,69]

x11548 S. Typhi Ty2 DaroD1299 [32]

x11568 S. Typhi Ty2 DaroD1299 DPadiA276::TT rhaSR PrhaBAD adiA D(PadiY-adiY-PadiC)-119 adiC [32]

x8444 S. Typhi Ty2 DphoPQ23 [32]

x11622 S. Typhi Ty2 DphoPQ23 DPadiA276::TT rhaSR PrhaBAD adiA D(PadiY-adiY-PadiC)-119 adiC [32]

x11118 S. Typhi Ty2 DPfur81::TT araC ParaBAD fur [32]

x11623 S. Typhi Ty2 DPfur81::TT araC ParaBAD fur DPadiA276::TT rhaSR PrhaBAD

adiA D(PadiY-adiY-PadiC)-119 adiC
[32]

Plasmid

pWSK129 pSC101 ori, KanR [70]

pGB2 pSC101 ori, Str/SpcR [71]

pGEN-luxCDABE p15A ori, AmpR, luxCDABE [38]

aIn genotype descriptions, the subscripted number refers to a composite deletion and insertion of the indicated gene. P, promoter; TT, T4 ip III transcription terminator;
ori, origin of replication; KanR, kanamycin resistance; Str/SpcR, streptomycin/spectinomycin resistance; AmpR, ampicillin resistance.
doi:10.1371/journal.pone.0087411.t001
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mine if the % survival of different strains in a particular model was

different, the non-parametric Kruskal-Wallis test was used. For the

correlation between survival in the mouse models and survival

during in vitro challenge, the log10 of the geometric mean number

of CFU that survived 1 h in vivo was plotted against the log10 of

the geometric mean number of CFU that survived 2 h at pH 3.0.

Linear regression analysis was used to calculate the best fit line and

r2 value. Competitive indices were analyzed by the Wilcoxon

signed rank test to determine whether the median value differed

significantly from 1.000.

Results

Optimization of the histamine mouse model for bacterial
gastric transit

Previous work with the histamine mouse model has shown that

maximal secretion of gastric acid occurs 45 min after the

administration of histamine [34]. However, this was reported as

the amount in mEq of HCl secreted from the mucosal surface and

not as the total gastric pH. To evaluate and validate the histamine

mouse model as a model for microbial gastric transit, it was

necessary to know the length of time required for the entire

contents of the stomach to acidify and the duration of the gastric

pH minimum so that an appropriate window for oral inoculation

could be selected. Thus, our first experiment monitored the gastric

pH for 4 h after induction of gastric acid secretion via histamine

injection (Figure 1). The mean initial gastric pH of mice that had

been fasting for 6 h at time 0 was 2.5460.31. The gastric pH

began to decrease 45 min after histamine injection (mean

pH = 2.0160.19), but did not reach a minimum until 60 min

(mean pH = 1.6160.03). The mean pH remained low at 90 min

(1.8460.08), but had returned to the initial value by 2 h

(2.7860.32). Based on these results, we chose to administer oral

inoculations to mice 50 min after the injection of histamine to

ensure that the incoming bacteria would enter a fully acidified

gastric compartment.

The other experimental parameter investigated was the length

of time needed for the orally administered bacteria to reach the

terminal ileum, which is the primary site of invasion for Salmonella.

In order to visually identify the location of the inoculated bacteria,

the pGEN-luxCDABE plasmid was introduced into S. Typhi Ty2.

Any site containing greater than 105 viable CFU will emit a visible

signal, so although the location of every microbe administered

could not be determined, the luciferase system encoded by the

plasmid was sufficient to detect the bolus of the inoculum. Within

30 min of oral inoculation, the majority of bacteria had already

transited the stomach and reached the upper portion of the small

intestine (Figure 2). By 60 min, the bacteria had reached the

terminal ileum, immediately prior to the cecum. After 90 min, the

bacteria had presumably entered the cecum, but were no longer

detectable, due either to their dilution into the cecal contents or a

lack of bioluminescence resulting from a prohibitively low oxygen

tension in the cecum. A faint visible signal was observed in the

stomachs of some mice. Plating indicated that although a small

portion of the inoculated microbes remained in the stomach

(approximately 5x103 CFU), the vast majority of bacteria exited to

the gastrointestinal tract (data not shown). Based on these results,

we selected 1 h after inoculation as the most opportune time to

recover the test bacteria from the gastrointestinal tract.

Enteric bacteria unprepared for low pH challenge survive
gastric passage in fasted but not histamine mice

If the histamine mouse model creates a low pH gastric barrier

similar to the one found in humans, then survival during transit

through the gastric compartment should correlate with the ability

of a microbe to resist low pH. In other words, the more acid-

resistant a particular pathogen is, the greater the number of

bacteria that survive low pH gastric transit. To test this, we

selected a panel of wild-type enteric bacteria with differing levels of

pH tolerance (Table 1). Escherichia coli O157:H7 and Shigella

flexneri were selected as highly acid-resistant strains. The E. coli

strain is capable of sustained survival at pH 2.0, while Shigella is

resistant to pH 2.5 [39,43,44]. Virulent Salmonella enterica serovar

Typhimurium strains such as UK-1 do not survive below pH 3.0

unless cultured under conditions that induce acid resistance

[43,45]. We also included S. Typhimurium LT-2, which has a

defect in the acid tolerance response and exhibits reduced survival

at pH 3.0 [27]. Acid-sensitive strains, Vibrio cholerae and Salmonella

enterica serovar Typhi, were also included. V. cholerae is highly

sensitive to low pH challenge [46]. While not as sensitive as V.

cholerae, S. Typhi strains generally have a much lower capacity to

resist low pH challenge than S. Typhimurium [15,47].

Cells were cultured under routine conditions in LB broth

(unprepared for low pH challenge), and their survival during in

vitro pH 3.0 challenge was compared to their survival during

gastric transit through fasted or histamine-treated mice (Figure 3).

During in vitro challenge, E. coli O157:H7 exhibited essentially no

decrease in viability over 4 h, while the viability of S. flexneri and

the S. Typhimurium strains declined gradually during the

experiment (Figure 3A). S. Typhi survived well for the first hour,

but a rapid loss in viability was observed after that. The acid-

sensitive V. cholerae strain exhibited the lowest level of survival.

These results are consistent with previously published studies

[15,27,39,43–46]. When the strains were passed through the

gastric compartments of fasted or histamine-treated mice, the

models produced significantly different results (p = 0.0114)

(Figure 3B). In fasted mice, no differences in survival were

observed between strains (p = 0.2757). In contrast, bacterial

survival during gastric transit in histamine-treated mice was

significantly different between strains (p,0.0001). The acid-

resistant S. flexneri strain had the highest rate of recovery

(1.3265.93%), followed by E. coli O157:H7

(2.3869.2461022%), while the acid-sensitive V. cholerae had the

Figure 1. Gastric pH following histamine injection. Following a 6
h fast, mice were injected at time 0 with 10 mg/kg histamine. The pH of
the gastric contents was monitored for 4 h post histamine injection.
Data shown are the mean and standard error of the mean of at least five
mice per time point.
doi:10.1371/journal.pone.0087411.g001
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lowest rate of recovery (1.67621.261025%). The acid-sensitive S.

Typhimurium LT-2 and S. Typhi strains also exhibited low rates

of recovery in the histamine mouse model (1.2762.2161023 and

1.8463.1961023, respectively). With the exception of S. flexneri,

the survival of each strain was significantly lower in the histamine

mouse than in the fasted mouse.

Induction of acid resistance increases survival of enteric
bacteria during gastric transit in histamine mice

If the differences in survival observed for different strains are

indeed due to differences in the ability of the strains to resist low

pH, then the induction of acid resistance prior to gastric transit

should increase the survival of previously acid-sensitive strains.

Thus, the experiment was repeated using cells that had been

cultured under anaerobic, low pH conditions to induce acid

tolerance and acid resistance (Figure 4). Under these conditions,

greater than 10% of the initial population of the E. coli, Shigella and

Salmonella strains were viable after 4 h of in vitro challenge

(Figure 4A). This was a significant increase over the survival of

unadapted cells (p = 0.0011 for LT2, p,0.0001 for the other

strains). Although growth under acid resistance-inducing condi-

tions improved the ability of V. cholerae to survive at the later time

points of the challenge, the difference between acid-unadapted

and acid-adapted cells at pH 3.0 was not significant (p = 0.2363).

When acid-adapted strains were administered to mice, survival

did not differ between the fasted and histamine-treated mouse

models (p = 0.4648) (Figure 4B). This was a significant improve-

ment in survival during gastric transit over acid-unadapted cells

(p,0.0001). The greatest increases in survival in vivo were

observed with the E. coli O157:H7 strain, which increased from

2.3869.24x1022% to 27.3615.7% (p = 0.0002) and the S. Typhi,

which increased from 1.8463.19x1023% to 1.2464.26%

(p = 0.0002). Similar to the results observed during in vitro

challenge, acid adaptation of V. cholerae had no effect on in vivo

survival in histamine-treated mice (p = 0.0626). To formally assess

the ability of the histamine mouse model to discriminate between

acid-sensitive and acid-resistant strains, we determined the

correlation between survival in vitro during pH 3.0 challenge

and survival in vivo (Figure 5). The histamine mouse model

demonstrated a clear correlation between acid resistance in vitro

and the ability to survive gastric transit through an acidified

compartment (r2 = 0.9399), indicating the power of this model to

distinguish between acid-sensitive and acid-resistant microbes

(Figure 5A). In contrast, the fasted mouse model showed only a

weak correlation between acid resistance and survival during in

vivo gastric transit (r2 = 0.4238) (Figure 5B).

A rhamnose-regulated arginine decarboxylase system
increases the survival of acid-sensitive S. Typhi strains
during gastric transit in histamine mice

We previously constructed a rhamnose-regulated arginine

decarboxylase system in S. Typhi, in which the adiA and adiC

genes are placed under the control of the rhamnose-dependent

promoter PrhaBAD [32]. Inclusion of rhamnose in the culture

medium results in expression of the arginine decarboxylase system,

significantly increasing survival during in vitro low pH challenge.

This system was introduced into three model S. Typhi vaccine

strains – DaroD1299 (x11548), DphoPQ (x8444) and DPfur81::TT

araC PBAD fur (x11118) (Table 1). The mutations in the phoPQ and

fur loci render their respective vaccine strains acid-sensitive, while

the mutation in aroD has no effect on acid sensitivity. Because the

histamine mouse model successfully discriminated between acid-

sensitive and acid-resistant bacteria, we used it to evaluate the

effectiveness of the rhamnose-regulated arginine decarboxylase

system in vivo. We found that the presence of our system provided

a competitive advantage during gastric transit (Figure 6). The

DaroD1299 vaccine strain benefitted the least from the acid

resistance system with only a 2.2-fold increase in the survival of

x11568 (AdiA+) over the original Daro parent strain (x11548). This

increase was not significant (p = 0.2850). However, survival of the

acid-sensitive vaccine strains x8444 and x11118 (DphoPQ and

DPfur81::TT araC PBAD fur, respectively) was increased by the

presence of the rhamnose-inducible arginine decarboxylase system

in vivo. In the DPfur81::TT araC PBAD fur background, the presence

of arginine decarboxylase provided a 6.0-fold increase in survival

during gastric transit (p = 0.0002). A greater degree of individual

Figure 2. Visualization of the bacterial inoculum in the gastrointestinal tract via light emission. Low gastric pH was induced in mice by
histamine injection prior to inoculation with 16109 CFU of S. Typhi Ty2(pGEN-luxCDABE). At 30, 60 and 90 min post-inoculation, the gastrointestinal
tract was removed and examined for the production of light by luciferase. A visible signal is equivalent to approximately 56105 CFU. Luminescence is
reported as the number of photons detected per s per square cm. Images shown are representative results from groups of seven mice.
doi:10.1371/journal.pone.0087411.g002
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variation was observed in the DphoPQ background, but the

inclusion of the regulated arginine decarboxylase system increased

survival 11.6-fold in vivo (p = 0.0302).

Discussion

The fasted mouse model and the related bicarbonate-treated

fasted mouse model have been used extensively to evaluate the

immunogenicity of potential live attenuated S. Typhimurium

vaccine strains [1,48–50]. However, these models do not take into

account differences in the acid sensitivity of potential vaccine

strains. Although we observed a lower gastric pH in fasted mice

than previously reported (most likely due to differences in the

fasting conditions or length), acid-sensitive, acid-adapted and

naturally acid-resistant microbes all survived equally well during

their transit through the fasted gastric compartment. Although the

fasted mouse model is sufficient for the identification and initial

characterization of candidate RASVs, results obtained from this

model may be misleading because they do not take into account

the differences in murine and human gastric biology.

One of the goals of this study was to evaluate the ability of

histamine-treated mice to serve as a model system for assessing

gastric survival of microbes upon oral inoculation to humans. We

found the histamine mouse model to be a reliable means to induce

low gastric pH (approximately pH 1.5) for a considerable length of

time (45 min). Although the time that the orally administered

bacteria spend in the acidified gastric compartment is relatively

short (bacteria reach the jejunum within 30 min and are detected

in the terminal ileum approximately 1 h after inoculation), we

found that even this short exposure to low pH was sufficient to kill

Figure 3. Survival of strains cultured under non-acid resistance inducing conditions. Wild-type enteric strains were grown in LB medium
to late-log phase under aerobic conditions. (A) Cells were challenged in EG medium (pH 3.0) containing 0.1% casamino acids. Survival during EG
medium challenge was assayed hourly for 4 h by plating onto LB agar. Data shown are the mean and SEM of three independent experiments. (B)
Mice were either fasted for 6 h (fasted mouse model) or fasted and low gastric pH was induced by histamine injection (histamine mouse model) and
then inoculated with 109 CFU of each strain. Sixty min after inoculation, mice were euthanized and the entire small intestine removed and
homogenized. Strain survival was assayed by plating onto LB agar containing kanamycin. Data are expressed as the percent of initial inoculum
recovered (% survival). The geometric mean and 95% confidence interval of two independent experiments (8 mice total) is depicted.
doi:10.1371/journal.pone.0087411.g003
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a large number of the incoming microbes. Viability of the acid-

resistant E. coli O157:H7 and S. flexneri strains was reduced by 70–

90% during gastric transit, while the acid-sensitive V. cholerae strain

experienced a 100,000-fold decrease in viability.

The low pH gastric barrier created by the histamine mouse

model provides an in vivo system that accurately discriminates

between acid-sensitive and acid-resistant microbes. Survival

during gastric transit in this model directly correlated with the

ability of the test microbe to resist low pH. This holds even in the

case of the two S. Typhimurium strains tested, LT-2 and x3761

(Figure 3). This is of interest, since the two strains have a well-

characterized difference in acid resistance, due to their carriage of

different rpoS alleles [51]. Cells that were sensitive to acid or

unprepared for low pH challenge did not survive as well as cells

that had induced acid resistance systems prior to passage.

Although survival during gastric transit correlated well with the

acid resistance results obtained in vitro, the histamine mouse

model routinely returned lower rates of survival than the in vitro

assay. This could be due to the difference in pH between the in

vitro (3.0) and in vivo (1.5) challenges. However, it is also possible

that gastric transit poses additional challenges beyond low pH that

are not easily replicated in vitro. In vivo, ingested bacteria must

contend with a combination of organic and inorganic acids in the

stomach and upper intestinal tract [52] as well as the bile,

antimicrobial peptides and other intestinal defense mechanisms

[53–55]. Thus, when making predictions about the ability of a

given microbe to survive oral inoculation, it is important to

evaluate in vitro data cautiously, as a moderately acid-sensitive

strain in vitro may or may not efficiently transit the stomach in

vivo.

Figure 4. Survival of strains cultured under acid resistance-inducing conditions. Wild-type enteric strains were grown to stationary phase
in TSB medium containing 0.4% glucose under anaerobic conditions. (A) Cells were challenged in EG medium (pH 3.0) containing 0.1% casamino
acids. Survival was assayed hourly for 4 h by plating onto LB agar. Data shown are the mean and SEM of three independent experiments. (B) Mice
were either fasted for 6 h (fasted mouse model) or fasted and low gastric pH was induced by histamine injection (histamine mouse model) and then
inoculated with 109 CFU of each strain. Sixty min after inoculation, mice were euthanized and the entire small intestine removed and homogenized.
Strain survival was assayed by plating onto LB agar containing kanamycin. Data are expressed as the percent of initial inoculum recovered (%
survival). The geometric mean and 95% confidence interval of two independent experiments (8 mice total) is depicted.
doi:10.1371/journal.pone.0087411.g004
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Survival of acid-sensitive S. Typhi vaccines during gastric transit

was improved by the presence of a sugar-inducible acid resistance

system (rhamnose-regulated arginine decarboxylase). For both the

DphoPQ23 and DPfur81::TT araC ParaBAD fur strains, the inclusion of

this system greatly increased the number of viable bacteria that

reached their target tissue for invasion (the terminal ileum).

However, the inclusion of the arginine decarboxylase system did

not benefit the DaroD1299 mutant to the same degree as the acid-

sensitive strains. The reasons for this are not clear, since this strain

showed a dramatic increase in acid resistance during in vitro

challenge (10,000-fold greater viability after one hour) [32]. One

possibility is that growth in minimal medium prior to inoculation

may have rendered this nutritional mutant less fit for the challenge

of in vivo host interactions. Alternatively, the arginine decarbox-

ylase system may be able to compensate for defects in acid

tolerance or acid resistance but be unable to increase acid

resistance beyond the wild-type level. There is some evidence for

this, as the total number of CFU recovered for both the parent

DaroD1299 and acid-resistant DaroD1299 strains was higher than

the number recovered from the acid-resistant DphoPQ23 and

DPfur81::TT araC ParaBAD fur strains (data not shown).

In conclusion, the histamine mouse model is a method capable

of discriminating in vivo between acid-sensitive and acid-resistant

microbes. Survival during gastric transit in this model is directly

related to the ability of the ingested microbe to resist low pH - the

more acid-resistant a particular microbe is, the greater the number

of bacteria that survive gastric transit. This ability makes the

histamine mouse model an excellent choice to evaluate not just the

delivery of live recombinant attenuated S. Typhi vaccines, but any

beneficial orally administered microbe or gastric formulation

strategy. Many probiotic bacteria have low levels of acid tolerance

and require formulations that protect them from exposure to low

pH [56–59]. This model will allow those formulations to be tested

in vivo for efficacy. The histamine mouse model will also permit

researchers to explore the natural diversity of acid resistance or

sensitivity within a given species or between clinical isolates to

determine the effect of acid resistance on strain infectivity and

pathogenicity. Many pathogenic enterohemorrhagic E. coli strains

contain mutations in the rpoS and gadE genes (GadE is a regulator

of the glutamate decarboxylase system) and vary greatly in their

ability to resist low pH [8,60–62]. For microbes that exhibit acid

sensitivity, the inclusion of the rhamnose-regulated arginine

decarboxylase acid resistance system improves the ability of these

microbes to reach the intestinal tract. Future studies will focus on

determining whether this increase translates into a dose reduction

for the vaccine or improved vaccine efficacy.
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Figure 5. Correlation between in vitro and in vivo survival. The
log10 of the geometric mean number of CFU that survived in vitro
challenge at pH 3.0 for 2 h was plotted against the log10 of the
geometric mean number of CFU recovered from the intestinal tissue in
the (A) histamine mouse model or (B) fasted mouse model. Linear
regression was performed on each data set and the r2 value of the best-
fit line is depicted for each model.
doi:10.1371/journal.pone.0087411.g005

Figure 6. Effect of arginine decarboxylase on the gastric
survival of S. Typhi. Pairs of attenuated S. Typhi strains differing
only in their arginine decarboxylase locus were grown to stationary
phase in EGA medium under aerobic conditions. Cells were combined
in a 1:1 ratio in PBS containing 1 mM arginine. Low gastric pH was
induced by histamine injection in mice fasted for 6 h. Mice were
inoculated with 109 CFU of each strain. Sixty min after inoculation, mice
were euthanized and the entire small intestine removed and
homogenized. Strain survival was assayed by plating onto LB agar
containing kanamycin or streptomycin. Data shown are the competitive
index of the two strains in each mouse with the geometric mean of two
independent experiments (10 mice total) indicated as a solid line.
doi:10.1371/journal.pone.0087411.g006
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