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Abstract

Here we develop a framework to design multi-species monitoring networks using species distribution models and
conservation planning tools to optimize the location of monitoring stations to detect potential range shifts driven by
climate change. For this study, we focused on seven bat species in Northern Portugal (Western Europe). Maximum entropy
modelling was used to predict the likely occurrence of those species under present and future climatic conditions. By
comparing present and future predicted distributions, we identified areas where each species is likely to gain, lose or
maintain suitable climatic space. We then used a decision support tool (the Marxan software) to design three optimized
monitoring networks considering: a) changes in species likely occurrence, b) species conservation status, and c) level of
volunteer commitment. For present climatic conditions, species distribution models revealed that areas suitable for most
species occur in the north-eastern part of the region. However, areas predicted to become climatically suitable in the future
shifted towards west. The three simulated monitoring networks, adaptable for an unpredictable volunteer commitment,
included 28, 54 and 110 sampling locations respectively, distributed across the study area and covering the potential full
range of conditions where species range shifts may occur. Our results show that our framework outperforms the traditional
approach that only considers current species ranges, in allocating monitoring stations distributed across different categories
of predicted shifts in species distributions. This study presents a straightforward framework to design monitoring schemes
aimed specifically at testing hypotheses about where and when species ranges may shift with climatic changes, while also
ensuring surveillance of general population trends.
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Introduction

Ecosystems and global biodiversity are facing a decline as a

direct and indirect consequence of human actions [1,2], and we

are yet to experience the full impacts of anthropogenic climate

change [3–5]. Effective conservation depends on our ability to

define, measure, and monitor biodiversity change. Biodiversity

monitoring programs usually aim at determining population

trends and changes in the structure of biotic communities, often

in response to environmental change, anthropogenic disturbance,

or targeted management actions [6,7]. The importance of

monitoring biodiversity is becoming increasingly recognized,

nevertheless many ongoing monitoring schemes have been

criticized for not being underpinned by clear objectives, designed

to test specific scientific hypotheses or to evaluate the success of

conservation actions (e.g. [7,8]), and also for not addressing the

relation between cost and benefit [9]. One of the problems often

identified in monitoring arises from data being collected in an ad

hoc and fragmented way that lacks statistical and/or methodolog-

ical consistency and therefore does not allow an effective

evaluation of relevant conservation questions [10]. Untargeted

monitoring can result in years of wasted effort and money [11] and

may even fail in acquiring the critical information to improve

management options, one of the major purposes of monitoring [9].

In recent years scientists and practitioners have drawn their

attention to the importance of improving methods to design

monitoring schemes [7,8,12–14], and it is widely recognized that

monitoring programs need to address well-defined and testable

questions, understand how the focal ecosystem might work or how

the monitoring targets might function, and be of management

relevance (e.g. effects of a pollutant or changes in climate on

features of a given ecosystem). However, effective multi-species

monitoring is still lacking and, despite its value for describing

conditions and detecting undesirable changes, traditionally it is not

designed to determine the causes of such changes nor to track

specific expected changes [15].

Criticisms on current monitoring programs are particularly

evident in the case of monitoring biodiversity responses to climate

change. Species may respond to human induced climate change in

a variety of ways [16]. Changes in phenology, such as timing of
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flowering or breeding which may also lead to mismatches between

the successive trophic levels [17], have been linked to climate

change [18,19]. An impressive number of studies have also focused

on the impact of climate change on species range shifts, from polar

latitudes to tropical regions and even marine ecosystems (for an

extensive review see [16]).

Species range shifts are a major challenge to conservation

planning because the spatial patterns of biodiversity are expected

to change, with species of high conservation interest moving from

current protected areas (e.g. [20,21]), while areas that are without

legal protection may become more relevant for species’ conserva-

tion in the future [22,23]. Unfortunately, monitoring programs

normally disregard where (and when) species ranges are predicted

to shift, and thus they are not necessarily designed for detecting

shifts due to climate change, although the importance of doing so

has been recently acknowledged [24]. Because many species are

predicted to be affected by climate change, these programs should

also be optimized to monitor the highest number of species for the

least cost, something which is rarely considered in the design of the

monitoring schemes (but see [10,15,25]).

Due to their high mobility, bats are able to respond rapidly to

environmental changes [26] rendering them as a good model to

detect changes in species distributions due to climate change. In

fact changes in the distribution and abundance of bats in response

to climate change are already emerging. In Costa Rican cloud

forest, bat species have shown an altitudinal shift from lowland

areas to higher altitudes in response to climate change [27]. In

Europe, Pipistrellus kuhlii has expanded its range northwards since

the 1990s, in response to the increasing temperatures [28]; and

Pipistrellus nathusii has also expanded its range towards higher

latitudes in the U.K. [29].

Apart from their rapid response to environmental changes,

there is high potential for developing bat monitoring programs, as

shown by the high number of monitoring programs running

worldwide [30,31]. Currently, the monitoring of cave-dwelling bat

species is implemented in several countries (e.g. [32]). However,

because surveying tree and crevice-dwelling species can be

challenging, time consuming and expensive, monitoring of this

group is seldom established. For these species, acoustic sampling is

the most widespread method whenever a monitoring program is

developed (e.g. [33–37]), although some limitations exist e.g. the

level of activity is not necessarily proportional to abundance.

Moreover factors such as differences in detectability and even

temporal variations may lead to differences in species activity [38].

We are fully aware of the inherent limitations of this method,

therefore we focused our monitoring networks on species with a

higher detection probability.

A good example of acoustic monitoring programs is The

Indicator Bats Program (http://www.ibats.org.uk/), with projects

running in the UK, Eastern Europe, Ukraine, Russia and Japan.

Conversely, other ongoing acoustic monitoring programs have

methodological problems, mainly related to sampling design. For

example, the Irish Bat Monitoring Program includes a car-based

scheme that reveals information on bat populations and

distributions [39]. While recognizing the importance of such

information, one must be aware that road-based surveys have the

potential to provide biased results, since their placement is non-

random [15]. Bat monitoring programs have detected population

fluctuations (see for example, the 2011 report of the UK National

Bat Monitoring Program; available at http://www.bats.org.uk/),

but even the best examples are subject to the most frequent

problem of monitoring programs (see above): they are not

designed to test which environmental changes (e.g. climate change)

are leading to such fluctuations.

Predictive models, and particularly species distribution models,

allow extrapolating species distribution data in space and time,

based on a statistical model [40]. Such extrapolation is possible by

combining observations of species occurrences with environmental

variables known to influence habitat suitability and therefore

species distribution. Combined with stratifications and scenarios

for the relevant environmental factors, species distribution models

thus have the potential to improve the spatial design and cost-

efficiency of ecological monitoring networks (e.g. [41]).

The main goal of this study is to develop and test a framework

to design optimized multi-species monitoring networks, able to test

hypotheses about how species ranges will shift with climate

change. To that end, we developed a case study based on seven

bat species in the North of Portugal. We first increased the existing

data about bat distribution in the study area with field work

targeted at the main gap areas. Next, we used these data to predict

likely suitable areas for each species under current and future

climatic conditions, and identified, for each species, which areas

are more likely to lose, gain or maintain climatic suitability in the

future. Then, we used computational tools to optimize the

allocation of monitoring stations in space. Finally, we tested

whether monitoring networks designed when accounting for

predicted species shifts have increased performance relatively to

the ones where only the present distributions are accounted.

This study was developed within the scope of SIMBioN –

Biodiversity Information and Monitoring System for the North of

Portugal, a joint venture between governmental nature conserva-

tion agencies and research centers. SIMBioN was designed with

the general purpose of regularly providing information on the

status of regional biodiversity to support management actions,

technical and political decision-making, regarding biodiversity

management and conservation. The developed monitoring net-

work should be especially sensitive to biodiversity changes

occurring in native woodland areas, for that reason our research

focused on the development of a monitoring program for bat

species somehow associated with this native habitat type. Because

the implementation and running of this network is expected to be

fully executed by volunteers, several alternative networks were

designed to offer different scenarios considering an unpredictable

volunteer commitment. Thus, the main aim of this study is to

develop the aforementioned monitoring networks always consid-

ering the logistic limitations of volunteer surveyors.

Materials and Methods

Ethics Statement
Data on species location used in this research are part of the

database from Instituto da Conservação da Natureza e Florestas

(ICNF) (the national authority for nature conservation and wildlife

protection), and was collected following all legal requirements.

Additional data collection within the scope of this research was

accomplished using non-invasive methods that do not require legal

permits. Sampling in Natural Protected Areas was done with the

authorization of ICNF, and samples within private land were

performed with the authorization of the land owners.

Overview of the analytical framework
Because our framework has many different steps we present

here a brief overview of methods, which can also be found in

Fig. 1. In a nutshell, using Species Distribution Models we

modelled the current distributions of seven bat species and then

projected the results to future conditions according to two different

climatic scenarios. The difference between current and future

predicted distribution allowed us to identify areas where loss, gain

Species Monitoring Networks for Climate Change
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Figure 1. Framework for designing monitoring networks sensitive to climate changes. Proposed framework scheme for designing
adaptive monitoring networks sensitive to climate changes. Full lines indicate data and outcomes; dash lines indicate intermediate steps. Data,
variables and model addition (+) and subtraction (–) is identified.
doi:10.1371/journal.pone.0087291.g001
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or maintenance of suitable climatic space is more likely to occur.

These results were then used in combination with conservation

planning tools to optimize the location of stations for multi-species

monitoring, considering areas where the three different results

(loss, gain, maintenance) are more likely to occur.

Study area
The study area is located in northern Portugal (Western

Europe), approximately between coordinates 40uN–42uN and

6uW–9uW (Fig. 2A). In the northwest and in high elevation areas

of the northeast, the Atlantic temperate climate dominates, with

mild summers and cold, rainy winters. The landscape is

mountainous with native forests mainly composed of deciduous

oaks (Quercus robur, Q. pyrenaica), chestnut (Castanea sativa), birch

(Betula celtiberica), and ash (Fraxinus angustifolia). Conversely, in the

northeast valleys and lowlands the climate is typically Mediterra-

nean sub-continental, with perennial oaks (Quercus suber, Q. ilex)

dominating the native woodlands.

Modelling Procedure
For the calculations of species distribution models we chose a

presence-only technique, based on the principle of maximum

entropy (implemented in Maxent, [42]). The choice of using

Maxent over other modelling techniques was based on its very

good predictive ability when compared with other methods [43–

45]. Also, the use of presence-only data is an advantage when

reliable absence data are not available or are difficult to assess.

Such is the case of bats because of their elusive and nocturnal

behaviour [44]. Maxent estimates the range of a species with the

constraint that the expected value of each ecogeographical

variable (EGV; see below) (or its transform and/or interactions)

should match its empirical average (i.e., the average value for a set

of sample points taken from the target species distribution [46,47]).

Models were run with 80% of the presence data while the

remaining 20% were used for model testing. Because Maxent

randomly chooses which presence data to include in the training

or test models, we ran 100 model replications and averaged them

into a single model. Model calculations were done in the autofeatures

mode with a maximum of 1000 iterations and the regularization

multiplier set to 0.2. To check which variables were the most

important to build the model, a Jacknife analysis of the gain was

made with the presence data. Jacknife analysis measures how well

an EGV distinguishes localities where the species occurs from the

total area under study. All calculations were made in Maxent

v.3.3.3k.

To forecast the effect of climate change, models were computed

with climatic variables only. This may cause overestimations of

species occurrence because the distribution of bats may be

particularly constrained by land cover. Water habitats such as

rivers and ponds can support high levels of bat activity [35,37]

while native woodlands (i.e. oak forests) can support a high bat

diversity [36,37]. To test the effect of this overestimation, we ran

two models for the present conditions, one using all the EGVs

including land cover, slope and altitude (hereafter ‘‘full model’’)

and one using only the climatic variables (hereafter ‘‘climatic

model’’). To compare these models’ predictions, we used

ENMTools v1.3 [48] to measure niche breadth [49] and niche

similarity to determine niche overlap [50]. We also checked the

percentage of cells in which predictions from both models were in

accordance by comparing the cells where presence or absence was

predicted. The climatic models calibrated with present climatic

variables were projected for future (2080) climatic conditions.

To determine the spatial patterns of current suitable areas for

each species, as well as the likely gain and loss of suitable climatic

area, all model projections were reclassified into binary presence/

absence maps.

Presence Data and Environmental Variables
The studied bat species were selected according to the

availability of occurrence data for the study area and their level

of association to native woodland. To achieve reliable models we

only considered species with more than 15 records for the study

area [51]. Therefore, for model calculations we used as response

variables the known locations within the study area for seven bat

species: Myotis daubentonii, Pipistrellus kuhlii, Hypsugo savii, Eptesicus

serotinus/isabellinus, Nyctalus leisleri, Barbastella barbastellus and Tadar-

ida teniotis (source: Instituto da Conservação da Natureza e

Florestas; Fig. 2B). Data were collected by several surveyors using

different methods (i.e. mist-netting, acoustic sampling and direct

observation). Species locations are available in Fig. S1.

In order to increase knowledge about bat distribution in the

study area, additional data were collected through acoustic

transects. These new surveys were performed in areas of high

Figure 2. Study area and data locations. Location of the Study area
(A) and of the available data before this study (source: Instituto da
Conservação da Natureza e Florestas) and additional sampling
determined by species richness as predicted by preliminary SMD for
the present (B) (see methods).
doi:10.1371/journal.pone.0087291.g002
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species richness as predicted by preliminary species distribution

models. With this approach some omission errors (false absences)

may occur but it allows finding bat species in areas where they

were previously unknown while also increasing the geographical

coverage of the presence data to be used in subsequent models.

Details on the acoustic sampling methods can be found below. A

set of independent EGVs, selected as environmental predictors,

was considered for model calibration: annual mean temperature

(uC), mean diurnal range (uC), mean temperature of warmest

quarter (uC), mean temperature of coldest quarter (uC), annual

precipitation (mm) (WORLDCLIM; http://www.worldclim.org),

altitude, slope (source SRTM; http://www2.jpl.nasa.gov/srtm/),

and land cover (Global Land Cover 2005–2006; http://postel.

mediasfrance.org/ and Instituto Geográfico Português). Habitat

composition and structure is known to influence bat activity,

therefore land cover was reclassified into seven ecologically

meaningful classes for bats [35–37,52]: urban, agriculture,

production forests (mainly pines and eucalypts), scrub and

regenerating forest, native woodland, water bodies, and bare

ground [44].

Climatic variables (which include all the mentioned EGVs with

the exception of altitude, slope and land cover) were chosen

according to their reported relevance for bat physiology and

survival [53–55]. After preliminary tests for the selection of the

most informative variables (i.e. the ones achieving higher

percentage contribution and gain in model calculations), some of

the variables were excluded (max temperature of warmest month,

min temperature of coldest month, and precipitation of driest

month).

To forecast the effect of climate change on predicted

distributions, two contrasting IPCC scenarios (A2a and B2a;

http://www.worldclim.org) based on the Global Circulation

Model HadCM3 were used. Scenario A2a is driven by economic

growth at a regional scale, while B2a considers a regional steady

growth and social awareness of environmental sustainability [56].

We used monthly averages of maximum and minimum temper-

atures and total precipitation, for the period of 2070–2099

(hereafter 2080), and then we calculated the bioclimatic variables

according to Hijmans et al. (2005) [57] using the DivaGIS

software version 7.5 (www.diva-gis.org).

Altitude, land cover and slope had a spatial resolution of

approximately 280x280m. Since climatic variables had a resolu-

tion of approximately 1x1km, we downscaled these data to match

the cell size of the previous EGVs following the methodological

approach of Waltari et al. [58]. The study area thus included 494

700 cells, for a total extent of 21 940 km2.

Additional sampling for presence data
In order to increase the quality of data on bat distribution

within the study area and add more occurrence data for the target

species to our models, additional acoustic transects were carried

out between March and August 2010. Transects started one hour

after sunset and lasted for three hours [37]. Each transect was

walked at low speed (ca. 2 km/h) during 30 minutes using a bat

detector (D240X, Pettersson Elektronik AB, Uppsala, Sweden)

connected to a digital recorder (Zoom H2, Samson Technologies

Inc. USA, New York). Files were saved in WAV format; sampling

rate 44.1 kHz and 16 bits/sample. Bat vocalizations were

analysed using sound-analysis software (BatSound Pro 3.31,

Pettersson Elektronik AB, Uppsala, Sweden) with a 1024 pt FFT

and Hamming window for spectrogram analysis [36,37]. Acoustic

identification of bat calls was made through comparison with

literature on the theme [59–61].

Monitoring networks
The main goal of our monitoring networks is to support the

collection of data on presence or absence of the selected bat species

throughout the 21st century. By comparing species distributions

from different time intervals (i.e., between current and future

sampling) it will be possible to test if observed range shifts occur

due to gain, loss or maintenance of climatic suitability. Thus, to be

able to test such hypothesis, monitoring stations have to be

allocated under a stratified design across these different classes of

predicted climatic suitability change.

To calculate the class of suitability change (referred to here as

areas where loss, gain or maintenance of species climatic suitability

may be observed) in each grid cell, current and future model

predictions were reclassified into binary presence/absence maps.

For that purpose cells with values above the 10th percentile of

training presence were considered suitable for the species

[44,62,63]. The 10th percentile presence value assumes that

10% of presence data may suffer from errors or lack of spatial

resolution [63]. This is especially relevant when dealing with

datasets gathered by several researchers (or volunteer surveyors)

over large time-spans where reliability and precision has probably

varied. Subsequently, each grid cell was classified into one of the

three climatic suitability change classes in the following way: cells

where climate is suitable in the present (1) but not in the future (0)

were classified as ‘‘likely lose’’; cells where climate is suitable in the

present (1) and also in the future (1), were classified as ‘‘likely

maintain’’; cells where climate is currently unsuitable (0) but

predicted to become suitable in the future (1) were classified as

‘‘likely gain’’. This classification was done separately for the two

different climatic scenarios (A2a and B2a). Because we did not

include EGVs such as land cover, slope and altitude to predict

future suitability, and acknowledging their major importance for

bats (particularly land cover [36,37,52]), we ensured that at least

one quarter of the monitoring stations fell within areas predicted as

currently suitable in the full model. By doing so we enforced that

some sampling locations of the Monitoring Networks were set for

areas where the values of those EGVs are currently suitable for

species occurrence.

The next step consisted of determining the number of

monitoring stations to be included at each suitability class for

each species. Because the viability of the monitoring program is

dependent on an unpredictable volunteer commitment, multiple

designs were developed covering different citizen engagement

scenarios, with increased number of monitoring stations for each

species (MN1, MN2 and MN3). To make it possible to gradually

expand the monitoring network without losing any information

from previous campaigns, stations from MN1 were included in

MN2 and stations from the latter were included in MN3. The

number of sampling stations was set based on the level of expected

commitment depicted from the levels of participation in bat

detector workshops and environmental actions in the study area.

Additionally, because different species have different conservation

concerns, the monitoring effort allocated to each species was also

set as a function of the species conservation status at the National

level (for species with higher conservation status, a higher number

of monitoring stations was set) [64]. Table 1 shows the minimum

number of monitoring stations targeted in each network (MN1,

MN2 and MN3) for each species, likely occurrence class, and full

model.

We used the software Marxan [65] to identify optimized sets of

monitoring stations to track range shifts in multiple bat species.

Marxan is a decision-support tool which uses a simulating

annealing algorithm to minimize the amount of selected sampling

units whilst ensuring the representation of a set of features (species,

Species Monitoring Networks for Climate Change

PLOS ONE | www.plosone.org 5 January 2014 | Volume 9 | Issue 1 | e87291



habitats, or other features) with a given minimum number of

occurrences (occurrence target) [66]. Marxan was conceived to

assist decisions about the location and design of protected area

systems, but the mathematical problem underlying the optimiza-

tion of monitoring network is very similar. In our case, the

conservation features that we want to represent are the three

classes of suitability shift for each species plus the suitable areas

predicted under the full model. Reserve selection problems can

also incorporate aggregation and connectivity rules which are not

desirable when designing monitoring networks, because the

further apart monitoring stations are, the more independent the

monitoring data will be. Marxan was configured with the following

parameters: algorithm – simulated annealing; number of runs –

100; penalty cost for not achieving the occurrence target – 100;

iterations per simulation – 1,000,000; temperature decreases per

simulation – 10,000; initial temperature and cooling factor –

adaptive. For MN2, the status of the grid cells selected in the best

solution of MN1 was set to 2 in order to force MN2 solution to

include monitoring stations selected in MN1. This would simulate

an expansion of the monitoring network as citizen engagement

increases. We followed the same procedure for MN3 with the grid

cells selected in the best solution of MN2. No boundary length

modifier was used. Targets were set as defined in Table 1.

Performance of optimized vs. non-optimized networks
Three additional networks were designed to test whether our

proposed framework has potentially increased performance in

detecting species range shifts derived by climate change than the

commonly used approach which only considers the current

distribution of the species. For this purpose, we have rerun

Marxan setting targets only for current predicted distribution of

each of the seven bat species for climatic and full model. Target

values were set according to the number of sample stations in each

of our three monitoring networks that fall within current predicted

suitability considering climatic and full model.

We used Cost Threshold function in Marxan to limit the overall

number of sampling stations so that it would be equal to the

number of stations selected in each of our three monitoring

networks, respectively 28, 54 and 110. Differences between the

performance of our framework and the testing networks were

accessed by checking the proportion of the targets set in Table 1

that were not met in each of the 100 runs of the testing networks.

Results

Additional sampling for presence data
A preliminary set of species distribution models calibrated using

the presence data for the targeted species available prior to this

study allowed us to set 35 additional sampling sites in areas

predicted to have high species richness (Fig. 2B). As a result of in-

field campaigns, 418 new bat passes were recorded, adding 21 new

locations for the targeted species. Species locations and presence/

absence maps predicted by preliminary models are available in

Fig. S1.

Current bat diversity patterns and ecological predictors
Regarding the predictive ability of the full model, test data

showed only slightly lower values for AUC (area under the receiver

operating characteristic curve, which ranks all locations according

to their suitability [42,67]) than training data (AUC for test data

ranged 0.78–0.86, AUC for training data ranged 0.86–0.93),

which is an indication that no over-fitting occurred in the models.

The high values of test AUC also indicate a good transferability

power of the model. Likewise, climatic models showed good

predictive power, with AUC ranging from 0.82–0.91 in the

training data and 0.76–0.83 in the test data. For more details on

the AUC values for each species see Table S1.

In the full model, land cover, altitude, annual mean temper-

ature and temperature of coldest quarter were the most relevant

EGVs for the majority of species (Fig. S2). When model fitting was

based on climatic variables only, temperature of coldest quarter,

temperature range, annual precipitation and annual mean

temperature were the most relevant for most species (Fig. S3). A

more comprehensive list of relevant predictor variables for each

model and species (Table S2), as well as the corresponding

response curves (Fig. S4-Fig. S10), can be found in Supporting

Information.

Predicted species richness showed similar spatial patterns in the

full models and in the climatic models (Fig. 3). In fact, binary

predictions from both models spatially overlapped in more than

70% of the total cells for all species. Climatic models alone predicted

suitability in at least 12% more cells, whereas the full model

predicted unique suitable sites in less than 8% of the area (Table S3).

Results from the niche overlap and D statistics ranged 0.95–0.99

and 0.78–0.88 respectively, thus confirming similar predictions

between full and climatic models (Table S3). Regarding niche

Table 1. Minimum number of locations targeted in each monitoring network (MN1, MN2 and MN3) for each species suitability
class (G – Likely Gain; M – Likely Maintain; L – Likely Loss) and for areas predicted as currently suitable in the full model (Full).

Conservation MN1 MN2 MN3

Statuts G M L Full G M L Full G M L Full

Mdau LC 3 3 3 3 6 6 6 6 12 12 12 12

Pkuh LC 3 3 3 3 6 6 6 6 12 12 12 12

Hsav DD 5 5 5 5 10 10 10 10 20 20 20 20

Nlei DD 5 5 5 5 10 10 10 10 20 20 20 20

Eser/isa LC 3 3 3 3 6 6 6 6 12 12 12 12

Bbar DD 5 5 5 5 10 10 10 10 20 20 20 20

Tten DD 5 5 5 5 10 10 10 10 20 20 20 20

Species code as follow: Myotis daubentonii (Mdau); Pipistrellus kuhlii (Pkuh); Hypsugo savii (Hsav); Nyctalus leisleri (Nlei); Eptesicus serotinus/isabellinus (Eser/isa);
Barbastella barbastellus (Bbar) and Tadarida teniotis (Tten).
doi:10.1371/journal.pone.0087291.t001
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breadth metrics, results showed that the full model yielded a

narrower niche (Table S3).

Predicted species richness showed some level of spatial structure

(Fig. 3), with the majority of the highest values of species richness

located in the northeast of the study area where high species

richness has a more continuous distribution.

Future projections
Overall, bats in the study area have a high sensitivity to climatic

changes, resulting in large extents of potential loss of climatic

suitability (Fig. 4). When comparing current predicted distribution

of species for both climatic scenarios, the area which could lose

climatic suitability in the future for at least one species represents

more than 60% of the study area (A2a: 62.5%; B2a: 64.2%) and in

more than 30% likely loss was predicted for three or more species

(A2a: 34.6%; B2a: 37.7%). In contrast, climatic suitability gain for

at least one species is only predicted in 10.8% of the area in

scenario A2a and 15.4% in scenario B2, while for scenarios A2a

and B2a respectively 26.8% and 20.4% may maintain climatic

suitability for the target species.

Areas where gain may occur were limited to a narrow fringe

along the coastline in the western part of the study area and small

isolated strongholds most of which located in the northwest of the

study area (Fig. 4). Individual species maps may be found in Fig.

S11 and Fig S12.

Monitoring networks
The targets set for MN1 were achieved with a total of 28 sites,

while for MN2 and MN3 targets were accomplished with 54 and

110 sites, respectively (Fig. 5). In MN2 and MN3 it is possible to

observe a concentration of sites in some areas. This happens

mainly because there are very few areas where likely suitability

gain was predicted in the future scenarios. The general distribution

pattern of sites is similar for the three Monitoring Networks,

nevertheless, as expected, the higher number of locations in MN2

and MN3 results in an increase of the spatial coverage of the

resulting monitoring networks.

Performance of optimized vs. non-optimized networks
None of the 100 Marxan runs for each of the non-optimized

networks was able to meet all the targets set in Table 1. Between

30% and 50% of the total targets were not met in either of the

networks (Fig. 6A). Failure in achieving the targets was more

pronounced in the climatic suitability classes of ‘‘likely gain’’ and

‘‘likely maintain’’ (Fig. 6A). Considering the achievement of targets

set for individual species, we observed a large range of results,

nonetheless ‘‘likely gain’’ and ‘‘likely maintain’’ were also the most

problematic classes, while targets set for ‘‘likely loss’’ of climatic

suitability were met by five out of the seven species (Fig. 6B).

Discussion

Designing and implementing optimal monitoring
schemes under climate change

We presented an innovative approach representing an im-

provement in the design of monitoring networks that goes beyond

the conventional surveillance schemes in the sense that it allows

testing hypotheses about how environmental change (in our case,

climate change) will drive species distributions. At the same time it

produces fundamental data for the surveillance of species and

communities at regional scales, which is one of the fundamental

goals of biodiversity monitoring [68]. We have shown that, when

compared with conventional network designs, the proposed

framework has increased performance in allocating monitoring

stations distributed across different categories of predicted shifts in

species distributions, which is crucial to test hypotheses about the

effects of climate change on species ranges. In conventional, non-

optimized networks, because only the current distribution of the

species was considered, we expected that selected monitoring

stations were allocated more or less randomly across the species

ranges, only depending on the level of species co-occurrence.

Thus, we expected that for species likely to lose a great proportion

of their current distribution due to climate change, it would be

more difficult to allocate monitoring stations to areas that fall

under the ‘‘likely maintain’’ class and vice versa. Our results

confirmed this expectation, as most species likely to lose a great

proportion of their climatic suitability (Fig. S13) were the ones with

lower target achievement in the ‘‘likely maintain’’ class (e.g. Hsav,

Nlei and Mdau in Figure 6B). We also expected that the ‘‘likely

gain’’ class was the one less represented in the conventional

networks, because these areas fall outside of the current

distribution of the species. Our results also confirmed this

expectation (Fig. 6), although some stations were indeed selected

in areas of likely gain of climatic suitability for some species. This

fact can be explained by the co-occurrence of two or more species.

For instance, a monitoring station may be allocated to represent

the current distribution of species A and B, and this location may

Figure 3. Current predicted species richness for full model (A) and climatic model (B). Current predicted species richness for full model (A)
and climatic model (B).
doi:10.1371/journal.pone.0087291.g003
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Figure 4. Predicted variation in climatic space between the present and the future. Predicted variation in climatic space for target species
between the present and the future under climatic scenarios A2a (A) and B2a (B) for the year 2080. Negative nSpecies values indicate loss of climatic
suitable space while positive indicate species gain of climatic suitable space. Most important protected areas are also represented.
doi:10.1371/journal.pone.0087291.g004

Figure 5. Sampling stations for the proposed monitoring networks (MN1, MN2 and MN3). Sampling stations for the proposed monitoring
networks (MN1, MN2 and MN3) showing the present predicted species richness according to climatic model and predicted variation in climatic space
between the present and the future under two climatic scenarios (A2a and B2a) for the year 2080. Negative nSpecies values indicate loss of climatic
suitable space while positive indicate species gain of climatic suitable space.
doi:10.1371/journal.pone.0087291.g005
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be, by chance, within the area of likely gain of climatic suitability

of species C. Co-occurrence may also explain why targets for the

‘‘likely lose’’ class were achieved for species such as P. kuhlii and E.

serotinus, which have a low proportion of likely loss of climatic

suitability.

Our framework also allows adjusting the sampling effort

according to a frequently unpredictable volunteer commitment

and to prioritize monitoring effort according to each species

conservation status. Though we choose not to include the costs of

implementing the sampling stations in the suggested locations, we

point out that such cost can be considered when using Marxan

[69]. The measures of cost can be based on any relative social,

economic or ecological cost, or combinations thereof [69]. A

critical example when designing monitoring networks based on

volunteer effort is the costs of accessibility of different areas, which

could be easily incorporated in Marxan by applying a planning

unit cost factor.

Although it is highly likely that our simplest monitoring network

(MN1) will not allow gathering enough information for a robust

analysis, it will accomplish the fundamental goal of having

sampling stations in areas where species and community structure

are predicted to be sensitive to future climate changes. Moreover,

it will work as a pilot survey to evaluate the statistical power of the

monitoring network to detect population changes, as it is often

suggested in adaptive monitoring [7,12]. To maximize accuracy

and minimize the possibility of biased conclusions being drawn

about trends, a power analysis should subsequently be performed,

e.g. following Walsh et al. [70]. The evaluation of volunteer efforts

and the improvement of the network effectiveness could be fine-

tuned following Tulloch et al. [71].

Operationally, the implementation of MN1 could allow

attracting progressively more volunteers for the program – in fact

it should be considered as the first step in the establishment of a

more robust monitoring network. By working on fund-raising

along with state agencies and NGO’s, and depending on volunteer

commitment, the underlying expectation is that the sampling effort

will increase in the near future. The experience gathered with the

ongoing Portuguese Bat Atlas (http://anodomorcego.wix.com/

icnb), and also the example of the Portuguese Breeding Bird Atlas

[72], allow some confidence on the growing commitment of

citizens. Moreover, the increasing number of advanced courses

and free workshops on ultra-sound recording techniques and

species identification in Portugal has shown that non-specialists

have strongly embraced this type of citizen science activities and

transference of skills [73]. Overall these experiences strongly

suggest that it is possible to successfully implement a long-term bat

monitoring network in Portugal.

Figure 6. Proportion of targets that were not met in each of the testing networks (A) and by species (B). Proportion of targets that were
not met by the 100 runs in each of the testing networks (A) and by species (B) considering overall targets and targets set for each suitability class.
Median, maximum and minimum values are presented. Species code as follow: Barbastella barbastellus (Bbar); Eptesicus serotinus/isabellinus (Eser);
Hypsugo savii (Hsav); Nyctalus leisleri (Nlei); Myotis daubentonii (Mdau); Pipistrellus kuhlii (Pkuh); and Tadarida teniotis (Tten).
doi:10.1371/journal.pone.0087291.g006
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Model predictions and model-based simulations under
climate change

Our results show that bats in the study area are highly sensitive

to climate change, and though our main goal was not to determine

the spatial patterns of future species richness, the findings

presented here are in line with studies on the subject. A study of

28 European bat species hypothesized that a major range shift

towards northern latitudes (U.K. and Fenno-Scandinavia) will

occur until the end of the century, showing a significant loss of

species richness in the Iberian Peninsula [74] and particularly in

our study area. Other studies including amphibians, reptiles or

trees [75,76] also predict a major loss of species ranges in the

Atlantic climatic regions, mostly located along the north and

northwest of the Iberian Peninsula. Also, the Scenarios, Impacts

and Adaptation Measures (SIAM) report [77] identified the north-

eastern and eastern parts of our study area as highly sensitive to

climate changes, which is consistent with our results, while

Thuiller et al. [78] included the northwest Iberian Peninsula

among those areas in Europe where climate change would cause

highest levels of plant species loss and turnover.

Nonetheless, we should be aware that future species richness is

most likely underestimated since our models only used partial

information about the environmental niche for the target species.

This can be critical when suitable climatic space is projected for

future climate scenarios because the truncated niche can be

responsible for an over-prediction of local extinctions at southern

distribution edges in the northern hemisphere [79,80]. It is highly

probable that southern Iberian populations of the target species

could colonize the study area when ecological conditions become

unsuitable at their southernmost ranges, compensating for

otherwise forecasted local extinctions. Although the approach

used here may reduce the models’ applicability for extrapolation

purposes, e.g. for predicting species–habitat interactions for other

areas, times or climates [81], we stress that our main goal was to

determine areas in the region that are sensitive to climate change

regarding bat species, and not necessarily to predict the future

distributions of the species in the region. In other words, we

identified and will monitor areas where changes in species

occurrence driven by future climatic shifts are more likely to occur.

In the present study, the simulations did not account for land

cover changes in future projections although habitat variables are

recognized to be relevant in predicting bat species distribution

[36,37], which is also supported by the results obtained with our

full model. Long-term changes in land cover are difficult to

predict, especially in highly humanized areas because of the

dependence upon economic interests and policy guidelines (among

other drivers; e.g. [82]), and the inclusion of such variables would

bring a higher degree of uncertainty to future projections.

Although we recognize the importance of land cover, we should

emphasize that the high agreement in niche overlap statistics show

that full models and climatic models have a high similarity in their

projections under current conditions. This result, together with the

broader niche breadth obtained for the climatic model, means that

the latter captures almost all niche conditions of the full model. For

that reason, the use of the climatic model for future projections did

not compromise our results. Nonetheless, to overcome this

potential source of uncertainty, we opted to include a quarter of

the sampling stations of the monitoring networks in areas where

species occurrence was predicted when modelling with land cover.

This approach may allow understanding whether future changes

might be due to climate changes and/or to changes in land cover.

By combining different model techniques and circulation models

we can achieve more robust projections, significantly reducing

prediction uncertainties [83]. Although future predictions of species

distributions were not the main scope of this study, these outputs can

then be easily incorporated in the proposed framework. This

innovative methodology can be used on any taxon or spatial scale,

allowing a statistical optimization of the allocation of sampling effort

in areas with high biodiversity that are also predicted to be prone to

environmental changes.

Implications for conservation
To our best knowledge, the vast majority of current monitoring

networks do not take into account in their design the potential

changes in species distributions that may result from future climate

change. By producing reliable data to detect population trends and

range shifts due to climate change, the monitoring networks

proposed here will provide stakeholders with important outcomes

for conservation. MN1 will accomplish the immediate goal of

attracting volunteers and to set a pilot survey [12]. If needed, future

monitoring networks will then be fine-tuned in response to new

information or new questions [7]. Power analysis will be performed

during the lifetime of the project, a fundamental step because the

consequences of inadequate design may not be obvious until the end

of the programme, when it may be too late for amendments.

By monitoring climate change sensitive areas it will be possible

to identify the most resilient populations which will be paramount

for the future conservation of biodiversity. These populations will

harbour unique gene pools while being source populations to

colonise the new suitable areas. Moreover, it may be possible to

understand species movements and consequently design corridors

that promote their dispersion (e.g. [84]), focusing conservation and

management efforts where they can produce the best results under

environmental change scenarios. The implementation of this

framework could provide an example for the development of

climate change sensitive monitoring networks for other taxa and

geographic contexts.
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62. Suárez-Seoane S, Garcı́a de la Morena EL, Morales Prieto MB, Osborne PE, de

Juana E (2008) Maximum entropy niche-based modelling of seasonal changes in
little bustard (Tetrax tetrax) distribution. Ecol Modell 219: 17–29.

63. Raes N, Roos MC, Slik JWF, Van Loon EE, Steege H ter (2009) Botanical
richness and endemicity patterns of Borneo derived from species distribution

models. Ecography (Cop) 32: 180–192.

64. Cabral MJ, Almeida J, Almeida PR, Dellinger T, Ferrand de Almeida N, et al.
(2005) Livro vermelho dos vertebrados de Portugal. 2a ed. Lisboa: Instituto de

Conservação da Natureza/Assı́rio & Alvim.

65. Ball IR, Possingham HP (2000) MARXAN (V1.8.2): Marine Reserve Design
Using Spatially Explicit Annealing, a Manual. Differences: 67.

66. Ball IR, Possingham HP, Watts M (2009) Marxan and relatives: software for

spatial conservation prioritisation. In: Moilanen A, Wilson KA, Possingham HP,
editors. Spatial conservation prioritisation: quantitative methods and computa-

tional tools. Oxford, UK: Oxford University Press. pp. 185–195.

67. Zweig MH, Campbell G (1993) Receiver-Operating Clinical Medicine (ROC)
Plots: A Fundamental Evaluation Tool in. Clin Chem 39: 561–577.

68. McComb B, Zuckerberg B, Vesely D, Jordan C (2010) Monitoring animal

populations and their habitats: a practitioner’s guide. Taylor & Francis Group.

69. Game ET, Grantham HS (2008) Marxan User Manual: For Marxan version 1.8.

10. University of Queensland, St. Lucia, Queensland, Australia, and Pacific

Marine Analysis and Research Association, Vancouver. Ardron J, Klein C,
Nicolson D, Possingham H, Watts M, editors University of Queensland, St.

Lucia, Queensland, Australia, and Pacific Marine Analysis and Research

Association, Vancouver, British Columbia, Canada.

70. Walsh A, Catto C, Hutson T, Racey P, Richardson P, et al. (2001) The UK ’ s

National Bat Monitoring Programme: Final Report 2001. London: Bat

Conservation Trust.

71. Tulloch AIT, Mustin K, Possingham HP, Szabo JK, Wilson K a. (2013) To

boldly go where no volunteer has gone before: predicting volunteer activity to

prioritize surveys at the landscape scale. Divers Distrib 19: 465–480.

72. Equipa Atlas (2008) Atlas das aves nidificantes em Portugal (1999-2005). Lisboa:

Instituto de Conservação da Natureza e da Biodiversidade, Sociedade
Portuguesa para o Estudo das Aves, Parque Natural da Madeira e Secretaria

Regional do Ambiente e do Mar. Assı́rio & Alvim.

73. ICNF (2013) Agreement on the Conservation of Populations of European bats:
Report on Implementation of the Agreement in Portugal (2013/18 Advisory

Committee Meeting).

74. Rebelo H, Tarroso P, Jones G (2010) Predicted impact of climate change on
European bats in relation to their biogeographic patterns. Glob Chang Biol 16:

561–576.

75. Carvalho SB, Brito JC, Crespo EJ, Possingham HP (2010) From climate change
predictions to actions - conserving vulnerable animal groups in hotspots at a

regional scale. Glob Chang Biol 16: 3257–3270.

76. Benito Garzón M, Sánchez de Dios R, Sainz Ollero H (2008) Effects of climate
change on the distribution of Iberian tree species. Appl Veg Sci 11: 169–178.

77. Santos FD, Forbes K, Moita R (2002) Climate Change in Portugal. Scenarios,

Impacts and Adaptation Measures - SIAM Project. Santos FD, Forbes K, Moita
R, editors Lisboa: Gradiva.
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