
Genome-Wide Identification of Somatic Aberrations from
Paired Normal-Tumor Samples
Ao Li1,2*., Yuanning Liu2., Qihong Zhao3, Huanqing Feng2, Lyndsay Harris4, Minghui Wang1,2

1 Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, China, 2 School of Information Science and Technology, University of Science

and Technology of China, Hefei, China, 3 School of Public Health, Anhui Medical University, Hefei, China, 4 Seidman Cancer Center, School of Medicine, Case Western

Reserve University, Cleveland, United States of America

Abstract

Genomic copy number alteration and allelic imbalance are distinct features of cancer cells, and recent advances in the
genotyping technology have greatly boosted the research in the cancer genome. However, the complicated nature of
tumor usually hampers the dissection of the SNP arrays. In this study, we describe a bioinformatic tool, named GIANT, for
genome-wide identification of somatic aberrations from paired normal-tumor samples measured with SNP arrays. By
efficiently incorporating genotype information of matched normal sample, it accurately detects different types of
aberrations in cancer genome, even for aneuploid tumor samples with severe normal cell contamination. Furthermore, it
allows for discovery of recurrent aberrations with critical biological properties in tumorigenesis by using statistical
significance test. We demonstrate the superior performance of the proposed method on various datasets including tumor
replicate pairs, simulated SNP arrays and dilution series of normal-cancer cell lines. Results show that GIANT has the
potential to detect the genomic aberration even when the cancer cell proportion is as low as 5,10%. Application on a large
number of paired tumor samples delivers a genome-wide profile of the statistical significance of the various aberrations,
including amplification, deletion and LOH. We believe that GIANT represents a powerful bioinformatic tool for interpreting
the complex genomic aberration, and thus assisting both academic study and the clinical treatment of cancer.
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Introduction

Various aberrations including amplification, deletion and

translocation of genomic sequence are distinctive features of

cancer cells [1,2]. Frequent genomic aberrations are reported to

be related with dysfunction of oncogenes and tumor suppressor

genes [1,3,4]. Research on genomic aberrations [1,2,4–12] has

greatly revolutionized our understanding of the biological mech-

anisms that play important roles in tumourigenesis and progression.

Associations between patient outcome and genomic aberrations

ranging from focal amplification [9,11] to whole-genome aberration

pattern [5] have also been demonstrated in clinical studies. Current

technologies for high-throughput profiling of genome-wide aberra-

tions in tumor samples include array comparative hybridization

(aCGH) [13], single nucleotide polymorphism genotyping micro-

array (SNP array) [14] and more recently next-generation

sequencing (NGS) [15–18]. By allowing for whole-genome analysis

of copy number alteration (CNA) and allelic imbalances such as loss

of heterozygosity (LOH) with high resolution [19], SNP arrays

currently represent an efficient platform with relatively low cost and

are particularly suitable for studying a large number of tumor

samples.

Due to the unique and complicated nature of tumor, crucial

issues have been encountered in analysis of genomic aberrations

using SNP array data, including contamination of tumor DNAs by

normal stroma or lymph cells admixed in tumor samples [20–29],

shift of signal baseline occurring in aneuploid tumors [21,24–28],

and signal noise associated with local GC content [26,27,30].

These issues can largely affect genotyping signals in tumor sample,

leading to dramatically altered LRR (log R ratio, representing

totally signal intensity) and BAF (B allele frequency, representing

the fraction of B allele) signals. A number of computational

approaches [21,23–28,31] have been proposed in order to

accurately detect different kinds of aberrations from tumor SNP

array data. However, only a few methods can successfully deal

with above issues because they usually cannot be addressed

separately and therefore dramatically confound interpretation of

tumor SNP array data [21,25–28].

In some studies of cancer genomic aberrations [25,26,32–36],

tumors are paired with matched normal samples from the same

patient. Although not frequently available, the matched normal

samples can be used to further facilitate analysis of tumor samples.

Serving as a reference, the genotypes of the paired normal sample

can be very helpful in determining the corresponding genotype in

tumor and therefore genomic aberrations. Moreover, such infor-

mation is also decisive in ascertaining whether an aberration found

in tumor is somatic (i.e., the corresponding genomic region in

paired sample retains normal) or germline (i.e., the corresponding
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genomic region in paired sample is also altered). Regardless of the

advantages mentioned above, genotype information of normal

sample is not fully adopted in current methods. For example,

whilst ASCAT [25] is one of the ‘‘state of the art’’ approaches, it

only uses SNP array data of normal sample to filter out

homozygous SNPs with fixed thresholds for genotyping signals.

As another efficient method, OncoSNP [26] treats matched

normal sample as a ‘‘noise’’ template for removing array-specific

noise from tumor sample without taking the genotype information

into account. Another concern for current computational methods

used in paired SNP array data analysis is that germline variants in

matched normal sample are ignored, which instead can be very

crucial in quantitatively modelling of tumor genotyping signals and

meanwhile provide additional information to discover somatic

aberrations in cancer genome.

Whilst great efforts have been made to improve performance

in identifying aberrations from tumor SNP array data, method-

ologies focusing on downstream analysis of genome-wide

aberrations remain limited. The GISTIC method [6,10] provides

a promising framework for this purpose, in which statistical

significance of aberrant regions is evaluated by permutation test

in order to discover recurrent aberrations with critical biological

properties in tumor initiation and development. However, the

drawback of GISTIC is that raw genotyping signals in tumor

SNP array are directly used as measurements of genomic

aberrations, which are indeed prone to normal cell contamina-

tion, signal baseline shift and other issues discussed previously,

since they may dramatically alter genotyping signals in tumor

SNP array. To facilitate systematic studies of cancer genome, it is

desirable to develop a new approach that evaluates the statistical

significance of genomic aberrations identified by SNP array

analysis methods and distinguishes recurrent aberrations from

random genomic changes.

In this study, we present an efficient bioinformatic tool called

GIANT, which is based on the statistical framework of our

previous GPHMM method [27]. By incorporating genotype

information of matched normal sample, GIANT provides

identification of various kinds of somatic/germline aberrations

with superior performance, even for aneuploid tumors accompa-

nied with high normal cell contamination. Furthermore, it allows

for discovery of statistically significant aberrations when multiple

tumor samples are available. We describe a comprehensive

evaluation of GIANT using different data sets, with comparison

to current computational methods for tumor SNP array data

analysis.

Materials and Methods

Datasets for Paired Normal-tumor Samples
Replicate SNP arrays for breast cancer and normal

sample. Replicate pairs of a breast cancer and matched normal

sample described in [27] was analyzed with the Human 610-Quad

(v1.0) DNA Analysis BeadChip Kits (Illumina Inc., San Diego,

CA, USA) with the assistance of the W. M. Keck Foundation

Microarray Resource (New Haven, CT, USA). Raw SNP array

data obtained from genotyping experiment was pre-processed and

analyzed by the Illumina BeadStudio utility. In addition, the

genotyping signals were further normalized by tQN to correct

possible asymmetry in BAF signals caused by dye bias.

Simulated tumor SNP arrays. HapMap sample NA06991

hybridized to the Illumina 550K array was used to generate a

simulated tumor SNP array dataset [37]. Ten genomic regions

altered with copy number gain/loss and copy neutral LOH were

added into the HapMap sample, with the proportion of normal

cell contamination ranging from 0% to 100% with an interval of

5%. This data set was downloaded from the website as described

in [37].

Dilution series of cancer cell-lines. Dilution series of an

aneuploid cancer cell line (ATCC: CRL-2324D) was generated by

mixing with matched normal cell line (ATCC: CRL-2325D) in 0–

0.9 proportion [37]. DNA mixture was then hybridized to

Illumina Human370K BeadChips. This data set was downloaded

from the NCBI GEO database with accession number: [GEO:

GSE11976]. All chromosomes were retained during the analysis.

Paired tumor SNP arrays. Four pairs of urothelial tumor

and matched normal samples were hybridized to Illumina

HumanCNV370 SNP array [37]. This data set was downloaded

from the NCBI GEO database with accession number: [GEO:

GSE11976]. Another tumor SNP array dataset used in this study

include 112 breast cancer samples with matched blood samples,

which was downloaded from the website described in [25]. For

study of individual tumors, HER2-positive breast cancer samples

(case 601) [26], including surgically obtained and micro-dissected

tumor material and pure stroma, were downloaded from the

NCBI GEO database with accession number: [GEO: GSE23785].

In addition, breast cancer sample 7207, with matched normal

sample and a dilution sample (a mixture of 50% tumor and 50%

normal sample), was downloaded from the NCBI GEO database

with accession number: [GEO: GSE16400].

Genotype Calls for Paired Normal Samples
In this study, we employed GPHMM [27] to analyze SNP array

data of matched normal samples, as it not only allows for germline

variant detection but also provides automatic genotype calling for

each SNP. The global parameters of GPHMM were set to the

default except that the mixture level was fixed to 0 since in this

case tested samples consist of pure normal cells. Genotype calls

made by GPHMM were based on the maximal conditional

probability, which was estimated by the statistical model during

training procedure. It should be pointed out that with the existence

of germline variants, the genotype obtained from this step is not

restricted to diploid genotypes AA, AB or BB. Instead, it can be

any possible genotype described in Table S1 in File S1. For further

analysis, the genotypes of matched normal sample were uniquely

transformed to the corresponding total copy number contributed

by both alleles (denoted by ni,c2
) and proportion of B allele

(denoted by ui,c2
(i~1,:::,n)), respectively.

Paired Samples HMM for Tumor SNP Array Data Analysis
In this study, we introduce a novel paired samples hidden

Markov model (PSHMM) for statistical modeling and analysis of

tumor SNP array data. A comprehensive description of PSHMM

is available in the Text S1.

Generally, suppose there are two samples collected in the study:

one is a mixed sample (e.g. cancer samples investigated in this

study) consisting of two kinds of related cells (denoted as c1, c2)

with different genotypes, and the other (here refers to matched

normal sample) is a paired sample consisting of only c2. The

genotypes of c2 can be explicitly determined from SNP array data

for the paired sample, but the genotypes of c1 are ‘‘hidden’’ as the

genotyping signal of the mixed sample is actually generated from a

mixture of DNA from both c1and c2 with unknown proportion.

The goal is to determine c1’s genotype information, represented by

totally copy number ni,c1
and proportion of B allele ui,c1

(i~1,:::,n),
and corresponding genomic aberrations from the SNP array data

for the mixed sample, with the aid of genotype information of c2

inferred from paired SNP array data. Note that the genotypes of c1

and c2 are genetically associated with each other. Here, we assume

Genome-Wide Identification of Somatic Aberrations
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that the c1‘s (tumor) genotype can only be homozygous when the

c2’s (matched normal) genotype is homozygous, and the c1’s

genotype can be homozygous or heterozygous when the c2’s

genotype is heterozygous.

Emission Probability
To automatically deconvolute the genotyping signals generated

from mixed tumor DNAs, we adopted empirical formulas

proposed in [20], in which the relationship of LRR/BAF signals

and cancer cell proportion in tumor sample is quantitatively

modelled. Specifically, given hidden state s in PSHMM (defined in

Table S1 in File S1), we can then formulate the emission

probability of LRR signal li at the ith probe by using the following

normal distribution:

fp(lijw,h,o,sl ,s,ni,c2)~
1

sl

w(
li{(2log10(yi,p(s)=2)zozhgi)

sl

) ð1Þ

with

yi,p(s)~wni,c1(s)z(1{w)ni,c2 ð2Þ

where sl denote the variance of LRR and w is the proportion of

cancer cells in tumor sample. Note that complicating factors such

as tumor aneuploidy and genomic bias associated with local GC

contents are taken into account in the emission probability

function, with h being the unknown coefficient for local GC

percentage gi at the ith probe and o being the baseline shift of LRR

signal. Similarly, we can formulate the emission probability of BAF

signal bi as follow:

fp(bijw,sb,k,s,ni,c2,ui,c2)~
XG

k~1

1

sb

pi(kjs)w(
bi{zi,p(k,s)=yi,p(s)

sb

)ð3Þ

with

zi,p(k,s)~wni,c1ui,c1(k,s)z(1{w)ni,c2ui,c2 ð4Þ

where sb denote the variance of BAF and G is the number of

genotypes in state s.
pi(kjs)

is the prior probability of observing Kth

genotype (conditional on s) at the ith probe in tumor SNP array

data.

In practice, genotypes inferred from matched normal sample

may contain genotyping errors. In this case, Equation (1) and (3)

should be replaced with the formulas that we previously proposed

for single tumor SNP array analysis [27], in which the genotypes of

c2 are limited to three normal genotypes, ‘AA’, ‘AB’ and ‘BB’. In

addition, to delineate fluctuation in genotyping signals for tumor

sample, we use uniform distribution to account for the intrinsic

randomness of genotyping errors. Taken together, the full emission

probability of PSHMM is formulated as the total probability of

observing (li,bi) at the ith probe in tumor SNP array data:

f (li,bijw,h,o,sl ,sb,k,s,ni,c2,ui,c2)~

(1{pi,l)½(1{pi,e)fp(lijw,h,o,sl ,k,s,ni,c2)fp

(bijw,sb,k,s,ni,c2,ui,c2)

z(1{pi,e)fe(lijw,h,o,sl ,k,s)fe(bijw,sb,k,s)�
zpi,l fl(li)fl(bi)

ð5Þ

where pi,e is the probability of genotype error for the ith probe in

normal sample and pi,l is the probability of genotyping signal

fluctuation at the ith probe in tumor sample.

Taken together, there are five parameters in emission proba-

bility functions, including cancer cell proportion w, LRR baseline

shift o, BAF and LRR signal variances sb, sl, and GC coefficient h.

Since the SNP array data for tumor and matched normal sample

may exhibit dramatic difference in these parameters, we estimated

the parameters for tumor samples independently from tumor SNP

array data by using parameter estimation approach described

below.

EM Algorithm for Parameter Estimation
We used Expectation Maximization (EM) algorithm for HMM

training and parameter estimation, which is designed to iteratively

find maximum likelihood estimates of parameters associated with

hidden latent variables. For the E step in nth iteration of EM

algorithm, expectation of the partial log-likelihood containing

emission probability function is formulated as follow:

E(LL)~
XN

i~1

XM

s~1

c
(n)
i,p (s)flog (fp(lijw,h,o,sl ,k,s,ni,c2))

z log (fp(bijw,sb,k,s,ni,c2,ui,c2))g
zc

(n)
i,e (s)flog (fe(lijw,h,o,sl ,k,s))

z log (fe(bijw,sb,k,s))g
z(1{c

(n)
i,p (s){c

(n)
i,e (s))flog (fl(li))

z log (fl(bi))g

ð6Þ

where c(n)
i,p (s) and c(n)

i,e (s)are the conditional probabilities of normal

genotype error and genotyping signal fluctuation given hidden

state s. Next, for the M step we need to find these abovementioned

parameters that maximize Equation (6). For example, by taking

the partial derivative with respect to o and setting it to zero, we can

obtain the following formula to update o in nth iteration:

o(n)~

PN

i~1

PM

s~1

c(n)
i,p (s)gi½li{h(n{1)gi{2log10(y

(n)
i,p (s)=2)�zc(n)

i,e(s)gi½li{h(n{1)gi{2log10(y
(n)
i,e (s)=2)�

PN

i~1

PM

s~1

c
(n)
i,p (s)zc

(n)
i,e (s) ð7Þ

This strategy works for four parameters appearing in emission

probability function except the proportion of cancer cell w, as

there is no close-form formula to update w in EM algorithm.

However, this problem can be efficiently solved by using

numerical methods such as Newton-Raphson method, which

can numerically increase expectation of the partial log-likelihood

in each M step.

Significance Test for Tumor Aberrations
Given aberration profiles of M tumor samples, we need to find

an efficient approach to evaluate the statistical significance of each

aberration in cancer genome. For amplified aberrations, we used

statistic G
amp
i to reflect the amplitude and frequency of an

amplified region in these tumor samples, which is defined as

follow:

G
amp
i ~

XM

j~1

max(CT
ij {CN

ij ,0)I(AN
ij ) ð8Þ
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CT
ij and CN

ij are CT
ij copy numbers at the ith probe in tumor

sample j and matched normal sample, respectively. To investigate

somatic amplifications, we require that this statistic only accounts

for aberrations where there is no germline mutation in the

corresponding genomic region of the matched normal sample. It is

implemented by indicator functionI(AN
ij ), which returns 1 if state

AN
ij inferred by PSHMM is the normal state and 0 otherwise.

Similarly, for deleted regions the statistic Gdel
i is formulated as

follow:

Gdel
i ~

XM

j~1

max(CN
ij {CT

ij ,0)I(AN
ij ) ð9Þ

On the other hand, the statistic for LOH regions GLOH
i is

defined as:

GLOH
i ~

XM

j~1

LT
ij I(AN

ij ) ð10Þ

where LT
ij is the inferred LOH state in tumor sample.

To get the empirical distribution of statistic Gi under the null

hypothesis that the pinpointed region is not recurrent but random

mutation, we adopt the procedure introduced in [6] by which the

exact estimation of the null distribution can be efficiently obtained

by using convolution of the statistic in tumor samples. Statistical

significance of each aberration can then be evaluated by

measuring the associated FDR q-value with a previously proposed

threshold of 0.25 [6].

Availability
An implementation of the proposed GIANT tool including

PSHMM and statistic significance test of genomic aberrations

using MATLAB/C is freely available from the associated website,

together with supporting information (http://bioinformatics.ustc.

edu.cn/giant/).

Results

Analysis of Replicate Tumor SNP Arrays
For comprehensive evaluation of GIANT’s robustness to

genotyping signal variation and self-consistency in inference of

normal genotypes and identification of genomic aberrations, we

generated a replicate SNP array dataset representing one breast

cancer and its matched normal sample. As the first step, we used

the normal replicate SNP arrays to determine whether the

genotypes inferred by GIANT are consistent. Figure S1 in File

S1 shows that GIANT demonstrates good robustness to replicate

arrays by providing very consistent results (.99.9% of total SNP

probes). Moreover, we investigated the statistical distributions of

BAF signals in tumor replicate 1 with respect to different normal

genotypes (Figure 1). Clearly, the tumor genotyping profile follows

the pattern of corresponding normal genotypes (‘AA’, ‘AB’ and

‘BB’). These results corroborate the intrinsic relationship between

the genotypes of tumor and matched normal sample (i.e., normal

genotype ‘AB’ can become any genotype in tumor, while genotype

‘AA’ (‘BB’) could generate only ‘A’, ‘AA’, ‘AAA’ etc. (‘B’, ‘BB’,

‘BBB’, etc.)). It should be pointed out that such information

couldn’t be directly used to determine tumor genotypes and

corresponding genomic aberrations. However, the normal geno-

type information can be incorporated into the emission probabil-

ities of the PSHMM (Equation (1) and (3)) and therefore is helpful

in modelling the genotyping signals of tumor sample and

identifying genomic aberrations.

Furthermore, we applied GIANT to paired replicate SNP

arrays. We examined the estimated parameters, as shown in Table

S2 in File S1, and GIANT produces consistent estimation of

parameters for all four replicate pairs. For example, as the key

parameters for tumor SNP data analysis [21,25–27], both the

estimated cancer cell proportion w and LRR baseline shift o are

concordant thorough all the tests. Besides, good self-consistency is

observed in identifying genomic aberrations. For genomic

aberrations on the q arm of chromosome 15, consistent results

are also produced among different replicate pairs by GIANT

(Figure S2 in File S1).

Performance Evaluation using Simulated Data
First, we performed performance evaluation by applying

GIANT to a widely-adopted simulated data set, which is

originated from a diploid HapMap sample including ten synthetic

aberrant regions differing in length, aberration type, etc [37]. Two

‘‘state of the art’’ methods for paired SNP array analysis: ASCAT

[25] and OncoSNP [26], were also examined for comparison.

Similar with GIANT, both methods are featured with automatic

calibration for normal cell contamination and tumor aneuploidy.

Normal cell contamination levels estimated by three investigated

methods were compared to the underground truth, as illustrated in

in Figure S3a and Table S3 in File S1. For a wide range of

contamination level from 0% to 80%, the results of ASCAT show

good concordance with the real values. However, no feasible

solutions could be found by ASCAT for tumor samples with

higher contamination level. On the other hand, results of

OncoSNP are less consistent with the real contamination values,

especially when there are more than 65% normal cells admixed in

tumor sample. Compared to existing methods, GIANT demon-

strates better performance in detecting normal contamination

levels with more concordant results across all samples (correlation

coefficient = 0.9996). We further explored tumor average copy

number (ACN) estimated from the results of different methods

(Figure S3b in File S1). In the case of low or medium normal cell

contamination, all methods can correctly identify tumor samples

as diploid. However, OncoSNP wrongly treats highly contami-

nated (greater than 65%) tumor samples as approximate triploid

or even tetraploid, in concert with inaccurate estimation of normal

cell contamination level. Among all tested methods, GIANT

achieves the best consistency with contamination level up to 95%.

More details of the results are provided in Table S3 in File S1.

Furthermore, we sought to illustrate how efficiently different

methods distinguish aberrations from normal regions. The

specificities of all investigated methods were calculated and plotted

in Figure S4 in File S1, which are defined as the proportion of

SNPs outside aberrant regions that are correctly identified as

normal [33,34,37]. Overall, GIANT exhibits very high specificities

(.0.985) throughout all tumor samples. Due to the systematic bias

in tumor ACN determination, the specificity of OncoSNP declines

sharply in highly contaminated tumor samples. ASCAT shows

comparable performance to GIANT till normal cell contamination

level reaches to 85%, after which acceptable solution is

unavailable. Moreover, since all methods examined here can

identify specific CNA/LOH types, we further calculated their

accuracies defined as the proportion of correctly detected aberrant

types for simulated regions, and the accuracies of ten aberrant

regions were calculated and shown in Figure 2. GIANT

consistently outperforms the other two methods throughout all

tests. Especially, when normal cell contamination level reaches up

Genome-Wide Identification of Somatic Aberrations
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to 95%, it can still correctly detect LOH regions with extremely

high accuracy.

In addition, we made further comparison by recruiting two

additional methods: PSCN [33] and PSCBS [34], which have

been reported to have superior performance on this data set.

Given the fact that they do not provide detection for different

CNA/LOH types, in this case we used sensitivity as the

performance measurement, which represents the proportion of

aberrant regions correctly detected without taking into account

aberration types. The results of all five approaches examined were

illustrated in Figure S5 in File S1. Note that results with low

specificities are not considered here as they render misleading

sensitivities with incorrect aberration types. Again, GIANT

achieves the best overall sensitivity especially in tumor samples

with contamination level greater than 85%. Taken together,

GIANT demonstrates a prominent advantage in the ability to

accurately recognize diploid tumor samples and identify different

types of aberrations, especially at high normal cell contamination

level.

Performance Evaluation Using Dilution Series of Cancer
Cell-line

Next, to examine the performance of GIANT on real SNP array

data, we adopted an experimental dilution series of CRL-2324

breast cancer cell line with matched normal cell line CRL-2325. It

is of note that the cancer cell is highly aneuploid [37], therefore

making data analysis a challenging task. In this regard, analysis of

diluted aneuploid cancer cell-line will give rise to a more

comprehensive understanding of the real potential of different

methods investigated in this study. One intriguing phenomenon on

the dilution series data is that broad hemizygous deletions

spanning the whole 6p and 16q arms are reported in the matched

normal cell line [26,27], which further complicate genetic make-

up of the mixed samples and thereby determination of aberrations

in cancer cells. On the other hand, it also provides a good

opportunity to investigate how tumor genotyping signal are

affected by germline vairants in paired normal sample. Hence

we first analyzed the statistical distributions of LRR and BAF

signals in dilution series. From the genomic profiles of cancer and

normal samples, we selected 12 manually annotated regions from

4 chromosomes including 6p and 16q, which are classified by four

different scenarios: amplification/deletion, amplification/normal,

deletion/normal, normal/normal. More detailed information of

these regions is presented in Table S4 in File S1. We plotted real

values of mean LRR/BAF for each region, as shown in Figure S6

in File S1. For comparison, we also calculated the theoretical

mean values based on Equation (1) and (3) using parameters

estimated by GIANT. The theoretical LRR/BAF means are

favorably in concordance with the real values throughout a wide

Figure 1. Statistical distributions of BAF signals in tumor replicate 1 with respect to corresponding normal genotypes. Genotypes are
inferred by GIANT on paired replicate SNP array, and BAF signals, associated with corresponding normal genotypes, are illustrated. (a) Histogram of
BAF signals for chromosome 15 with respect to different normal genotypes: ‘AA’ (blue), ‘AB’ (brown) and ‘BB’ (green). (b) Histogram of BAF signals for
chromosome 17. (c) Spatial distribution of BAF signals for chromosome 15. (d) Spatial distribution of BAF signals for chromosome 17.
doi:10.1371/journal.pone.0087212.g001
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dilution range from 10% to 100%, suggesting the efficiency of the

empirical formulas adopted in our statistical model.

Next, we applied GIANT, ASCAT and OncoSNP to dilution

series data to evaluate whether they can correctly identify genome-

wide aberrations from attenuated genotyping signals even as

cancer cells diminish in the diluted samples. Since cancer cell

contents in the dilution series are determined, they are used here

for performance assessment. As shown in Table 1, the cancer cell

contents recovered by GIANT are consistent with the real values

throughout all dilution samples, even only 10% of cancer cells.

Although ASCAT shows good performance when there are plenty

of cancer cells admixed, it cannot find feasible solutions for three

dilution samples with 21%, 14% and 10% cancer cells. Compared

to GIANT, OncoSNP is less robust and sometimes generates

apparently wrong results. On the other hand, all three methods

correctly identify the cancer cell-line as aneuploid, but GIANT

demonstrates clearly better self-consistency than other methods in

ACN inference as well as identified LOH regions (Table 1).

Finally, we examined our previously proposed GPHMM method

[27], an efficient approach for single tumor SNP array analysis.

We found GPHMM largely failed in this test with a total of 6

samples (cancer cell content,45%) erroneously identified. Given

that GPHMM performs very well on the same data set with

chromosome 6 and 16 removed [27], we conclude that the

discrepancy between the performance of GIANT and GPHMM is

caused by the variants on these two chromosomes that are not

modeled in GPHMM. On the contrary, GIANT successfully

addresses this issue by efficiently utilizing genotype information of

the matched normal cell line.

To further assess the robustness of different methods, we

inspected the whole-genome aberration profiles for all dilution

samples, as shown in Figure 3a and 3b. GIANT demonstrates

strong reproducibility, only with relatively more difference as

cancer cell content declines to 14% and lower. A detailed analysis

of these genomic profiles was performed by checking the aberrant

regions on chromosome 6 and 13, which show very good

agreement with known aberrant regions in CRL-2324 cell line,

such as amplification on 13q13.1-mid q13, hemizygous loss on

6q14.3-mid q15 and 6q15-16, copy neutral LOH on 13q 14.2-

13q14 and 13q21.31-qter [37] (see Figure S7 and S8 in File S1).

Additionally, we measured the self-consistency of all four methods

by paralleling the procedures previously reported [21,26,27], in

which the results generated from diluted samples were compared

to the results of pure cancer sample to determine the fraction of

SNPs retaining the same copy number or LOH state. Figure 3c

and 3d show that GIANT retains the highest self-consistency in

identifying genomic aberrations across all dilution samples. This

conclusion is also corroborated by the results of different methods

for chromosome 1p (Figure S9 in File S1). The CNA and LOH

identified by GIANT precisely reflect the complicated pattern of

genotyping signals and are very consistent in different dilution

samples, showing least discrepancy among all tested methods. In

Figure 2. Comparison of accuracy for correctly identifying different types of aberration using simulated tumor SNP arrays. Accuracy
is calculated by using the simulated tumor SNP arrays, which contains ten known altered regions with various aberration types, and results are
illustrated for comparing the performance in identifying non-aberration regions with respect to increasing normal cell contamination levels. Different
lines correspond to the accuracies for GIANT (blue), ASCAT (red) and OncoSNP (yellow).
doi:10.1371/journal.pone.0087212.g002
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addition, we compare the self-consistency between GPHMM and

GIANT by using the dilutions after removing the chromosome 6

and 16. Self-consistencies are calculated based on copy number

state, LOH state, as shown in Figure S10 in File S1. We find that

GIANT and GPHMM produce comparative results for the

samples with high cancer cell proportion. When the proportion

further decreases, such as 14% and 10%, GIANT demonstrates

much higher self-consistencies than GPHMM for copy number

identification. This result implies that the paired normal genotype

information can be helpful for assisting the genomic aberration

identification, especially when the cancer cell proportion is low.

Beyond identifying aberrations in cancer genome, GIANT is

capable of determining somatic/germline aberrations by checking

whether aberrations detected in tumor sample also arise in

matched normal sample. By using GIANT, we discovered a broad

(.10Mb) somatic LOH region on 14q24 in CRL-2324 cell line

that harbors a smaller (,1 Mb) germline LOH region, as shown in

Figure 4a and 4b. Note that in this case it would have been

impossible to distinguish this germline aberration from flanking

somatic aberration without genotype information of the matched

normal sample. Moreover, the results of GIANT exhibit very good

consistency in different dilution samples, as the example shown in

Figure 4c. In contrast, Figure 4d shows OncoSNP wrongly

identifies the whole LOH region as somatic. Based on the

comprehensive analysis discussed above, we come to the

conclusion that for aneuploid samples, GIANT demonstrates

robustness to tumor aneuploidy and normal cell contamination,

and superior performance in identifying different kinds of genomic

aberrations.

Analysis of Individual Tumor Samples
GIANT was examined by a number of individual tumor

samples and the results are shown to be helpful for interpretation

of tumor SNP array data. For example, we analyzed the breast

tumor in replicate SNP array dataset and the tumor content

detected by GIANT was only 10% in this sample, which was

concordant with the result of manual annotation suggesting it was

highly contaminated by normal cells. Note in this case, the

genotyping signals for cancer cells are extremely attenuated and

therefore detection of genomic aberration becomes very difficult

and at the same time prone to noise in SNP array data. However,

GIANT successfully identified amplification on chromosome 17

that harbored ERBB2 (HER2) oncogene (see Figure S11 in File

S1), indicating this breast tumor was HER2-positive. Furthermore,

the results of GIANT also showed that it was actually a somatic

aberration, as the corresponding region in matched normal sample

remained unchanged. On the contrary, when another HER2-

positive breast tumor (case 601) described in [26] was tested, with

the help of GIANT we found that HER2 was amplified not only in

tumor but also in normal stroma (Figure 5), indicating that the

stroma sample may actually be contaminated by the tumor cells

due to imperfect microdissection.

Another sample showing the utility of GIANT is the study of

tumor sample 7207 as described in [19]. We conducted an analysis

of ADAM3A aberration in this tumor and paired normal sample

by using GIANT. The results from the GIANT revealed that this

area was consistently identified as the deletion in both normal and

tumor samples (As shown in Figure 6 abc), implying the possibility

of occurrence of germline aberration, and this was further verified

by a parallel analysis of a diluted sample of the same tumor (see

Figure S12 in File S1). As shown in Figure 6d, germline

homozygous deletion leads to similar patterns of LRR signal for

this region in tumor, normal and dilution samples. For compar-

ison, we also applied ASCAT and OncoSNP on this data and the

results of chromosome 8 are plotted in Figure S13 in File S1.

ASCAT is capable of detecting the homozygous deletion, but

wrongly classifies breast tumor 7207 as tetraploid with a large

proportion (.60%) of cancer cells. In contrast, OncoSNP

correctly identifies tumor ACN and cancer cell content, but fails

to recognize the homozygous deletion of ADAM3A.

Application of GIANT to Urothelial Cancer Samples
In practice, analysis of genomic aberrations is often performed

on multiple tumors at a time. As such, we undertook an

investigation on a data set including four urothelial tumors with

matched normal sample [37]. Figure 7 shows visualized results

Table 1 Summarized results of different methods for dilution samples.

Real
cancer#

(%) GIANT OncoSNP ASCAT GPHMM

Cancer
$

(%) ACN LOH& (%) Cancer
$

(%) ACN LOH& (%) Cancer
$

(%) ACN LOH& (%) Cancer
$

(%) ACN LOH& (%)

10 9 2.72 71 20 3.34 1 n/a n/a n/a 85 1.95 5

14 11 2.66 62 20 3.19 27 n/a n/a n/a 77 1.96 5

21 17 2.92 58 30 3.09 43 n/a n/a n/a 39 3.55 5

23 30 2.88 57 40 2.94 61 28 2.82 63 23 3.71 62

30 26 2.89 58 40 2.90 57 25 2.87 61 60 3.58 1

34 31 2.86 58 40 3.03 58 29 2.85 64 72 3.57 1

45 35 2.86 59 50 2.91 59 34 2.80 63 35 2.76 61

47 43 2.85 58 60 2.92 60 43 2.81 64 44 2.80 59

50 41 2.85 58 50 3.21 58 41 2.77 64 42 2.78 59

79 77 2.85 58 80 3.22 57 77 2.79 58 78 2.82 58

100 97 2.81 58 100 3.11 58 98 2.95 60 93 2.88 58

#Real cancer = Real cancer cell content;
$
Cancer = Estimated cancer cell content;

&LOH = Estimated LOH proportion.
doi:10.1371/journal.pone.0087212.t001
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retrieved by GIANT for a comparative inspection, and in three

tumor samples there are broad LOH spanning the whole p and q

arm of chromosome 9. In contrast, recurrent somatic CNAs were

not observed in the whole chromosome. By checking the Atlas of

Genetics and Cytogenetics in Oncology and Haematology [8], we

found numerous LOH regions on chromosome 9 were reported in

urothelial cancer. For example, 9p21 and 9q32-34 are two well-

known LOH regions that harbor genes implicated in urothelial

cancer such as CDKN2A/CDKN2B, TSC1, DBCCR1 (Figure 7).

More detailed results of identified somatic aberrations for a list of

known aberrant regions are presented in Table S5 in File S1.

Although useful in this case, visual inspection is not always easily

applicable to studies especially with a large number of tumor

samples. Hence we performed a genome-wide permutation test

and the statistical significance of somatic aberrations was then

evaluated by q-values with a pre-defined threshold of 0.25 [6].

Three previously reported LOH regions in urothelial cancer,

9p21, 9q32-34 and 4p16.3, were significant in these tumors (see

Figure S14 in File S1). Other significant LOH regions on

chromosome 9, such as 9p24-23 and 9p13, also indicate possible

association with urothelial cancer. For CNA regions, there are no

significantly amplified regions detected, probably due to limited

sample size. On the other hand, significance test of somatic

deletion in urothelial cancer led to two new candidate regions:

6p21.3 and 8p21 (illustrated in Figure S15 in File S1), but after

further examination it became clear that deletion on 6p21.3 was

indeed spurious aberration that was caused by severe genotyping

errors in tumor samples. Whilst homozygous deletion on 8p21 was

Figure 3. Assessment of robustness for different methods using dilution series data. Dilution series data of cancer cell line CRL-2324 and
normal cell line CRL2325 are analyzed by GIANT for identifying genomic aberrations. (a) Genome-wide amplification (red)/deletion (green) profiles for
dilution samples with cancer cell content ranging from 10% to 100%. (b) Genome-wide LOH (blue) profiles for dilution samples. The vertical stripes
across different dilution levels reflect the strong reproducibility for aberration identification. (c) Self-consistency for copy number identification by
GIANT (yellow), ASCAT (light green), OncoSNP (green) and GPHMM (dark green). (d) Self-consistency for LOH identification by GIANT ASCAT,
OncoSNP and GPHMM.
doi:10.1371/journal.pone.0087212.g003
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observed in two tumor samples, indicating possible dysfunction of

cancer-related genes on this region.

Application of GIANT to Breast Cancer Samples
We further applied GIANT to a large SNP array data set

consisting of 112 breast tumors matched by peripheral blood [25].

The histograms of summarized results are plotted in Figure 8.

Although the distributions of standard deviation (STD) of LRR

and BAF (Figure 8a and 8b) indicate generally good signal quality

of these tumor samples, the GC coefficients shown in Figure 8c

suggest that signal noise associated with local GC bias in some

tumor samples are not trivial. In addition, we found that about 9%

of tumor samples (10 of 112) had less than 10% of cancer cells

(Figure 8d). On the other hand, it was reported that ASCAT could

not find feasible solutions for 21 tumor samples [25] and this

number dropped to 17 when the current version (2.1) was used.

We further compared these 17 tumor samples to the remaining

samples using the results of GIANT, and discovered that there was

actually no significant difference in signal STD (t-test, LRR p-

value: 0.13, BAF p-value: 0.74, see Figure S16 in File S1).

However, the median of tumor content for unresolved samples is

16%, which is significantly lower than that of the remaining tumor

samples with feasible solution (t-test, p-value: 1.3610–9, Figure

S16 in File S1). These results suggest that infeasible solutions are

caused by severe normal cell contamination, and similar conclu-

sion is also made in another study of tumor cellularity [29].

Next, we assessed the distribution of estimated tumor ACN

from the results of GIANT. Similar to the findings in [38] and

[16], Figure 8e shows that tumor ACN is apparently not normally

distributed but has two distinct peaks. Fitting by Gaussian mixture

model (see dashed line representing the fitted model) gives rise to

two normal distributions with mean ACN of 2.01 and 3.04,

suggesting these tumor samples can be categorized into two groups

(hereafter called Group I and Group II), with the respective

sample number being 90 and 22. Moreover, most of the tumors in

Group I exhibit a so-called ‘‘simplex’’ CNA pattern [5] (depicted

in Figure S17 in File S1) characterized by broad amplifications

and deletions up to the whole chromosome arms, whereas many

genomic profiles of the tumors in Group II show a discrepant

‘‘sawtooth’’ pattern [5] featured by a largely aberrant genome with

many narrow amplifications and deletions (depicted in Figure S17

Figure 4. Analysis of germline/somatic aberrations on chromosome 14q24 of breast cancer cell line CRL-2324. Breast cancer cell line
CRL-2324 and matched normal cell line CRL-2325 are analyzed by GIANT, and results on chromosome 14q24 are provided for demonstrating the
performance in identifying the germline/somatic aberration. (a) Results of matched normal cell line CRL-2325 showing germline (green) LOH on this
region. (b) Results of breast cancer cell line CRL-2324 showing this germline LOH is flanked by somatic (red) LOH. (c) Consistent results observed in
dilution sample with 50% cancer cells. (d) Results of OncoSNP for the same dilution sample.
doi:10.1371/journal.pone.0087212.g004
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Figure 5. Identification of genomic aberrations in ERBB2 gene for breast tumor 601. Both micro-dissected and non-dissected tumor
samples of HER2-positive breast cancer 601 are analyzed by GIANT with paired stroma sample. LRR/BAF signals and GIANT results around gene ERBB2
are provided for non-dissected tumor sample (left panel), dissected tumor sample (middle panel) and stroma sample (right panel).
doi:10.1371/journal.pone.0087212.g005

Figure 6. Identification of homozygous deletion in ADAM3A gene for tumor 7207. Breast tumor sample 7207, as well as the dilution
sample, is analyzed by GIANT with match normal sample, and results around gene ADAM3A are provided for demonstrating the performance in
identifying the germline aberration. (a) Altered BAF signal in tumor sample. (b) Altered LRR signal in tumor sample. (c) Visualized results of GIANT
showing germline homozygous deletion with zero copy of ADAM3A in both normal (green) and tumor (red) sample. (d) Similar LRR patterns for this
region in tumor, normal and dilution samples.
doi:10.1371/journal.pone.0087212.g006
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in File S1). The genomic profiles of all breast tumors illustrated in

Figure S18 in File S1 show that the tumors in Group II

demonstrate genome-wide amplifications while the tumors in

Group I in general have less amplifications but more deletions. In

addition, distinct patterns of aberrations on particular chromo-

some regions are also observed. For example, on the q arms of

chromosome 1 and 8 broad amplifications are dominant in both

two groups of tumors. While on the q arms of chromosome 11 and

16, amplifications are only observed in Group II tumors but

deletions are abundant in Group I tumors.

Following the approaches for investigating genomic aberrations

[5,7,10–12,25], we plotted the frequencies of somatic amplifica-

tion, deletion and LOH of all breast cancer samples, as illustrated

in Figure S19 and S20 in File S1. Consistent with the findings in

previous studies [5,7,25], we observed frequent amplification (1q,

8q, 16p), deletion (8p, 11q, 16q and 17p) and LOH (8p, 11q, 16q

and 17p) in breast cancer. However, these results directly obtained

from eyeballing of frequency plots are very coarse. More

problematically, relatively high frequency does not always lead

to statistical significance and vice versa. Therefore we further

performed statistical significance analysis of genome-wide somatic

aberrations. As shown in Figure 9, the q-values of CNA calculated

by GIANT demonstrate numerous significantly altered regions,

which harbor many breast cancer associated oncogenes and tumor

suppressor genes such as ERBB2, MYC, CCND1, BRCA2, TP53,

PTEN [5,7,8]. Note that although chromosome 3q, 11q and 14q

all contain aberrant regions associated with high amplification

frequencies (35–40%, see Figure S19 in File S1), the statistical test

suggests only the region on 11q that corresponds to oncogene

CCND1 is indeed significantly amplified. In addition, the results of

statistical analysis show both amplification and LOH on 17q12 are

significant, indicating only one of the two alleles for ERBB2

oncogene tends to be exclusively duplicated in these breast tumors.

This mono-allelic amplification phenomenon is also observed in

another study on ERBB2-amplified tumors [9]. Finally, a full list of

significant aberrations identified by GIANT accompanied with

more detailed information is provided in Table S6 in File S1.

Discussion

We present an efficient computational method for analyzing

paired SNP array data generated from tumor and matched

normal samples. By incorporating genotype information from

normal SNP array data, GIANT can accurately identify genome-

wide somatic aberrations in cancer genome, even for highly

contaminated aneuploid tumor samples. In various tests conducted

in this study, the performance of GIANT is superior to existing

methods. In addition, GIANT provides statistical significance

analysis of tumor aberrations for systematic discovery of recurrent

mutations.

GIANT takes full advantage of the underlying genetic

relationship of tumor and matched normal sample, and at the

Figure 7. Genomic copy number and LOH profiles for chromosome 9 of four urothelial tumors. The results of GIANT for chromosome 9
in four urothelial tumors are illustrated. Broad LOH regions (colored as blue in BAF) identified by GIANT are found in three tumor samples. Numerous
CNA regions (colored in LRR, green for deletion, red for amplification) are also identified in tumor samples. The CN panel shows copy number of
cancer (red) and matched normal (green) sample. Additional information, such as LOH status in normal sample, germline aberration status (blue for
consistent aberration types in both normal and tumor sample, red for inconsistent aberration types) and somatic aberration status (denoting the
region where aberration only occurs in tumor sample), are provided at the bottom of CN panel.
doi:10.1371/journal.pone.0087212.g007
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same time address critical issues including tumor aneuploidy and

normal cell contamination simultaneously. Our results demon-

strate that genotype information obtained from normal sample is

helpful in determining tumor genotypes and corresponding

aberrations, thereby rendering more accurate models with better

parameter estimation and improved performance. We would like

to point out that the strategy of utilizing genotypes of matched

normal sample for tumor aberration detection does not exclude

other computational approaches that aims to remove noise in

tumor genotyping signals by using normal SNP array data, e.g.,

the noise template adopted in OncoSNP. Therefore, if necessary

they may serve as a pre-processing procedure to improve the

quality of genotyping signals prior to the application of GIANT.

On the other hand, it is of note that in practice GIANT shows

reasonable robustness to heterogeneous tumor samples, e.g., the

dilution series (tumor heterogeneity observed in q arm of

chromosome 1), but the statistical model in GIANT does not

explicitly account for tumor heterogeneity and therefore multiple

cancer subclones in tumor sample may in fact lead to erroneous

parameter estimation and inaccurate detection of genomic

aberrations. Although in principle it is possible to address the

issue of tumor heterogeneity, for example, by adopting the intra-

tumor heterogeneity model [26] used in OncoSNP, it should be

stressed that extensive modelling of tumor heterogeneity will

inevitably bring more variations, e.g., specific proportions and

genomic aberrations associated with different cancer subclones,

into the whole framework and therefore may result in over-fitting

problems. Hence more sophisticated methods are required in

tumor SNP array data analysis when tumor heterogeneity is taken

into consideration.

In this study, the tumor samples were analyzed by Illumina SNP

arrays, but GIANT is not restricted to Illumina platform. Similar

with other tools such as ASCAT and OncoSNP, GIANT can be

generally applied to handle SNP array data generated by

Affymetrix platform with the help of specific conversion tools

such as PennCNV [39] and AROMA CRMAv2 [40]. Also the

statistical significance test adopted in GIANT is platform

independent and therefore can be easily used to find recurrent

aberrations from the results of Affymetrix SNP arrays. At the same

time, the work described in this paper can also inspire research on

computational tools for tumor NGS data analysis, which has been

greatly benefited from the studies of tumor SNP arrays [16,17]. So

far, some aberration detection methods initially designed for SNP

arrays, such as GAP [21] and TAPS [28], have been successfully

transferred to NGS platform [15,18]. Our next step in the future is

to adopt the statistical framework of GIANT in NGS data analysis,

and given many advantageous factors, such as the similarity of

concept and methodology for read-depth (density of short reads

Figure 8. Histograms of summarized results for 112 breast cancer samples. Histograms of summarized results provided by GIANT, includes
(a) standard deviation of BAF, (b) standard deviation of LRR, (c) coefficient for local GC content, (d) proportion of cancer cells admixed in tumor
sample and (e) tumor ACN for 112 breast cancer samples. Dashed line shows the fitted Gaussian mixture models (Group I and II). Solid lines represent
mean average copy number of group I and II respectively.
doi:10.1371/journal.pone.0087212.g008
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aligned along the genome) and microarray based approaches in

identifying genomic aberrations [15,18], availability of BAF from

NGS data [15] and platform independency of statistical signifi-

cance analysis, we believe this approach will be highly feasible.

In conclusion, GIANT represents a valuable and powerful

bioinformatics resource for identifying important aberrations in

cancer genome, which may help to elucidate critical events

contributing to tumorigenesis and at the same time show its

usefulness in personalized targeted therapy for cancer.

Supporting Information

File S1 File S1 contains the following files. Text S1.
Detailed description of statistical methods in GIANT.
Figure S1. Comparison of BAF signals in two normal
replicates on different chromosomes. Figure S2. Visual-
ized genomic aberrations for replicate pairs. Figure S3.
Comparison of estimated normal cell contamination
levels and tumor average copy number for simulated
tumor SNP arrays. Figure S4. Comparison of specificity
for identifying normal regions in simulated tumor
samples. Figure S5 Sensitivities for distinguishing
aberrations from normal regions by five different
methods. Figure S6. Theoretical and real mean values
of LRR/BAF in different scenarios. Figure S7. Aberra-
tions in chromosome 6 of breast cancer cell line CRL-
2324. Figure S8. Aberrations in chromosome 13 of breast
cancer cell line CRL-2324. Figure S9. Comparison of
results for breast cancer cell line CRL-2324 by different
methods. Figure S10. Comparison of self-consistency for

GIANT and GPHMM using dilution series data. Figure
S11. Visualized results of GIANT for replicate breast
cancer sample. Figure S12. Detection of germline
homozygous deletion of ADAM3A gene in diluted breast
tumor sample 7207. Figure S13. Comparison of the
results for chromosome 8 of breast tumor 7207 by
different methods. Figure S14. Significance test of
genome-wide somatic amplification and LOH for ur-
othelial cancer samples. Figure S15. Significance test of
genome-wide somatic deletion for urothelial cancer
samples. Figure S16. Box plots of summarized results
for 112 breast cancer samples. Figure S17. Distinct
patterns of genome-wide copy number profiles identi-
fied in two groups of tumors. Figure S18. Genome-wide
CNA profiles of breast cancer samples. Figure S19.
Frequency plot of genomic-wide CNA for 112 breast
cancer samples. Figure S20. Frequency plot of genomic-
wide LOH for 112 breast cancer samples. Table S1.
Detailed information of hidden states in PSHMM. Table
S2. Parameters estimated by GIANT on replicate SNP
arrays. Table S3. Details of estimated parameters from
paired methods. Table S4. Genomic regions used for
illustrating real distributions of LRR/BAF mean values.
This file contains a supplementary table with detailed information

of 12 genomic regions, including chromosome number, start and

end position, aberration type, copy number and mean values of

LRR/BAF signal in dilution series. Table S5. Genomic
aberrations in known abnormal regions implicated in
urothelial cancer. Table S6. Detailed results for signif-

Figure 9. Genome-wide analysis of statistically significant somatic aberrations for breast cancer samples. 112 breast tumor samples are
assessed by GIANT for identifying the significant aberrations. Statistical significance for amplification (left panel), deletion (middle panel) and LOH
(right panel) was evaluated by using FDR corrected q-value. Dash lines correspond to the significant threshold of 0.25.
doi:10.1371/journal.pone.0087212.g009
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icance test of genome-wide aberration in 112 breast
cancer samples. This table contains detailed information of

significant aberrant regions identified by GIANT.
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