
Tracking Socioeconomic Vulnerability Using Network
Analysis: Insights from an Avian Influenza Outbreak in an
Ostrich Production Network
Christine Moore1*, Graeme S. Cumming1, Jasper Slingsby2, John Grewar3

1 Percy FitzPatrick Institute, DST/NRF Centre of Excellence, University of Cape Town, Rondebosch, Cape Town, South Africa, 2 South African Environmental Observation

Network, Fynbos Node, Newlands, Cape Town, South Africa, 3 Government of the Western Cape, Department of Agriculture, Elsenburg, South Africa

Abstract

Background: The focus of management in many complex systems is shifting towards facilitation, adaptation, building
resilience, and reducing vulnerability. Resilience management requires the development and application of general
heuristics and methods for tracking changes in both resilience and vulnerability. We explored the emergence of
vulnerability in the South African domestic ostrich industry, an animal production system which typically involves 3–4
movements of each bird during its lifetime. This system has experienced several disease outbreaks, and the aim of this study
was to investigate whether these movements have contributed to the vulnerability of this system to large disease
outbreaks.

Methodology/Principal Findings: The ostrich production system requires numerous movements of birds between different
farm types associated with growth (i.e. Hatchery to juvenile rearing farm to adult rearing farm). We used 5 years of
movement records between 2005 and 2011 prior to an outbreak of Highly Pathogenic Avian Influenza (H5N2). These data
were analyzed using a network analysis in which the farms were represented as nodes and the movements of birds as links.
We tested the hypothesis that increasing economic efficiency in the domestic ostrich industry in South Africa made the
system more vulnerable to outbreak of Highly Pathogenic Avian Influenza (H5N2). Our results indicated that as time
progressed, the network became increasingly vulnerable to pathogen outbreaks. The farms that became infected during
the outbreak displayed network qualities, such as significantly higher connectivity and centrality, which predisposed them
to be more vulnerable to disease outbreak.

Conclusions/Significance: Taken in the context of previous research, our results provide strong support for the application
of network analysis to track vulnerability, while also providing useful practical implications for system monitoring and
management.
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Introduction

The long-term sustainability of modern society depends on the

development of general principles and heuristics that allow us to

work with and manage complex processes without collapsing our

own life-support systems [1]. Policy and management for complex

systems are increasingly being forced away from traditional

optimization approaches - as they fail - and into a paradigm that

focuses on facilitation, adaptation, and resilience [2–4]. Typical

behaviors of complex systems include amplifying and regulating

feedbacks between cause and effect; non-linear responses to small

perturbations; and the potential for unexpected outcomes [5].

Such behaviors can be difficult to quantify and understand,

particularly when their outcomes depend on irreducible uncer-

tainties [6]. As a result, the current cutting-edge focus of research

on the vulnerability of complex systems is on understanding

indicators or warning signs of collapse rather than on predicting

them from first principles [7,8].

Holling and Meffe [2] have argued that as complex production

systems improve their efficiency or net production, they become

increasingly vulnerable to perturbations and surprises. For

example, monocultures often suffer heavily from pest outbreaks;

forests that are managed for wood production may become

vulnerable to fire; and many of the oceanic fisheries that have been

managed for ‘maximum sustained yield’ have collapsed [9–11].

Holling and Meffe [2] termed the tendency for managers to

collapse the system, following attempts to maximize production of

a single quantity, the ‘‘pathology of natural resource manage-

ment’’. Despite a wealth of individual cases that support the

generality of the problem, however, there are relatively few

empirical studies that have rigorously tracked changes in

vulnerability (or its converse, resilience) as a managed production

system has attempted to maximize its outputs.
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Animal production systems offer a set of case studies that are

data-rich, are extremely important for economies and livelihoods,

and from which vulnerability can be explored in greater depth.

Cumming and Norberg [12] have argued that complex systems

can be described from the complementary perspectives of

asymmetries, networks, and information processing. Here we

develop and apply a network approach to understanding the

vulnerability of animal production systems to disease.

Where traditional mean field, metapopulation and lattice based

models assumed homogeneity in social relations or contact within

populations, network analysis incorporates a more appropriate

treatment of connection heterogeneity [13,14]. Networks are

defined as collections of potentially interacting units (termed nodes

or vertices) within a system [15]. Network analysis focuses on the

nature and intensity of interactions and connections (termed links

or edges) between units, rather than purely on the attributes of the

Figure 1. Changes in Network and Node Properties Associated with Increasing Vulnerability. Network Properties – properties of the entire
network which impact vulnerability (a) Density (ratio of edges to nodes) – As this ratio increases, there is an increase in connections between nodes,
increasing the potential paths for disease spread. (b) Number of components (number of independent/isolated sub groups) – A decrease in the
number of isolated groups increases the reachability of any random node (c) Giant Component (largest independent/isolated sub group) – if the
largest component contracts infection, this infection can spread further through the Giant Component compared to smaller, more isolated
components which will make the whole network more vulnerable. (d) Link Weight (strength of relationship/number of units moved or frequency of
movement) – As more units are moved or units are moved more frequently, there is an increase in the chance of moving infected individuals. Node
Properties – properties of each node which make the node more vulnerable or impact the vulnerability of the rest of the network. Black node = focal node
(e) Degree (number of edges) – increases in the number of edges any node has increases the vulnerability of that node to potential transmission
(must have contact/connection to transfer infection) (f) Betweenness (how often a node lies on the shortest path between two other nodes) – with
low vulnerability the focal node has low betweenness and for the highest vulnerability the focal node has maximum betweeness, where every node
must go through the focal node to reach any other node. (g) Infection chain (the number of nodes that can be reached by the focal node, accounting
for timing of movements) – the focal node has a single edge (*), and those edges in the network which are formed before this edge (i.e. those animal
transfers which happen before the focal node formed) cannot contribute to the infection chain, and are depicted with a dashed line. Edges which
form after this edge are depicted with a solid line. With the lowest vulnerability, the focal node can only form a chain of one, because the outgoing
edge from the next node has already formed. With medium vulnerability, the subsequent edge is formed after the focal node’s edge, thus stock could
move from the focal node to 3 other nodes, giving it an infection chain of 3. In the final figure all movements occur subsequent to the formation of
the focal node and thus the infection chain for this node increases to 5.
doi:10.1371/journal.pone.0086973.g001
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units themselves. By representing complex systems as collections of

nodes and links, network analysis creates models that can be

analyzed using standard mathematical techniques [16]. Network

analysis has wide applicability in understanding systems as diverse

as research collaborations, the Internet, and trophic interactions

[17–19], and has been used to identify similar underlying

mechanisms across a range of complex systems. If network

analysis can be used to articulate general principles for epidemi-

ological management [20] these should then be applicable to

understanding and managing vulnerability in other complex

systems.

Few datasets include contact structure data that are both

relevant to pathogen transmission in large populations and

sufficiently detailed to test the relevance of the network based

approach [21]. Movement records of domestic livestock and

poultry often provide an exception, where meticulous monitoring

can produce large, detailed databases of contacts or movements

that are relevant to the potential spread of disease. In recent years,

network analysis has emerged as a central method for evaluating

epidemics and disease transmission in many animal production

systems. Notable examples include analysis of Foot and Mouth

Disease in the UK [21–23] and Avian Influenza in the UK

Figure 2. Full ostrich movement network visualization with the least connected nodes (degree ,20) not shown. The farm ID numbers
for the 10 most connected nodes are displayed, and all farms which tested positive for HPAI are shaded red and the farm ID number displayed for the
ten farms with the highest degree.
doi:10.1371/journal.pone.0086973.g002
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[24–27]. These investigations into specific outbreaks have led to

advances in modeling and monitoring of both disease transmission

and epidemic outbreaks within domestic production industries

[28–30].

While existing studies have applied network analysis to identify

the origin of disease outbreaks or monitor vulnerability in non-

infected networks, studies quantifying vulnerability in systems that

have experienced actual epidemics are scarce. Robinson et al. [23]

investigated UK cattle trade network evolution over time to

understand the emergent properties of production systems that

create vulnerability, but did not link their study to a system

collapse or a disease outbreak. Rautureau et al. [31] investigated

vulnerability to disease in the French swine industry, concluding

that while the network displayed local or regional vulnerability, the

entire network was relatively disjointed. While both studies

identified a tendency for networks to self organize towards

vulnerability, neither linked their findings to an actual outbreak,

leaving the generality of their results unclear. Here we apply a

more rigorous test by examining changes in network-derived

measures of vulnerability over the five years preceding a severe

avian influenza outbreak in an ostrich production system in South

Africa.

Ostrich Production in South Africa as a Case Study
We examined the vulnerability of an ostrich production system

using a dataset of over 18,000 transfers of domestic ostriches

between farms within the Western Cape of South Africa during

the period September 2005–March 2011. The dynamics of ostrich

production are complex, with efforts to increase production

interacting with periods of drought, fluctuations in prices of other

locally produced commodities (many farmers also produce crops

and some farm sheep as well as ostriches), international demand

for ostrich products, and pathogen outbreaks. Meat production,

constituting about a fifth of the value of each bird, and

international meat exports can be used to provide an index of

overall ostrich production in this region [32]. When birds are

transferred between locations they are often incorporated into

holdings with resident birds, allowing mixing and contact. The

industry experienced H5N2 outbreaks in 2004 and 2006; and

from April 2011, an exceptionally large H5N2 outbreak resulted in

42 farms testing positive for the disease, severe economic losses,

and the government paying out over 6,500,000 USD in

compensation. The presence of H5N2 in this system, coupled

with its significant economic growth and near-collapse, make it

well suited for testing the hypothesis that the emergent behavior

and structure of networks during times of increased production (or,

Figure 3. The monthly number of nodes (farms) and edges (ostrich movement events) occurring in the Western Cape, between
September 2005 and March 2011. The vertical lines occur mark December of every year.
doi:10.1371/journal.pone.0086973.g003
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as during the financial crisis, increases in production efficiency)

can be used to track system vulnerability to disease epidemics.

Quantifying Vulnerability Using Network Metrics
The wide range of metrics used to measure properties of

networks can be broadly split into network level properties

(Figure 1a–d), which focus on system-wide relations and structures,

and those measured at the node level (Figure 1e–g). In-depth

understanding can be gained by comparing network and node

measures of vulnerability over time.

The most straightforward property measured at the network

level is its density, which gives a relative measure of numbers of

edges to numbers of nodes (Figure 1a). Edge density captures the

proportional network-wide frequency of interactions, which in

turn provides information about the transmission potential of a

density-dependent pathogen [33–35]. Increased edge density

(without an increase in network size) is likely to coincide with

greater vulnerability to pathogen outbreak because the number of

routes for disease transmission has increased. Edge weight

(Figure 1b) can also impact on network vulnerability with greater

weights, representing relationship strength (ie. higher numbers of

units such as number of ostriches moved) and/or the frequency of

contact (ie. number of shipments of ostriches/units), creating

increased vulnerability [36].

Real world networks are often composed of multiple connected

subgroups, called ‘components’, that are isolated from other

components. The number of components greatly affects vulner-

ability to diseases where transmission is based on direct contact

between individuals, because nodes in components that bear no

disease cannot become infected (Figure 1c). In addition, larger

components can allow rapid transmission among nodes, resulting

in more extensive epidemics. Some studies have found that nodes

congregate preferentially in a particular component that then

becomes significantly larger than the others, and have labeled it

the Giant Component (Figure 1d). If large component size is

coupled with a low number of components within the network

(i.e., the ‘all your eggs in one basket’ syndrome), the epidemic

potential of a virulent disease increases [11].

Within a directed contact network (i.e. where links represent

interactions that occur from one entity to another, but not in

reverse, such as movements from a breeding farm to a grower),

two types of component are relevant to pathogen transmission.

‘Weak components’ are connected by directed links, but not all

nodes within a group need to be mutually accessible to all other

nodes. In other words, if a link exists between two nodes,

regardless of direction, they will be in the same weak component

[21,37,38]. The largest weak component in a network is known as

the Giant Weak Component and has been used to estimate the

upper bounds of maximal epidemic size [22,23,39]. The second

type, ‘strong components’, are connected by directed links with

each node mutually accessible to every other node either directly

or indirectly [21,38]. The largest strong component in a network is

known as the Giant Strong Component, and has been used to

estimate the lower bounds of maximal epidemic size [22,23,39].

The directionality and stage dependency of movements in some

production systems reduce the predictive power of the Giant

Strong Component as an overall diagnostic measure of network

vulnerability [39]. In this study the Giant Strong Component over

all months included only four nodes, rendering it ineffectual for

understanding network vulnerability. With a sequential flow of

ostriches through the production system, the likelihood for

reciprocated ties between farms, or fully connected groups of

farms, is low. Similar observations have been made in other

production systems [39].

The most important node level measures for assessing network

vulnerability are those directly related to connectivity. The

simplest is the ‘Degree’, or the number of links a particular node

has (Figure 1e), while ‘Betweenness’ looks at the number of times

Figure 4. The results of a Bfast analysis of the (a) network density and the (b) Max outgoing infection chain. The top frame of each
panel displays the network index at each time step, while the second panel depicts seasonal variation detected in the measure over time. This
variation is then removed and the resulting trend is displayed in panel three. The fourth panel depicts residual variation which cannot be accounted
for in the seasonal variation or trend.
doi:10.1371/journal.pone.0086973.g004

Tracking Vulnerability Using Network Analysis

PLOS ONE | www.plosone.org 5 January 2014 | Volume 9 | Issue 1 | e86973



the focal node falls on the shortest path between any two other

nodes (Figure 1f). Betweenness is often equated to the centrality of

a node in a network, with higher values indicating greater

centrality. Nodes with higher degree or betweenness would be

expected to contract disease earlier in an epizootic or epidemic

[9,40].

Contact diseases follow a temporally structured chain of

infection, and thus to study them adequately, both direction and

the temporal sequence of interactions must be considered. One of

the main criticisms of using strong and weak components to infer

susceptibility of disease vulnerability is their lack of temporal

information [39]. Dube et al. [39] and Noremark et al. [29] have

developed methods to assess the temporal elements of ‘infection

Figure 5. The results of a Bfast analysis of (a) the number of birds moved, (b) average ingoing infection chain length, (c) number of
components and (d) Giant Weak Component size. The first frame of each panel displays the network index at each time step, while the second
panel depicts seasonal variation detected in the measure over time. This variation is then removed and the resulting trend is displayed in panel three.
The fourth panel depicts residual variation which cannot be accounted for in the seasonal variation or trend. The vertical lines in the second panel of
image c indicate shifts in the season trends, while the vertical lines in the 3rd panel signify an abrupt change in the trend component of the time
series. The corresponding confidence interval of each shift or change is depicted by horizontal lines below each.
doi:10.1371/journal.pone.0086973.g005
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chains’ in networks (Figure 1g). Any node has the potential to have

an ingoing infection chain, by which it becomes infected, and an

outgoing infection chain, by which it infects other nodes. Ingoing

infection chains examine the series of contacts leading into a

particular node, including both the direction and relative timing of

links, indicating how many nodes could have infected the focal

node. Similarly, the outgoing infection chain assesses all chains

leaving the focal node (considering the timing and direction of

ties), indicating which other nodes the focal node could have

infected [29,38,39].

The application of many network level measures of vulnerability

is well established [17], but few studies have tested their relevance

using data leading up to an actual outbreak. Comparing network

measures of vulnerability to node level measures for infected versus

non-infected nodes over time allows the relationships between

network structure and vulnerability to be tested directly. Both

network and node level measures are affected by connectivity and

centrality and are expected to co-vary if they are adequate

measures of vulnerability. If infected nodes are found to be more

central and more connected than other nodes, this provides

verification of both node and network measures of vulnerability. If

these measures can be used to quantify vulnerability as a system is

managed to optimize or maximize a single output, and if they have

the potential to predict real-world system collapse, then they have

enormous potential to contribute to identifying the thresholds and

tradeoffs that are critical for the sustainable management of

animal production systems in particular and natural resources in

general.

Results and Discussion

Network Description
A total of 1617 farms (nodes) participated in the Ostrich

Movement Network (OMN), with 17,955 movement events (edges)

involving 2,677,478 individual bird movements over the entire

time series (Figure 2). Nine strong components were identified in

the full network combining all data across the entire period of

observation. Of these, 8 ranged from 2 to 5 nodes, while the Giant

Weak Component contained 1596 nodes. While the entire

network appears highly connected, greater insight can be gained

by partitioning networks by time. Monthly networks displayed

high variability in the number of nodes and edges, fluctuating

seasonally and in a predictable fashion, as revealed by strong

positive autocorrelation at 2 and 12 months and strong negative

autocorrelation at 6 months when the autocorrelation function

(acf) [41] is applied. The number of nodes and edges in any given

month ranged from 111 to 331 interacting farms and 82 to 444

bird movements, respectively (Figure 2). Seasonal variation has

also been found in other large production systems, such as swine

[39] and cows [29].

Figure 6. The distribution of logged betweenness (nInfected = 23, nNon_Infected = 324) and degree (nInfected = 42, nNon_Infected = 1575
scores for all farms (white) as well as the farms which tested positive for HPAI (black). A Wilcoxon signed rank test revealed that the
infected farms are significantly different from infected farms in the network in both betweenness (p,0.001) and degree (p,0.001).
doi:10.1371/journal.pone.0086973.g006
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Seasonal Fluctuations and Temporal Trends in
Vulnerability

Analyses indicated an increase in the number of bird

movements and density of connections in the movement network

over the study period (Figure 3; Figure 4a). Similarly, the numbers

of nodes and edges became increasingly decoupled and weak

components decreased in number while the Giant Weak

Component increased in size with greater numbers of ostrich

movements (Figure 3, Figure 5 a & b). The reduction in

compartmentalization (number of components) and the increase

in connectivity (network density) reduced the system’s resilience to

pathogen outbreaks and were consistent with trends identified in

previous studies examining vulnerability to disease in animal

production systems [21]. The increase in bird movements

occurred in such a way that it aggravated transmission potential,

while increasing the likelihood that an infected bird be transferred

between locations before infection detected. It thus comes as no

surprise that when H5N2 entered the system the initial detection

of disease occurred on a single farm in April 2011, but over 40

farms became infected before the outbreak was contained four

months later.

Both the maximum and average outgoing infection chains for

the monthly networks increased over time, indicating that the

number of other nodes that the focal node could potentially infect

was increasing. The average ingoing infection chain displayed a

weak decreasing trend from 2 to 1.5, although a high residual from

the Bfast analysis leaves this finding inconclusive. The maximum

ingoing infection chain did not reveal seasonal variation,

displaying higher values in 2005 and 2011, but fluctuated between

5 and 15 in the intervening period. In general our findings suggest

that the outgoing infection chain is more useful in quantifying

vulnerability than the ingoing chain, as it is more closely coupled

with seasonal trends affecting other measures and more consistent

over time.

Figure 7. The log of the proportion of infected farms at increasing ingoing (top) and outgoing (bottom) infection chain lengths
during 01/09/2010 - 01/04/2011.
doi:10.1371/journal.pone.0086973.g007
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Tracking Infection Spread
Linking information on the 2011 H5N2 outbreak with changes

in measures of network vulnerability through time provided a

benchmark test of the utility of these measures, and allowed us to

draw links between node and network level measures. Perhaps our

most important finding was that the increase in network

vulnerability could be quantified, via changes in network

properties, using differences in node level measures between

infected and uninfected farms. Wilcoxon signed rank tests for

differences in betweenness and degree between infected and

uninfected farms revealed that infected farms were significantly

more connected (p,0.001) and more central (p,0.001) than the

rest of the network (Figure 6; note that sample sizes for the tests of

degree and betweenness differ due to the exclusion of a high

number of nodes with null betweenness values). Outgoing and

ingoing infection chain lengths for each node were calculated

using a network that included all nodes and edges from September

2010 to April 1 2011, the period identified by Abolnik et al. [42]

for which a form of the H5N2 virus had been in the system, and

thus the movement of the virus was possible. Wilcoxon signed rank

tests revealed that infected farms were more likely to have longer

infection chains than those farms that did not become infected

(Figure 7). Greater infection chain lengths and betweenness and

degree scores for infected farms support the argument that greater

connectivity increased vulnerability to disease outbreaks.

Managing Fragility in Animal Production Systems
Our results show clearly that key attributes of the network

changed in predictable ways as individual farmers attempted to

maximize their profits and as the number of birds moving in the

system increased. In particular, the pattern of ostrich movements

made the system increasingly vulnerable to pathogen outbreaks.

The potential for severe outbreaks could be reduced by

implementing regulations that decrease emergent (network-level)

vulnerability and/or improve monitoring to facilitate earlier

detection of infected birds. Vulnerability could be reduced by

constraining the direction of transfers such that farms could not

exchange birds with farms from which they receive transfers. This

would reduce infection chain lengths and increase the number of

nodes that the disease would have to pass through to infect all

farms (or Average Path Length). Another approach would be to

increase the compartmentalization of the network (i.e. reducing

component size) by limiting the numbers of farms that are

permitted to transfer animals between one another. This would

create units of interaction in which contact with members in the

same neighbourhood is more likely than with farms from other

neighbourhoods. While we have no data for bird interactions

within farms, it is likely that increasing compartmentalization

within farms (i.e. reducing contact among cohorts of birds on the

same farm) would similarly reduce the spread of disease. This

method would reduce emergent network vulnerability because

farms that are internally compartmentalized would essentially act

as multiple nodes, reducing their overall degree, betweenness and

infection chain lengths.

Similarly, disease monitoring efforts are costly, logistically

difficult and time consuming, limiting the number of birds and

farms that can be tested. These efforts could be made more

efficient if monitoring were focused on farms with high node-level

vulnerability scores, and if priority were given to birds in transfers

to or from farms with similarly high node-level vulnerability scores.

While increased regulation is rarely popular with farmers, and

might potentially incur additional costs, it would greatly reduce the

vulnerability of the system to future outbreaks of H5N2 or any

other pathogen introduced to the system.

Figure 8. Ostrich production in South Africa. This process incorporates the movement of birds between a number of different types of farms
before they are sent to the abattoir to be slaughtered. The process begins at hatcheries where eggs are incubated and, once hatched, chicks are
moved to chick rearing farms within 72 hours. This most frequently occurs between September and February each year. The birds remain at these
rearing farms for 2–3 months, when they are moved to adult rearing farms. They remain at these locations until they reach 70–90 kg (for approx. 12–
14 months) when they are moved to quarantine farms. They remain at these farms for ,30 days, and once deemed disease free they are transferred
to an abattoir for slaughter. These last two steps of the production cycle occur primarily between September and February.
doi:10.1371/journal.pone.0086973.g008
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Conclusions
Our analysis supported the prediction that vulnerability to

Avian Influenza outbreaks would increase as productivity was

maximized in an ostrich production system in South Africa. More

generally, we identified some useful principles for future analyses

of network vulnerability. For instance, being able to analyze

temporal trends was essential to developing a quantitative

understanding of changes in vulnerability; the assembly of

temporally rich data sets will be a priority for further advances

in this area of research. Similarly, giant component approaches

appeared less useful in quantifying vulnerability than analysis of

infection chains. Infection chain analysis was developed in an

epidemiological context but have parallels in many other

disciplines in which network analysis is used (e.g., gene flow,

pollination networks) and offer a valuable addition to this kind of

analysis. Industry standards, the details of the system, and the

transmission behaviors of pathogens can also have a significant

impact on the usefulness of network metrics. Although some

network measures, such as network density, have a wide

application across most disease systems, others (such as the traits

and trends of the components and infection chains) are more

system-specific. Our analysis of vulnerability in an ostrich

movement network, taken together with previous analyses of foot

and mouth disease in the UK [21–23], provides a clear

demonstration that network measures can be used to track

vulnerability in these systems, while offering valuable insights into

the design of monitoring programmes and the development of

protective regulations.

Materials and Methods

Ostrich Production
Ostrich production within the Western Cape typically involves a

number of types of farm, each specializing in a specific stage of

ostrich growth (Figure 8). This fragmented production system is a

direct result of the excessive capital required for a farm to engage

in multiple stages of production. For example, a hatchery and

raiser facility could cost upwards of 100,000 USD. Additionally, it

is not viable to conduct all stages of production in a single region.

For example, chick raisers in more arid regions have much lower

mortality rates compared with the Oudtshoorn region, where

much of the feedlot-type production industry is based. As a result,

it is not uncommon for a single bird to be moved upwards of 4

times during its life, residing on at least 3–4 different farms. In

addition, the movement of birds is highly directional, with there

being little reason for older birds to return to farms that specialize

in rearing ostrich chicks or young birds.

Within each farm, ostriches are often kept in enclosures. This

allows for frequent contact between new arrivals and current

resident birds. Given that H5N2 is most commonly transmitted via

direct contact with an infected individual, the Ostrich Movement

Network (OMN) represents a plausible route of transmission.

Other potential transmission pathways are via drinking water, wild

birds, surfaces such as transport trucks, and the workers who

accompany birds between locations [43,44,45]. In April 2011 the

highly pathogenic avian influenza virus (HPAI) H5N2 was

detected on an ostrich farm near Oudtshoorn, Western Cape

[46]. By January 2012, 42 farms had tested positive for the virus.

This resulted in the full eradication of stock on all H5N2-positive

farms, the loss of valuable breeding stock, substantial economic

losses within the region, and governmental compensation payouts

in excess of 6.5 million USD.

A Department of Agriculture report [47] indicates that over the

period 2001–2010 ostrich meat production ranged from approx-

imately 6000 tonnes to just short of 10 000 tonnes per season.

Although ostriches provide meat, feathers, and leather, with meat

constituting only about a fifth of the value of an individual bird,

meat production provides an index of overall production. An

avian influenza outbreak in 2006 temporarily halted the export of

ostrich meat to the European Union, where a knock on decrease in

production in the 2007/2008 season was seen. A similar effect has

now been experienced in the 2012/2013 season, where production

decreased to less than half of the production in the 2011/2012

season (SAOBC pers comm). Available evidence suggests that

ostrich movement networks continued to grow and develop during

the 2008 global recession period as farmers attempted to reduce

costs through such mechanisms as improving the survivorship of

ostrich chicks by sending them to specialist rearing farms [43]. In

attempting to either maximize production (during profitable

periods) or reduce costs (during recession periods), the system

thus became increasingly focused on the twin principles of

efficiency and maximized yield. Efficiency is provided by the

greater number of movements of birds, which results in lower

costs; yield increases with the numbers of birds produced.

Data Description
Ostrich movements in the Oudtshoorn region are recorded via

permits issued by the Department of Agriculture of the Western

Cape. The database of records contains the date, source,

destination, batch size, as well as farmer specific information for

each movement. The system has been in operation since 2005,

when it was established following an outbreak of HPAI. The data

available prior to September 2005 and after March 2011 were

incomplete and were excluded from all analyses. The data were

cleaned (i.e., screened for errors and checked against original data

sheets where necessary) and a unique farm ID number was

assigned to each farm in the network. The data set used only

capture movements involving export farms, due to these move-

ments being highly regulated and meticulously recorded. For the

analysis it was assumed that all movements of ostriches to or from

export farms are accounted for in the dataset.

Network Construction
The movement database was used to construct an Ostrich

Movement Network (OMN), which included directed ostrich

movements (edge) between source and destination farms (nodes).

Any two nodes were treated as being connected by a directional

edge if there was at least one movement of ostriches between them

during a particular month.

The movement of ostriches though out the year is not uniform,

with observed seasonal variation in activity based on either the

stages of the ostrich life cycle and climatic conditions. Seasonal

variation is not uncommon in domestic production systems, with

comparable fluctuations observed in the British livestock [22,23]

and poultry [25,26] industries.

To observe system changes over time which related to

vulnerability, movements were grouped by month, rather than

day, allowing for additional network measures (i.e., density) to be

examined through time. To safeguard against the potential

implications of losing finer-grained temporal information that

might be relevant to disease transmission and system vulnerability,

these monthly sub-networks (n = 67) were analyzed using both

static measures (density) and sequential measures (infection

chains).

Time series analysis – vulnerability through time. As a

proxy for production in the system, we tracked the numbers of

birds being moved. To investigate system vulnerability, we used

network density, number of components (strong and weak), the
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size of the Giant Component, average infection chain length

(ingoing and outgoing) and the longest infection chain (ingoing

and outgoing). All calculations were carried out using R statistical

computing [48] and the packages ‘EpiContactTrace’ [29] for

infection chains and igraph 0.5.5–3 [49] for all other network

metrics. Time series were analysed using the Bfast analysis,

implemented in the R package ‘bfast 2.1–19 [50] to track network

changes over the full study period despite highly seasonal

fluctuations in network activity. Changes in maximum and

average infection chain lengths for all nodes were tracked over

time using a Bfast analysis. Bfast was originally developed for use

with remotely sensed data and uses a generic change detection

approach which relies on a piecewise linear model to decompose a

time-series into its trend, seasonal and residual components.
Comparative analysis: infected vs. non-infected

farms. To test whether farms which became infected during

the 2011 HPAI epizootic were more connected or central than

uninfected farms, their degree and betweenness were compared

using Wilcoxon sign rank tests. Similar analysis was conducted for

infection chain lengths (in and out) beginning at the time of

infection and running for 8 months directly prior to the outbreak.

We used 8 months because September 2010 was identified as the

potential time of introduction of the HPAI virus in the region by

Abolnik et al. [42], using molecular clock analysis based on virus

DNA mutation rates.
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