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Abstract

Combining low-cost wireless EEG sensors with smartphones offers novel opportunities for mobile brain imaging in an
everyday context. Here we present the technical details and validation of a framework for building multi-platform, portable
EEG applications with real-time 3D source reconstruction. The system – Smartphone Brain Scanner – combines an off-the-
shelf neuroheadset or EEG cap with a smartphone or tablet, and as such represents the first fully portable system for real-
time 3D EEG imaging. We discuss the benefits and challenges, including technical limitations as well as details of real-time
reconstruction of 3D images of brain activity. We present examples of brain activity captured in a simple experiment
involving imagined finger tapping, which shows that the acquired signal in a relevant brain region is similar to that obtained
with standard EEG lab equipment. Although the quality of the signal in a mobile solution using an off-the-shelf consumer
neuroheadset is lower than the signal obtained using high-density standard EEG equipment, we propose mobile application
development may offset the disadvantages and provide completely new opportunities for neuroimaging in natural settings.
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Introduction

In the last few years, the research communities studying human

behavior have gained access to unprecedented computational and

sensing power that basically ‘‘fits into a pocket’’. This has

happened for both specialized equipment used for building

research tools, such as Reality Mining Badges [1] or accelerometer

sensors [2], and for consumer-grade, off-the-shelf devices.

Smartphones and tablets are capable of sensing, processing,

transmitting, and presenting information. This has already had a

significant impact on many research domains, such as social

science [3], computer-human interaction [4], and mobile sensing

[5,6]. In neuroscience there is a widely recognized need for

mobility, i.e., for devices that support quantitative measurements

in natural settings [7–9]. Here we present our work on the

Smartphone Brain Scanner, investigate the feasibility of off-the-shelf,

consumer-grade equipment in a neuroscience context, and build a

mobile real-time platform for stimulus delivery, data acquisition,

and processing with a focus on real-time imaging of brain activity.

Consumer-grade neuroheadsets, capable of recording brain

activity generated by post-synaptic potentials of firing neurons,

captured through electrodes placed on the scalp using Electro-

encepahlography (EEG), have only recently made mobile brain

monitoring feasible. Seen from a mental state decoding perspec-

tive, even a single channel EEG recording measuring the changes

in electrical potentials (based on a passive dry electrode positioned

at the forehead and a reference typically placed on the earlobe),

allows for measuring mental concentration and drowsiness by

assessing the relative distribution of frequencies in brain-wave

patterns throughout the day. Simply measuring the dynamic

variability of brain-wave frequency components in a mobile

scenario may be translated into neural signatures, e.g., reflecting

whether a user is on the phone while driving a car [10]. Similarly,

positioning the single EEG electrode headband over the temple

may provide the foundation for building a Brain-Computer

Interface (BCI) utilizing the ability to capture steady-state visual-

evoked potentials (SSVEP) from the visual cortex when looking at

flashing lights patterns, and thereby design a BCI interface for

prediction with high accuracy and no previous training when a

disabled user is focusing on a specific area of a screen, based on the

time-locked EEG traces automatically generated as multiples of

the particular flashing light frequencies [11].

As an example of the underlying technology used in several

consumer products, the ThinkGear module manufactured by

NeuroSky (http://www.neurosky.com/Products/ThinkGearAM.

aspx) integrates a single dry electrode (reference and ground)

attached to a headband. Essentially a system on a chip, it provides

A/D conversion and amplification of one EEG channel, capable

of capturing brain-wave patterns in the 3–100 Hz frequency

range, recorded at 512 Hz sampling rate. Consumer neurohead-

sets, such as those manufactured by Emotiv (http://www.emotiv.

com) provide low-density neuroimaging based on 16 electrodes

and typically support real-time signal processing in order to

complement standard EEG measures with aggregate signals,

which provide additional information on changes in mental state,

or facilitate control of peripheral devices related to games. Their

portability and built-in wireless transmission makes them suitable

for the development of fully mobile systems, allowing for running

EEG experiments in natural settings. The improved comfort of
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these mobile solutions also allows for extending neuroimaging

experiments over several hours. Furthermore, the relatively low

cost of the neuroheadsets and mobile devices potentially opens

new opportunities for conducting novel types of social neurosci-

ence experiments, where multiple subjects are monitored while

they interact [12,13].

However, such ‘low-fi’ mobile systems present a number of

challenges. In real-time applications requiring signal processing to

be performed with the lowest possible delay in order to present

feedback to the user, the limited computational power of mobile

devices may be a constraint. A solution might be to offload parts of

the processing to an external server and retrieve the processed

results over the network. This approach, however, requires

network connection, possibly with low and constant delays, as

well as more complicated client-server architecture. Also in terms

of battery life, the local computation is more power-efficient than

continuous transmission to the server and back. Consumer-grade

mobile devices also present technical challenges for writing high-

quality software; the devices operate on systems that are not real-

time (RTOS), as they do not guarantee certain delays in data

processing, and as such are ill-suited for time-sensitive tasks. These

limitations might also affect timing of visual or auditory stimuli

presentation, as well as synchronization with other sensors. From a

neuroscience perspective, low-resolution recordings and artifacts

induced in a mobile setup both present significant challenges.

Noise and confounds are introduced by movement of the subject

and electrical discharges, while the positioning of the electrodes

might be less than ideal when compared to a standard laboratory

EEG setup [14–17]. Nevertheless, we hold that these drawbacks

are clearly offset by the advantages of being able to conduct studies

incorporating larger groups of subjects over extended periods of

time in more natural settings. We suggest that mobile EEG systems

can be considered from two viewpoints: as stand-alone portable

low-fi neuroimaging solutions, or as an add-on for retrieving

neuroimaging data under natural conditions complementary to

standard neuroimaging lab environments.

In terms of software programming, creating a framework for

applications in C++ rather than in prevalent environments such as

MATLAB, while approaching the problem as a smartphone

sensing challenge, might enable new types of contributions to

neuroscience. The Human-Computer Interaction (HCI) commu-

nity is already starting to apply consumer-grade headsets to extend

existing paradigms [18], thus incorporating neuroscience as a

means to enhance data processing. Similarly, the availability of

low-cost equipment means even general ‘hacker-and-tinkerers’

audiences will almost certainly gain interest in using neuroscience

tools (http://neurogadget.com). We see a great value in the

emerging potential of entirely new groups of researchers and

developers becoming interested in neuroscience and obtaining

tools allowing them to develop new kinds of applications.

In a previous communication [19], we discussed opportunities

and challenges in mobile and portable EEG. Here we address the

foundations of the Smartphone Brain Scanner system, focusing on

engineering and technical aspects of both software and hardware

components. We describe the computational architecture of the

framework, and discuss timing, reliability, and quality of the

obtained signal. In particular we report on the results of a

validation experiment comparing the system with a conventional

EEG acquisition system in a prototypical application.

Related Work
Our real-time imaging EEG setup mediates between two

hitherto disparate fields in sensorics, being on the one hand a

down-sized neuroimaging device and on the other hand a

sophisticated smartphone sensor system for cognitive monitoring

in natural conditions. We therefore briefly review the state of the

art in both domains.

Neuroimaging. Several software packages for offline and

online analysis of biomedical and EEG signals are available. The

most popular packages for off-line analysis are EEGLAB and

FieldTrip; for building real-time BCI-oriented applications,

notable frameworks are BCILAB, OpenViBE, and BCI2000.

EEGLAB is a toolbox for the MATLAB environment and is

useful for processing collections of single-trial or averaged EEG

data [20]. Functions available in this framework include data

importing, preprocessing (artifact rejection, filtering), independent

component analysis (ICA), and others. The framework can be used

via a graphical interface or by directly manipulating MATLAB

functions. The toolbox is available as an open source (GNU

license) and can be extended to incorporate various EEG data

formats coming from different hardware. Similarly, FieldTrip is an

open source (GNU License) MATLAB toolbox for the analysis of

MEG, EEG, and other electrophysiological data [21]. Among

others, FieldTrip has pioneered high-quality source reconstruction

methods for EEG imaging. FieldTrip has support for real-time

processing of data based on a buffer construction that allows

chunking of data for further processing in the MATLAB

environment.

BCILAB is a toolbox for building online Brain-Computer

Interface (BCI) models from available data [22]. It is a plugin for

EEGLAB running in MATLAB, providing functionalities for

designing, learning, use, and evaluation of real-time predictive

models. BCILAB is focused on operating in real-time for detecting

and classifying cognitive states. The classifier output from BCILAB

can be streamed to a real-time application to effect stimulus or

prosthetic control, or may be derived post-hoc from recorded data.

The framework is extensible in various layers; additional EEG

hardware as well as data processing steps (e.g., filters and

classifiers) can be added. But as these toolboxes are developed

within the MATLAB environment, neither FieldTrip’s real-time

buffer nor BCILAB are suitable for mobile application develop-

ment.

OpenViBE is a software framework for designing, testing, and

using Brain-Computer Interfaces [23]. The main application fields

of OpenViBE are medical i.e., assistive technologies, bio- and

neurofeedback as well as virtual reality multimedia applications.

OpenViBE is an open source (LGPL 2.1) and targets an audience

focused on building real-time applications for Windows and Linux

Operating Systems, and does not specifically support light-weight

mobile platforms. A similar C++ based framework for building

real-time BCI applications is BCI2000 [24]. A comprehensive

review of the BCI frameworks can be found in [25]. Some of the

consumer EEG systems also include Software Development Kits

(SDKs), allowing for data acquisition, processing, and building

applications. Emotiv SDK, available with the Research Edition of

the Emotiv system is multi-platform, currently running on Linux,

OSX, and Windows. The SDK allows for building applications,

either using raw EEG data or extracted features, including

affective state and recognition of facial expressions based on eye

movements. The extracted features can be integrated into a C++
or C# application through a set of dynamically linked libraries.

Although such SDK frameworks can greatly speed up the process

of building BCI applications, they are mostly targeted towards

scenarios where immediate feedback is available, such as gaming,

and it remains a challenge to validate or tweak code for custom

needs. To sum up, none of the aforementioned software platforms

can easily be adapted to support mobile and embedded devices.

The Smartphone Brain Scanner
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There exist various repositories of openly available human EEG

data [26,27]. Such datasets contain both recordings from high-

density and low-density systems and are an important tool for

advancing the field. We feel that the increased availability of EEG

systems will result in even more publicly available data. Although

very beneficial for the field, this will undoubtedly raise concerns

about the privacy of the subjects, whose very sensitive data in the

form of EEG recordings, will possibly exist indefinitely.

Cognitive monitoring systems. Mobile brain imaging

might also be viewed as yet another sensor extension to self-

tracking applications, which have become prevalent with smart-

phones and the emergence of low-cost wearable devices - lowering

the barriers for people to engage in life logging activities [28]. With

the availability of multiple embedded sensors, modern smartphones

have become a platform for out-of-the-box data acquisition of

mobility (GPS, cellular network, WiFI), activity level (accelerome-

ter), social interaction (Bluetooth, call, and text logs), and

environmental context (microphone, camera, light sensor) [3].

Recently, non-invasive recording of brain activity has become

common as several low-cost commercial EEG neuro-headset and

headband systems have been made available, including the

previously mentioned Emotiv EPOC and NeuroSky, the InteraXon

Muse (http://www.interaxon.ca/), Axio (http://www.axioinc.com/),

and Zeo (http://myzeo.com/). These sensors support applications

ranging from BCI, game control, stress reduction, and cognitive

training, to sleep monitoring. These neuroheadsets feature up to 16

electrodes, but ongoing developments promise next-generation low-

cost EEG devices with a significantly higher number of electrodes,

better quality signals, and improved comfort. The Smartphone Brain

Scanner framework described in this paper can be used with mobile

EEG devices with various numbers of electrodes to allow for capture

of neuroimaging data over several hours. Battery tests on Samsung

Galaxy Note with all wireless radios and screen turned off resulted in

11 hours of uninterrupted recording and storage of data from an

Emotiv EPOC headset. However, current generation neuroheadsets

are limited by their solution-based electrodes, which dry out. More

comfortable designs [29,30] may be required for continuous mobile

neuroimaging throughout the day.

Beyond EEG, multiple bio signals and physiological parameters

can contribute to cognitive state monitoring, such as respiratory

rate [31], heart rate variability, galvanic skin response [32], blood

pressure, oxygen saturation, body/skin temperature, ECG, EMG,

and body movements [33]. A webcam or a camera embedded in a

smartphone can allow measurements of heart rate, variability, and

respiratory rate by analyzing the color channels in the video signal

[34]. Continuous monitoring of heart rate is enabled by pulse

watches (http://www.polar.com/) and recently by the Basis Band

wrist-worn sensor (http://www.mybasis.com), which allows 24/7

recording under a subset of conditions (non-workout situations).

Both continuous heart rate monitoring solutions allow user

mobility and measurements in natural conditions. The Q Sensor

from Affectiva (http://www.affectiva.com/) is an example of a

system for monitoring galvanic skin response (GSR) and

accelerometer and temperature data from a wrist-worn device.

FitBit (http://www.fitbit.com/) is an example of a wearable

pedometer, monitoring number of steps taken, distance traveled,

calories burned, and floors climbed.

Methods: Smartphone Brain Scanner

The Smartphone Brain Scanner (SBS2) is a software platform for

building research-oriented and end-user-oriented multi-platform

EEG applications. The focus of the framework is on mobile

devices (smartphones, tablets) and on consumer-grade (low-density

and low-cost) mobile neurosystems (see Figure 1). The SBS2 is

freely available under the MIT License on GitHub at

https://github.com/SmartphoneBrainScanner. The repositories

contain the core of the framework, as well as example applications.

The documentation hosted on GitHub wiki pages (https://github.

com/SmartphoneBrainScanner/smartphonebrainscanner2-core/

wiki) includes instructions for compiling the software, building the

hardware components, preparing the devices, and writing custom

applications. An active mailing list for developers also exists at https://

groups.google.com/forum/#forum/smartphonebrainscanner2-dev

The SBS2 framework is divided into three layers: low-level data

acquisition, data processing, and applications. The first two layers

constitute the core of the system and include common elements

used by various applications. An overview of the architecture is

shown in Figure 2.

Smartphone Brain Scanner
Key features. With a focus on the mobile devices, SBS2 is a

multi-platform framework. The underlying technology – Qt – is an

extension of C++ and is currently supported on the main desktop

operating systems (Linux, OSX, Windows) as well as on mobile

devices (Android, BB10, and partially iOS, see http://qt.digia.

com/Product/Supported-Platforms/).

We have aimed for a modular framework, allowing for adding

and modifying data acquisition and processing blocks. The

modules are created as C++ classes and integrate directly with

the core of the framework. The framework supports building real-

time applications; data can be recorded for subsequent off-line

analysis. However, most of the implemented data-processing

blocks aim to provide real-time functionality for working with the

EEG signal. The applications developed with SBS2 can be

installed on both desktop and mobile devices; installation can be

started by the user and distributed via regular channels, such as

repositories and application stores.

Data acquisition. The Data Acquisition layer is responsible

for setting up communication with an EEG device, acquiring the

raw data, and forming packets. Three primary objects are used:

Sbs2Mounter, Sbs2DataReader, and Sbs2Packet, thereby ab-

stracting all the specificities of the EEG systems (hardware) and of

the OS+ device running the software (platform). Different

embedded devices, even with the same OS, may require a specific

code for certain low-level functionalities, for example to access the

USB port. A higher-fidelity architecture is shown in Figure 3. The

EEG hardware is set up by a specialized Sbs2Mounter object. The

information about the hardware (e.g. mounting point, serial

number) is passed to a Sbs2DataReader object. This object

subsequently begins reading the raw data from the hardware. The

raw data are passed to a Sbs2Packet object to create a proper

encapsulation, setting the values for all the EEG channels and

metadata. Once formed, the packet is pushed to the Data

Processing layer via a Sbs2Callback object.

The Data Acquisition layer of the SBS2 was originally designed

to support the Emotiv EEG headset. It has been extended to

support additional hardware, such as custom made EasyCap

hardware, by implementing additional classes of the hardware

mounter, data reader, and packet creator. For Emotiv headset, this

layer also contains the data decryption module, as the stream

coming from the device is encrypted.

Mounting the EEG hardware on a desktop and embedded

devices requires drivers, either standard kernel modules or

proprietary drivers created by the vendor. The Emotiv EPOC

USB receiver is mounted as/dev/hidraw in Linux (desktop and

Android), provided the device and the kernel support the USB

host mode and have the HIDRAW module enabled. Most desktop

The Smartphone Brain Scanner
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Linux flavors have both by default, but currently most Android

mobile devices only support the USB host mode out-of-the-box. In

the current implementation, a custom kernel needs to be compiled

with the HIDRAW module enabled. Reading the data directly

from the /dev/hidraw device requires ‘root’ privileges, which must

be enabled on Android devices to acquire data from the Emotiv

EPOC receiver. This is possible for most recent Android devices,

e.g. for the Nexus (developer) line of devices. We can expect that

the next generation of mobile neuroheadsets will use standardized

Bluetooth low-energy protocols and Android devices will be able

to support them by default. This will likely have a significant

impact on the adoption of neuroimaging outside lab environments.

Data processing. Well-formed EEG packet objects are used

for data processing. The functionality of this layer is hardware-

agnostic and depends only on packet content, i.e. data for the EEG

channels, reflecting a particular sensor configuration, and sam-

pling frequency. Single packets are dispatched to different

processing objects and methods, including recording, filtering,

3D reconstruction, etc. Some operations need to collect data into

frames and run asynchronously (in separate thread), pushing the

results back to the callback object once the results are ready.

Sbs2Callback is an object implementing the getData(Sb-

s2Packet*) method, to which single packets are always passed

and can then be dispatched to the Sbs2DataHandler or pushed to

the Application layer. Sbs2DataHandler is an object providing

methods for data processing, by delegating them to specialized

objects, including Sbs2FileHandler and Sbs2Filter.

The framework for data processing is extensible and new

modules can be added to the core; the data handler prepares the

data in a format expected by the processing block (e.g. collecting

packets into larger frames) and runs the processing method. The

currently implemented blocks allow for a variety of processing

operations. The raw EEG data can be recorded, including time-

stamped events (stimuli onsets, user responses, etc.). Raw packets,

as well as extracted features and arbitrary values, can be streamed

over the network for either data processing or interconnection

between devices (multiplayer gaming is one example). Other

methods for data processing, including filter, FFT, spatial filter

(CSP), and classifier (LDA), are also implemented and can be used

for building the pipelines.

3D Imaging
The most advanced data-processing block of the Smartphone

Brain Scanner is the source reconstruction aimed at real-time 3D

imaging as demonstrated in Figure 4. Videos demonstrating the

Smartphone Brain Scanner are available at http://milab.imm.dtu.

dk/eeg. Source reconstruction estimates the current sources within

the brain most likely to have generated the observed EEG signal at

Figure 1. Smartphone Brain Scanner applications running on Android devices. Neurofeedback training and real-time 3D source
reconstruction running on Android mobile devices via a wireless connection to an Emotiv or Easycap EEG systems.
doi:10.1371/journal.pone.0086733.g001

Figure 2. Overview of the layered architecture of the SBS2
framework. Data from the connected EEG hardware are acquired and
extracted by specific adapters and all subsequent processing is
hardware agnostic. The empty boxes indicate the extendability of the
architecture allowing additional hardware devices for data acquisition
and additional processing methods.
doi:10.1371/journal.pone.0086733.g002

The Smartphone Brain Scanner
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scalp level. As the number of possible source locations far exceeds

the number of channels, this is known to be an extremely ill-posed

inverse problem. A unique solution is obtained by imposing prior

information in correspondence with anatomical, physiological, or

mathematical properties [35–37]. Implemented inverse methods

in the SBS2 cover Bayesian formulations of the widely used

Minimum-norm method (MN) [37] and low-resolution electro-

magnetic tomography (LORETA) [38]. The Bayesian formulation

used in the SBS2 framework allows adaptation of hyper-

parameters to different noise environments in real-time. This is

an improvement over previous real-time source reconstruction

approaches [39–41] that applied heuristics to estimate the

parameters involved in the inverse method. The current source

reconstruction is based on an assumed forward model matrix, A,

connecting scalp sensor signals Y (channel by time) and current

sources S (cortical locations by time) [42]

Y~ASzE: ð1Þ

The term E accounts for noise not modeled by the linear

generative model. When estimating the forward model a number

of issues are taken into consideration, such as sensor positions, the

geometry of the head model (spherical or ‘realistic’ geometry), and

tissue conductivity values [43–45]. With the forward model A
given and the linear relation in Eq. (1), the source generators can

be estimated. We assume the noise term to be normally

distributed, uncorrelated, and time-independent, which leads to

the probabilistic formulation:

p Y Sjð Þ~ P
Nt

t~1
N yt Ast,b

{1INc

��� �
ð2Þ

p Sð Þ~ P
Nt

t~1
N st 0,a{1LT L

��� �
: ð3Þ

Where p Sð Þ is the prior distribution over S with L given as a graph

Laplacian ensuring spatial coherence between sources and b{1 as

the noise variance. Using Bayes’ rule, the posterior distribution

over the sources is maximized by

p S Yjð Þ~ P
Nt

t~1
N st mt,Ssjð Þ

Ss~a{1INd
{a{1AT SyAa{1

S{1
y ~a{1ALT LATzb{1INc ð4Þ

�sst~a{1AT Syyt: ð5Þ

Here, L denotes a spatial coherence matrix, which in the current

form takes advantage of the graph Laplacian using a fixed

smoothness parameter (0:2).

Handling noise estimation is a crucial part for acquiring reliable

source estimates. We have previously examined how eye-related

artifacts can corrupt the source estimates for low density EEG caps

with unevenly distributed sensors such as the Emotiv EPOC [19].

While we here have adopted the assumption of the noise to be

uncorrelated, correlated noise can easily be included in the model

above, either directly in the model or indirectly through pre-

processing the data prior to the source modeling. Direct modeling

of the correlated noise can be achieved by replacing the identity

matrix INc
with a full noise covariance matrix SE . Estimation of

the noise covariance matrix could e.g. be carried out through

calibration sessions. By online estimating the hyperparameter b
the inverse solver continuously can model the amount of noise

present in the data.

The present data analytic pipeline does not include real-time

artifact reduction steps, hence cleaning of data for eye, muscle, or

motion induced artifacts must be carried out post hoc in the

Figure 3. The Smartphone Brain Scanner architecture. Data are acquired in the first layer from the EEG hardware, passed to the Data
Processing Layer, and extracted. Features, as well as raw values, are then available for applications.
doi:10.1371/journal.pone.0086733.g003
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present system. Thus real-time imaging experiments, bio-feedback

etc. should be done under circumstances that reduce artifacts.

Methods: Experimental Designs

In this section we briefly describe the design of the experiments

demonstrating and validating the potential of the SBS2 frame-

work, the specific hardware, and the mobile approach in general.

Timing and Data Quality
First, we analyzed the data and timing quality. Many

neuroscience paradigms rely heavily on accurate synchronization

between EEG signal and stimuli, user response, or data from other

sensors (e.g., P300, steady state visual evoked potentials). However,

we can also envision applications in which the present ‘low-cost’

mobile setup will be used to collect data from many subjects over

extended periods, where precise synchronization is less important.

Emotiv EEG sampling. The measurements are all based on

the Emotiv EEG neuroheadset. The nominal sampling frequency

of this neuroheadset is 128 Hz (down-sampled from internal

2048 Hz). For validation purposes we tested the actual sampling

rate obtained from three randomly picked Emotiv devices

(10610 min measurements for each).

Data quality. The Emotiv hardware adds a modulo 129
counter (0{128) to every packet transmitted from the device. This

allows for data quality control (dropped packets) with the accuracy

of a modulo 129. It is possible to obtain long recordings (over one

hour) using this neuroheadset and SBS2. The battery in the

Emotiv hardware is rated at 12h of continuous operation; in

recording-only setup, a mobile device such as Galaxy Note (offline

mode, screen off, only decrypting and recording) lasts for around

10h. Provided good visibility between the Emotiv EEG neuro-

headset transmitter (located in the back part of the headset) and

the USB receiver was maintained, we were able to achieve zero

packet loss in the full rundown recording. In order to acquire an

EEG signal of good quality, the impedance between the electrodes

and the scalp should be kept under 5kV. The Emotiv headset

embeds the channel-quality information in the signal directly

(2 Hz per channel, multiplexed into the signal). The values are

unscaled, and come from applying a square wave of 128Hz to the

DRL feedback circuit and extracting the amplitude of the inherent

square wave using phase-locked detection on each channel. In

principle, the obtained values can be calibrated using a known

impedance. For regular usage, however, the hardware manufac-

turer assures the green color of the indicator (channel quality value

greater than 407) corresponds to sufficiently low impedance of the

electrode. From our experience with the system this appears

correct.

Timing. In order to measure the total delay in the system, we

used the setup as depicted in Figure 5. A sinusoidal audio tone of

10Hz, with its trailing and following periods of silence, was

generated and amplified so it could be detected by the EEG

hardware and also so it could be split into oscilloscope and EEG

hardware. The software on the device performed peak detection

on the signal and visualized the peaks by changing the screen color

from black to white. This change was detected by a photocell,

connected to the second channel of the oscilloscope. We can then

calculate dt1~t2{t1, indicating the total delay of the system from

the physical signal reaching the EEG hardware to being visualized

on the screen (without any additional processing), see Figure 6. We

also look at the jitter dt2 as the difference between min and max
values of dt1. The observed delta depends on the EEG sampling

rate (here 128Hz), the processing power of the device, and the

screen refresh rate (60Hz for all tested devices).

Imagined Finger Tapping
One of the most widely investigated paradigms in the BCI

literature is a task in which a subject is instructed to select between

two or more different imagined movements [19,46–49]. Such

experiments are rooted in a central aim of many BCI systems,

Figure 4. Snapshot of the SBS2 real time brain imaging system
running on a Samsung Galaxy Note 2. EEG recorded using the
Emocap [29], based on the Emotiv EEG wireless transmission setup.
Visible in the picture is the entire setup required for data acquisition,
processing, and visualization. The subject of the photograph has given
written informed consent, as outlined in the PLOS consent form, to
publish this photograph.
doi:10.1371/journal.pone.0086733.g004

Figure 5. The timing measurement setup. 10 Hz sinusoid is generated with a computer sound card, amplified, and fed into an oscilloscope and
the EEG hardware. The device acquiring the EEG data responds to the sinusoid signal with changes of screen brightness, which is detected by a
photocell connected to the oscilloscope. The time difference between the two signals is used to calculate the system delay.
doi:10.1371/journal.pone.0086733.g005
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namely of being able to assist patients with severe motor disabilities

to communicate by ‘thought’. In this contribution we replicated a

classical experiment with imagined finger tapping (left vs. right)

inspired by [49]. The setup consisted of a set of three different

images with instructions: Relax, Left, Right. In order to minimize the

effect of eye movements, the subject was instructed to focus on the

center of the screen, where the instructions also appeared (3.5 inch

display size, 8006480 pixels resolution, at a distance of 0.5 m).

The instructions Left and Right appeared in random order. A total

of 200 trials were conducted for a single subject.

Results and Discussion

In this section we present and discuss the results of the

experiments, validating the performance of the software, the

platforms used, and the EEG hardware. These results aim to

validate the underlying framework with respect to key engineering

aspects and to outline the potential and limitations of the system,

especially from the user and developer perspective. More complex

experiments conducted using the system are described in [19].

Timing and Data Quality
Emotiv EEG sampling. From Figure 7 we can see that the

Emotiv EPOC hardware a) has an actual sampling rate close to

127:88Hz and b) keeps this sampling rate in a fairly consistent

manner. Depending on the analysis performed on the data, one

can assume 128Hz, 127:88Hz, or measure the actual sampling

rate for every Emotiv EPOC hardware device individually.

Timing. The results of the timing measurements (20 per

device) are depicted in Figure 6.

We can see in the results for all devices that there is a significant

delay between the signal reaching the EEG hardware and being

fully processed in the software (80{125ms). This delay, although

significant, is fairly stable (16{26ms jitter) and thus can be

corrected for.

In the second set of measurements, we test the stability of the

timing of the packets as they appear in the system. To measure

this, we collect the packets from the Emotiv EPOC device and

change the screen color every 4 packets (limited by screen refresh

rate, 60Hz). This change is then measured by a photocell, fed into

the oscilloscope and the distance between the 4-packet packages is

calculated. Figure 8 shows these measurements.

In summary, the stability and quality of the acquired signal is

excellent. Most of the variations, including imperfect sampling rate

or timing jitters, are constant and can largely be accounted for in

the data analysis, if necessary.

3D source reconstruction on-device

performance. Source imaging was obtained using the Bayesian

inverse solver for the linear model in Eq. (1). The forward matrix

A and cortical source mesh grid was based on a coarse resolution

(5124 vertices) of the SPM8 template brain [50], further reduced

to 1028 using Matlab’s function reducepatch. We tested the

performance of 3D reconstruction and hyper-parameters calcula-

tion on 1s of raw EEG signal. The results on different platforms

show the time needed for the actual reconstruction (fast) and

update of hyper-parameters (slower): MacBookPro8,2 (Intel Core

i7 Sandy Bridge 2.2 GHz): 2ms=2s, Nexus 7: 8ms=1s, Galaxy

Note: 8ms=11s, Acer Iconia: 14ms=13s. These results show that it

is in fact possible to run 3D reconstruction of an EEG signal on

Figure 6. System response timings. The system responds to the sinusoid signal peak (time 0). The red color (dt1) indicates minimal observed
delay; the blue color (dt2) indicates jitter. Galaxy Note running Android 4.0.1, 60 Hz AMOLED screen, dt1~125ms, dt2~16ms; Nexus 7 running
Android 4.1.1, 60 Hz IPS LCD screen, dt1~85ms, dt2~26ms; MacbookPro, LCD screen (60 Hz), dt1~80ms, dt2~26ms.
doi:10.1371/journal.pone.0086733.g006

Figure 7. Measured sampling frequency, including measure-
ment resolution for three random Emotiv EEG devices,
10|10min recordings for each. All measured rates, including
uncertainty, are between 127:8828Hz and 127:8841Hz, which corre-
sponds to :99908 and :99909 of nominal 128Hz. The measurements
were performed with 1ms resolution (2ms accuracy) on 76800 EEG
packets. All tests were performed at normal temperature on a single
day. We can note consistent results within and across devices.
doi:10.1371/journal.pone.0086733.g007

Figure 8. Distances between 4-sample frames. Red line indicates
expected distance of 4=127:88~0:03106ms between the groups of four
127:88 packets. The bars indicate the observed distance. We can see
that the Emotiv system compensates every 8|4~32 samples to keep
the average (black line) at the correct level.
doi:10.1371/journal.pone.0086733.g008
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mobile devices several times a second, and to update the hyper-

parameters several times a minute.

Imagined Finger Tapping – Online Source Reconstruction
In order to demonstrate the applicability of discriminating a

simple task such as the left and right imagined finger tapping on

the cortical source level in an online framework, the EEG data

were acquired with the Emotiv EPOC neuroheadset and

compared with EEG recordings acquired with a standard

laboratory setting, viz. using 64 channels on a Biosemi Active-II

device. The 64-channels were sub-sampled to represent the same

channel locations as the Emotiv device.

Imagined finger tapping is known to lead to a suppression of

alpha (8–13 Hz) activity over the premotor/motor regions, with

the contralateral areas normally being more desynchronized [51].

Thus, imagined right-finger tapping should lead to alpha activity

being suppressed in the left pre-motor region. In Figure 9, we show

the responses obtained with SBS2 and the standard equipment,

demonstrating the framework’s ability to reconstruct online

meaningful current sources within the given region. In particular,

Figure 9 shows how alpha power (8–13 Hz) is suppressed over

time in the region of interest - Precentral Left AAL (Automated

Anatomical Labeling). Both responses are calculated as the

averaged response over 87 and 79 responses to ‘right imaging’

cued trials that remained after rejecting trials with artifacts. Note

that, while the result is presented as an average over runs, the

source localization was carried out in online mode with model

parameters (a and b) and current sources (S) estimated online. We

note the similarity of the suppression of the alpha power in the Left

Precentral AAL region to imagined right-finger tapping trials as

obtained by the Emotiv EPOC and the Biosemi system. The

possible implications of using portable and low-cost systems such

as Smartphone Brain Scanner in BCI context, together with more in-

depth analysis of the finger tapping data are described in [19].

Conclusions

We have presented the design, implementation, and evaluation

of the first fully portable 3D EEG imaging system: The Smartphone

Brain Scanner. The open source software allows real-time EEG data

acquisition and source imaging on standard off-the-shelf Android

mobile smartphones and tablets with a good spatial resolution and

frame rates in excess of 40 fps. In particular, we have implemented

a real-time solver for the ill-posed inverse problem with online

Bayesian optimization of hyper-parameters (noise level and

regularization).

The evaluation showed that the combined system provides for a

stable imaging pipeline with a delay of 80–120 ms. We showed

results of a cued, imagined finger-tapping experiment and

compared the smartphone brain scanner’s average power in the

alpha band in a relevant motor area with that of conventional

state-of-the-art laboratory equipment and found that these

aggregate signals compare favorably with those obtained with

standard equipment. Both show the expected de-synchronization

on initiation of imagined motor actions.

The work presented here is extended in [19], where we discuss

the perspectives and challenges of mobile and portable EEG

systems. That work also includes results from more complex

experiments, including neurofeedback applications and measuring

emotional responses.

Future developments in hardware and software will allow for

even better signal acquisition and analysis from low-density and

mobile setups. This includes electrodes of different type and form

(e.g. dry) and positioned in a non-standard way (e.g. inside ear

Figure 9. Finger-tapping results for Emotiv EEG and Biosemi standard equiment resampled to 14 channels. Mean (solid lines) and
standard deviation (dashed lines) of reconstructed current source power in the left (L) Precentral AAL regions calculated across right-cued, imagined
finger-tapping conditions. Mean activity was normalized to unit at t~0. Both activities are based on 3D reconstruction with online estimation of the a
and b parameters using the Minimum Norm approch.
doi:10.1371/journal.pone.0086733.g009
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canal). From the software perspective, more computation power

available in the devices will allow for more powerful data

processing and de-noising algorithms to be run (e.g. PCA-based

or ICA-based artifacts rejection, more advanced 3D reconstruc-

tion), possibly using other available data sources (e.g. head

movements obtained from gyroscopes). The present data analytic

pipeline does not include real-time artifact reduction steps, hence

cleaning of data for eye-, muscle-, or motion-induced artifacts

must be carried out post hoc in the present system. Thus real-time

imaging experiments, bio-feedback etc. should be done under

circumstances that reduce artifacts.

We suggest the mobility and simplified application development

may enable completely new research directions for imaging

neuroscience and thus offset the expected reduced signal quality of

a mobile off-the-shelf, low-density neuroheadset relative to more

conventional and controlled, high-density laboratory equipment.

Acknowledgments

The portable Emotiv EEG neuroheadset has provided a foundation for the

DTU Smartphone Brain Scanner project and we appreciate the technical

support from Emotiv. The authors wish to state that they are not affiliated

with Emotiv.

Author Contributions

Conceived and designed the experiments: AS CS MKP JEL LKH.

Performed the experiments: AS CS MKP. Analyzed the data: AS CS

LKH. Contributed reagents/materials/analysis tools: AS CS LKH. Wrote

the paper: AS CS MKP JEL LKH.

References

1. Choudhury T, Pentland A (2003) Sensing and modeling human networks using

the sociometer. In: Proc. the 7th IEEE International Symposium on Wearable

Computers (ISWC2003). pp. 216–222.

2. Van Laerhoven K, Cakmakci O (2000) What shall we teach our pants? In:

Wearable Computers, The Fourth International Symposium on. IEEE, pp. 77–

83.

3. Aharony N, Pan W, Ip C, Khayal I, Pentland A (2011) Social fmri: Investigating

and shaping social mechanisms in the real world. Pervasive and Mobile

Computing 7: 643–659.

4. Brown B, Reeves S, Sherwood S (2011) Into the wild: challenges and

opportunities for field trial methods. In: Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems. ACM, pp. 1657–1666.

5. Jensen B, Larsen JE, Jensen K, Larsen J, Hansen LK (2010) Estimating human

predictability from mobile sensor data. In: Machine Learning for Signal

Processing (MLSP), 2010 IEEE International Workshop on. IEEE, pp. 196–201.

6. Kwok R (2009) Personal technology: Phoning in data. Nature 458: 959.

7. Makeig S, Gramann K, Jung T, Sejnowski T, Poizner H (2009) Linking brain,

mind and behavior. International Journal of Psychophysiology 73: 95–100.

8. Blankertz B, Tangermann M, Vidaurre C, Fazli S, Sannelli C, et al. (2010) The

berlin brain-computer interface: non-medical uses of bci technology. Frontiers in

Neuroscience 4.

9. Gramann K, Gwin J, Ferris D, Oie K, Jung T, et al. (2011) Cognition in action:

imaging brain/body dynamics in mobile humans. Reviews in the Neurosciences

22: 593–608.

10. Yasui Y (2009) A brainwave signal measurement and data processing technique

for daily life applications. Journal of Physiological Anthropology 28: 145–150.

11. Luo A, Sullivan T (2010) A user-friendly ssvep-based brain-computer interface

using a time-domain classifier. Journal of Neural Engineering 7: 026010.

12. Konvalinka I, Roepstorff A (2012) The two-brain approach: how can mutually

interacting brains teach us something about social interaction? Frontiers in

Human Neuroscience 6.

13. Dumas G (2011) Towards a two-body neuroscience. Communicative &

Integrative Biology 4: 349–352.

14. Stahlhut C, Attias H, Stopczynski A, Petersen M, Larsen JE, et al. (2012) An

evaluation of EEG scanner’s dependence on the imaging technique, forward

model computation method, and array dimensionality. In: 34th Annual

International Conference of the IEEE Engineering in Medicine and Biology

Society. pp. 1–4.

15. Chi Y, Wang YT, Wang Y, Maier C, Jung TP, et al. (2012) Dry and noncontact

eeg sensors for mobile brain-computer interfaces. IEEE Transactions on Neural

Systems and Rehabilitation Engineering 20: 228–235.

16. Gramann K, Gwin JT, Bigdely-Shamlo N, Ferris DP, Makeig S (2010) Visual

evoked responses during standing and walking. Frontiers in Human Neurosci-

ence doi: 10.3389/fnhum.2010.00202.

17. Gwin JT, Gramann K, Makeig S, Ferris DP (2010) Removal of movement

artifact from high-density eeg recorded during walking and running. Journal of

Neurophysiology doi: 10.1152/jn.00105.2010.

18. Vi C, Subramanian S (2012) Detecting error-related negativity for interaction

design. In: Proceedings of the 2012 ACM annual conference on Human Factors

in Computing Systems. ACM, pp. 493–502.

19. Stopczynski A, Stahlhut C, Petersen MK, Larsen JE, Jensen CF, et al. (2013)

Smartphones as pocketable labs: Visions for mobile brain imaging

and neurofeedback. International Journal of Psychophysiology. Available:

http://dx.doi.org/10.1016/j.ijpsycho.2013.08.007.

20. Delorme A, Makeig S (2004) Eeglab: an open source toolbox for analysis of

single-trial eeg dynamics including independent component analysis. Journal of

Neuroscience Methods 134: 9–21.

21. Oostenveld R, Fries P, Maris E, Schoffelen J (2011) Fieldtrip: open source

software for advanced analysis of meg, eeg, and invasive electrophysiological

data. Computational Intelligence and Neuroscience 2011: 1.

22. Delorme A, Mullen T, Kothe C, Acar Z, Bigdely-Shamlo N, et al. (2011) Eeglab,
sift, nft, bcilab, and erica: new tools for advanced eeg processing. Computational

Intelligence and Neuroscience 2011: 10.

23. Renard Y, Lotte F, Gibert G, Congedo M, Maby E, et al. (2010) Openvibe: an

open-source software platform to design, test, and use brain-computer interfaces
in real and virtual environments. Presence: Teleoperators and Virtual

Environments 19: 35–53.

24. Schalk G, McFarland D, Hinterberger T, Birbaumer N, Wolpaw J (2004)

Bci2000: a generalpurpose brain-computer interface (bci) system. IEEE
Transactions on Biomedical Engineering 51: 1034–1043.

25. Brunner C, Andreoni G, Bianchi L, Blankertz B, Breitwieser C, et al. (2011) Bci
software platforms. Towards Practical Brain-Computer Interfaces : 303–331.

26. Dtu compute neuro wiki. Available: http://neuro.compute.dtu.dk/wiki/
Electroencephalography#Data. Accessed 2013 Feb 27.

27. Ucsd publicly available eeg data. Available: http://sccn.ucsd.edu/ãrno/
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