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Abstract

Avian pathogenic Escherichia coli (APEC) strains cause systemic and localized infections in poultry, jointly termed
colibacillosis. Avian colibacillosis is responsible for significant economic losses to the poultry industry due to disease
treatment, decrease in growth rate and egg production, and mortality. APEC are also considered a potential zoonotic risk for
humans. Fully elucidating the virulence and zoonotic potential of APEC is key for designing successful strategies against
their infections and their transmission. Herein, we investigated the prevalence of a newly discovered E. coli common pilus
(ECP) for the subunit protein of the ECP pilus (ecpA) and ECP expression amongst APEC strains as well as the role of ECP in
virulence. A PCR-based ecpA survey of a collection of 167 APEC strains has shown that 76% (127/167) were ecpA+. An
immunofluorescence assay using anti-EcpA antibodies, revealed that among the ecpA+ strains, 37.8% (48/127) expressed
ECP when grown in DMEM +0.5% Mannose in contact with HeLa cells at 37uC and/or in biofilm at 28uC; 35.4% (17/48)
expressed ECP in both conditions and 64.6% (31/48) expressed ECP in biofilm only. We determined that the ecp operon in
the APEC strain x7122 (ecpA+, ECP-) was not truncated; the failure to detect ECP in some strains possessing non-truncated
ecp genes might be attributed to differential regulatory mechanisms between strains that respond to specific
environmental signals. To evaluate the role of ECP in the virulence of APEC, we generated ecpA and/or ecpD-deficient
mutants from the strain x7503 (ecpA+, ECP+). Deletion of ecpA and/or ecpD abolished ECP synthesis and expression, and
reduced biofilm formation and motility in vitro and virulence in vivo. All together our data show that ecpA is highly
prevalent among APEC isolates and its expression could be differentially regulated in these strains, and that ECP plays a role
in the virulence of APEC.
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Introduction

Avian Pathogenic E. coli (APEC), a subgroup of Extraintestinal

Pathogenic E. coli (ExPEC), is the etiologic agent of colibacillosis in

birds. Colibacillosis, responsible for significant economic losses in

the poultry industry worldwide, includes multiple extra-intestinal

diseases often respiratory, leading to systemic or localized

infections depending on the strain, age and the gender of the

host, as well the immunologic status and the presence of

predisposing environmental conditions [1,2].

Multiple virulence factors are associated with APEC and are

determined to be involved in different steps of their infection and/

or fitness, including colonization (Type 1, P, AC/1, Stg fimbriae,

type IV pili, curli, Tsh), invasion (IbeA, Tia), iron acquisition

(aerobactin, salmochelin, SitABCD, a heme utilization/transport

protein ChuA), serum-complement resistance (TraT, Iss, LPS, K1

capsule), antiphagocytic activity (O and K antigens, SitABCD),

and virulence genes regulation (BarA-UvrY, Pts). At different steps

of infection, ExPEC, including APEC could use alternative

virulence factors. The nature and the combination of virulence

factors associated with ExPEC could determine the degree of their

virulence and their potential to cause specific diseases in specific

hosts.

APEC share important virulence traits with human ExPEC,

including uropathogenic E. coli (UPEC) and neonatal meningitis E.

coli (NMEC), which render them a possible zoonotic risk or a

reservoir of virulence genes for human strains [3].

E. coli common pilus (ECP), originally named Mat (meningitis-

associated and temperature-regulated), was first identified in

neonatal meningitis E. coli (NMEC) isolates [4] and later in all

classes of pathogenic and non-pathogenic E. coli [5]. ECP,

considered as a new variant of the chaperon-usher (CU) fimbriae

family, is composed of a polymerized EcpD tip adhesin and a
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major shaft major pilin EcpA [6], and is encoded by the operon

ecpRABCDE [5].

In vitro studies have shown that ECP plays a dual role in early-

stage bacterial biofilm formation and host cell recognition in

human pathogenic E. coli [7–9]. The purpose of this study is to

evaluate the prevalence of ecp among APEC, its expression under

two in vitro conditions and to determine its role in virulence in baby

chicks. We present the first study on the role of ECP in a non-

human pathogenic E. coli, APEC. Our data revealed new insights

into ECP expression in E. coli and determined for the first time the

role of ECP in vivo and in multiple virulence-associated phenotypes

in APEC.

Results and Discussion

ecpA is Highly Prevalent among APEC Isolates
ECP, first detected in NMEC isolates [4], was found to be

common among pathogenic and non-pathogenic E. coli [5].

Recent studies have determined that ecpA, the gene of the major

pilin of ECP, was prevalent among the majority of human

pathogenic E. coli; it was in fact shown to be highly associated with

atypical enteropathogenic E. coli (aEPEC) (86%) [10], enteroag-

gregative E. coli (EAEC) (96%) [7], and enterotoxigenic E. coli

(ETEC) (80%) [11] isolates. In our previous study, we detected the

presence of ecp in a few APEC strains tested along with other

human pathogenic E. coli [5], but there are no studies on the

prevalence of ecp among animal pathogenic E. coli, including

APEC. Herein, for the first time, we assessed the prevalence of ecp

among APEC isolates. A PCR-based ecpA survey performed on a

collection of 167 strains of which 166 clinical isolates were from

diseased chickens and turkeys with signs of colibacillosis [12] [This

study], and one APEC reference strain x7122 (O78:K80:H9) [13],

has determined that, similar to human enteric and septicemic E.

coli isolates, the vast majority (76%; 127/167) of APEC isolates

possess the ecpA gene. These data confirm that APEC share

virulence genes with human pathogenic E. coli, and this gene

which is common among intestinal and extra-intestinal pathogenic

E. coli could be involved in the persistence of these bacteria in

some environments, such as intestines, where they have a

commensal life-style before causing diseases in different sites.

APEC Strains Express ECP Differently in Biofilm and in
Contact with HeLa Cells
Previous studies have shown that ECP expression in both

diarrhoeagenic and meningitic E. coli is under the control of

environmental cues [4,5,14]. Environmental conditions that up-

regulate ECP expression include low pH, high acetate concentra-

tion [14] and low growth temperature in NMEC [4] and DMEM

with 5% CO2 in diarrhoeagenic E. coli [5]. In our study,

evaluation of ECP expression in ecpA+ APEC strains grown in

DMEM +0.5% Mannose in both biofilm at 28uC and in contact

with HeLa cells at 37uC has shown that strains behaved differently

in their ECP expression. The immunofluorescence assay using

anti-EcpA antibodies revealed that among the ecpA+ strains, 37.8%

(48/127) expressed ECP when grown in DMEM +0.5% Mannose,

both in contact with HeLa cells and/or in biofilm (Fig. 1 and 2);

35.4% (17/48) expressed ECP in both conditions and 64.6% (31/

48) expressed ECP in biofilm only.

We suspected that the inability of some APEC strains to express

ECP could be due to a truncation in their ecp genes. However, the

analysis of the DNA of the ecp operon in the genome of the

prototype APEC strain x7122 (O78:K80:H9), which tested ecpA+
and ECP- (Fig. 2), has determined that the ecp operon in x7122
was not truncated (Fig. S1). Comparison of the x7122 ecp operon

with those of two fully sequenced human strains, UPEC CFT073

and ETEC E2348/69, which ecp operons were determined to be

functional [6,14], has confirmed the organization of its homolo-

gous genes ecpRABCDE [6,8] in the genome of x7122 (Fig. S1) and

was similar to those of the two strains CFT073 (NC_004431.1) and

E2348/69 (FM180568.1). The identities of the proteins encoded

by the ecp operon were between 96%–99% similar (Table S1). The

failure to detect ECP in some strains possessing ecp genes,

including APEC x7122, might be attributed to differential

regulatory mechanisms between strains that respond to specific

environmental signals [5]. We thus proceed with more analysis on

the O-group and the ecp upstream region in the strains, as

described below.

ECP Expression in APEC in the Conditions of this Study is
not Serologically or Phylogenetically Group-associated
The first report on ECP expression in E. coli has determined that

NMEC expressing ECP at 20uC were from the same serogroup

O18:K1:H7 [4]. Herein, APEC isolates tested belong to different

O-antigen groups (Fig. 2) and the expression of ECP in these

APEC strains does not correlate with their O-antigen type. As a

matter of fact, APEC that expressed ECP in the conditions tested

were from different serogroups, including O1, O78, O9, O15,

O18, O131, O55, O11, O8, O45, and O71 (Fig. 2). Moreover,

strains from the same serogroup behaved differently in their ECP

expression. For example, among seven O1 isolates tested for ECP

expression, as described in material and methods, 3 were ECP-

negative, 3 expressed ECP in biofilm only, and 1 expressed ECP in

both biofilm and in contact with HeLa cells. Among the 18 O78

isolates tested, 13 did not express ECP, 3 expressed ECP in biofilm

only, and 2 expressed ECP in both biofilm and in contact with

HeLa cells (Fig. 2).

We next analyzed and compared the upstream ecp operon

region of APEC isolates tested ecpA+ and ECP+. A study by Lehti

et al. [15] has correlated ECP expression in E. coli with

phylogenetic group-associated promoter lineages and according

to their analysis, strains from the B2/D/E lineage groups grown in

the host environmental conditions (low pH and high acetate

concentration) expressed ECP, whereas strains from lineage A/B1

did not. Herein, some APEC strains grown in biofilm or in contact

with HeLa cells expressed ECP either in both conditions or in

biofilm only. To determine if the difference in ECP expression is

related to the heterogeneity of their ecp promoter, we compared

the nucleotide sequence in the upstream region of ecpR (2603 bp

to 21 bp) in multiple APEC strains from which the sequences

were available or sequenced in this study (Fig. 2). The phylogenetic

tree generated confirmed that the operon region of ecpR in APEC

strains are heterologous and are regrouped in different distinct

clusters [14] (Fig. 2); but contrary to the study by Lehti et al. [15],

the expression of ECP in APEC strains in our conditions does not

correlate with the ecp upstream DNA sequence. However, the ECP

expression in the conditions of this study was not phylogenetically

group-associated.

APEC Strain x7234 Opsonized with Anti-ECP Antibodies
was Deficient in Adherence to Epithelial Cells
The first step of bacterial infection is host-pathogen recognition.

The tropism of bacteria is determined by the nature of their

fimbriae/adhesins and along with other virulence factors, they

cause specific diseases. APEC and human ExPEC share virulence

factors and some APEC strains have the potential to cause human

ExPEC diseases, especially urinary tract infection [16]. In this

study, similar to human pathogenic E. coli [5,7,9,17], APEC grown

Role of ECP in APEC
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in the conditions that upregulate ECP expression adhered to HeLa

(human cervical) cells (Fig. 3). Zhao et al. [18] have previously

determined that UPEC and APEC strains sharing the same

virulence gene profiles were both virulent in chickens and showed

the same tendency of iron-acquisition gene expression in a murine

model of human UTI. Our data showed that opsonization of

bacteria with anti-ECP antibodies resulted in substantial inhibition

of bacterial adherence (Fig. 3). These data imply that ECP could

be a good antigen candidate to use to protect against ExPEC

infection. Our team is in the process of evaluating this antigen to

protect chickens against APEC and humans against UPEC, using

mouse model for UTI.

Deletion of ecpA and/or ecpD Abolishes Synthesis and
Expression of ECP in APEC
APEC x7503 DecpA, DecpD, and DecpADecpD mutant strains

were generated (Table 1) to elucidate the role of ECP in various

virulence-associated mechanisms in APEC. The two genes ecpA

and ecpD encode for the major pilin EcpA and the polymerized tip

adhesin EcpD of the ECP fimbriae, respectively [6]. Similar to

studies on human E. coli, we have shown that both single mutants

and the double mutant in an APEC strain were deficient in ECP

synthesis and expression as analyzed by TEM and immunoblot-

ting (Fig. 4). It was obvious that deletion of ecpA would affect ECP

synthesis; however, the absence of ECP expression in the ecpD

mutant was surprising and previously explained by the fact that

EcpD is required for the stability of EcpA, whereas the absence of

EcpA does not affect the expression of EcpD [6]. Complemen-

tation of the mutant strains DecpA and DecpD with the plasmids

pMAT9 and pDB5 respectively (Fig. 4), has fully recovered the

expression of ECP in the strains. Since deletion of ecpD abolishes

both EcpD and EcpA expression [6], only the mutant ecpD

complemented with pDB5 was included in the in vitro and in vivo

assays below.

Diversity of ECP-associated Virulence Phenotypes in
APEC x7503
Biofilm formation provides multiple advantages to bacteria, as it

is an important determinant in the pathogenicity of ExPEC,

increases survivability of bacteria in the environment outside of the

host, and provides an environment for genetic material exchange

[19]. Resistance of biofilm-forming bacteria to antimicrobial drugs

and detergents complicates the elimination of theses bacteria in

medical and industrial settings. A set of gene expressions in E. coli

facilitate biofilm formation at its different stages including

initiation, attachment and maturation. A previous study has

shown that ECP was involved in the early stage of biofilm

development in NMEC at 20uC and ECP production was detected

in biofilm-attached bacteria [8]. Herein, the deletion of ecpA and/

or ecpD in the APEC strain x7503 has decreased biofilm

production in the mutant strains when grown at 28uC in LB or

DMEM, and the difference compared to the wild-type was

statistically significant (Fig. 5), which confirms that ECP plays a

role in biofilm formation in APEC.

Lehti et al. [8] have shown that overexpression of matA (ecpR) in

NMEC IHE 3034 abolishes the motility of the strain by decreasing

the expression of the flagella operon [8]; and the inactivation of

matA had only a minor effect on flagellation. No studies have been

undertaken to evaluate the role of the ECP fimbriae in the motility

of bacteria yet. In our present study, we compared the APEC

strain x7503 and its derivative DecpA, DecpD, and DecpADecpD
mutants for their motility in a swimming assay on semi-solid agar

plates (Fig. 6) and determined that although deletion of ecpA in

x7503 had little effect on motility of bacteria, the absence of ecpD

in both single and double mutants significantly decreased the

motility of bacteria compared to their wild-type at both 28uC and

37uC. Complementation of the ecpD mutant with the plasmid

pDB5 containing the ecpD gene has restored the motility of the

bacteria to the level of the wild-type (Fig. 6). The mechanism by

which ECP is involved in the motility is unclear and has to be

elucidated in the future.

Role of ECP in vivo
Available studies that assessed the role of ECP in virulence-

associated phenotypes of bacteria were undertaken in vitro only [4–

11,15,17]. The extent to which the ECP-associated virulence is

expressed in vivo is speculative. In the present study, evaluation of

wild-type APEC x7503 and its derivative ecp mutants in day-old

chicks has shown that the wild-type APEC strain x7503 killed

87.5% of infected chicks at 24 and 100% at 48 hours post-infection

(Fig. 7). The ecpA mutant killed 80% and 90% at respective times

and 10% survived until the end of the experiment; the ecpDmutant

killed 58.82% and 82.35% and 17.65% survived until the end of

the experiment (Fig. 7); the double mutant ecpA and ecpD killed

70% and 80% respectively and 20% survived until the end of the

experiment; and the complemented ecpD strain killed 50% and

100% respectively (Fig. 7).

Figure 1. Demonstration of ECP expression on a representative APEC strain x7234. The presence of ECP (green) on the bacteria (red)
associated biofilm (A), or adhering to HeLa cells (B) was demonstrated using an anti-EcpA antibody (dilution 1:2,000). Bacteria were previously
incubated overnight at room temperature in DMEM with 0.5% mannose before the 6-H infection of HeLa cells. Biofilms were allowed to form 48 h at
28uC in DMEM with 0.5% mannose.
doi:10.1371/journal.pone.0086565.g001
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Additionally, to evaluate if ECP has a role in colonization

during the infection process, day-old chicks were subcutaneously

challenged with wild-type, DecpD mutant, and its complemented

strain, respectively. Data of recovery of bacteria from blood and

internal organs (spleen and liver) of infected animals at 12 hours

post inoculation, has shown that compared to the wild-type, the

DecpD mutant colonized the infected animals slowly and had lower

mean bacterial populations in blood and internal organs (spleen

and liver) and the difference (two logs reduction) was significant

(P,00.5) in the blood (Fig. 8). Complementation of the mutant

strain restored the colonization ability of the strain to the level of

the wild-type or even slightly higher in the spleen (Fig. 8).

Although deletion of ecp has not drastically attenuated APEC

strain x7503, as tested in the lethality of day-old chick model, this

is probably due to ability of bacteria to use alternative virulence

factors; its absence has however decreased the colonization ability

of the bacteria, especially in blood. To our knowledge, this is the

first report on the role of ECP in virulence in vivo and we show for

the first time a correlation between deletion of ecp and the decrease

of virulence of APEC in chicks.

In the future studies, ecp mutants should be tested in other

animal models of avian colibacillosis, such as subcutaneous

injection and air sac inoculation [20] to determine their role in

specific diseases, including cellulitis and systemic infection

respectively.

Conclusion

We have shown for the first time that ecpA is prevalent among

APEC isolated from diseased chickens. Our data showed that ECP

expression is regulated differently in biofilm and in contact with

HeLa cells in ecpA+ APEC strains and is neither serogroup nor

phylogenetic group related. Deletion of ecp genes in an APEC

strain has decreased its biofilm production and swimming ability

in vitro and has slightly decreased its virulence in day-old chicks

and decreased the colonization ability of the strain, especially in

bloodstream. Similar to human pathogenic E. coli, ECP in APEC

Figure 2. Neighbor-joining phylogenetic tree from analysis of ecp upstream region of APEC strains. Phylogenetic relationships between
nucleotide sequences of putative ecp promoter sequences (2603 bp to 21 bp from the start codon GTG of ecpR) of APEC strains sequenced in this
study (n = 40) or those available on public database (n = 7) [APEC-O1 (NC_008563.1); BEN374 (JN377377); BEN79 (JN377376); 789 (JN377380), APEC-
O78 (NC_020163.1), x7122 (NZ_HE962388.1), IMT2125 (NZ_HE964769)]. Eleven related sequences of human pathogenic and non-pathogenic E. coli
[(DH1 (CP001637), UMN026 (CU928163.1), TW14359 (CP001368), SMS-3-5 (CP000970), CB9615 (CP001846), CFT073 (NC_004431.1), E2348/69
(FM180568.1), E24377A (CP000800), BL21(DE3) (NC_012892.2), 55989 (CU928145.2), 11368 (AP010953)] and one sequence of Shigella boydii Sb227
(NR_076357.1) were included as controls and the sequence of Klebsiella pneumoniae Ec18 (NZ_HF536482.1) was used as outgroup. Results of ECP
expression of APEC strains tested in biofilm or in contact with HeLa cells are shown on the right. Colored dots represent phylogenetic groups, Green
(A), Blue (B1), Red (B2), Yellow (D), and Purple (E). Abbreviations: NS, non-specific; NT, non-typable; ND, not determined.
doi:10.1371/journal.pone.0086565.g002

Figure 3. Inhibition of adherence by anti-ECP antibodies. Giemsa staining showing inhibition of APEC x7234 adherence to HeLa cells with
anti-ECP antibodies. A, No antibody; B, 1:100; C, 1:50; D, 1:10.
doi:10.1371/journal.pone.0086565.g003
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is involved in diverse phenotype-associated virulence/fitness and

should be considered as a potential common antigen to use against

pathogenic E. coli infections in both humans and animals.

Figure 4. Detection of ECP synthesis and expression on APEC x7503 strain and its derivatives. ECP expression on the surface of bacteria
by immunoelectron microscopy (A) and ECP synthesis in total bacterial Western blotting using anti-ECP antibodies (B). The ECP synthesis and
expression is shown in the wild-type strain. The single and double mutants were deficient in ECP synthesis and expression. The ECP synthesis and
expression were restored in the complemented strains. (Scale bars, 500 nm.). Detection of DnaK with anti-DnaK antibody was used to ensure equal
amounts of antigen tested.
doi:10.1371/journal.pone.0086565.g004
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Materials and Methods

Ethics Statement
Infection of chickens was performed in accordance with

protocols approved by the Arizona State University (ASU)

Institutional Animal Care and Use Committee (IACUC) in

dedicated facilities at the Biodesign Institute, ASU (ASU IACUC

Protocol number 1168R).

During the experiment, chicks were regularly monitored four

times a day by our team and the facility animal caretakers, and

further inspected by an ASU veterinarian. Chickens were

monitored for death as an endpoint. However, any moribund

chicks (very sick and no motility, obviously in pain and showing

signs of severe and enduring distress) were euthanized by CO2

asphyxiation to minimize suffering of these animals.

Bacterial Strains, Plasmids and Growth Conditions
The list and characteristics of Escherichia coli strains and plasmids

used in this study are in Table 1. A collection of 166 E. coli strains

isolated from chickens and turkeys presenting signs of colibacillosis

[12] [This study], kindly provided by Dr. John Fairbrother

(University of Montreal), and the APEC strain x7122 [13] were

used to study the distribution of the ecpA gene among APEC using

PCR. The APEC strain x7503 from the serogroup O1 contains

four plasmids (,114 kb, ,105 kb, ,76.5 kb, and ,55 kb); it was

PCR-tested positive for six ColV plasmid-associated genes (iss, cvi,

ompT, iroN, iutA, and tsh) that play a major role in virulence of

APEC [12] and for colicin and siderophore production using

methods previously described [19]. Unless otherwise stated,

bacteria were routinely grown in Luria Bertani (LB) broth or on

MacConkey agar supplemented with 0.1% glucose and 1% lactose

respectively at 37uC. Strains were stored as stock cultures at

280uC in peptone-glycerol medium. Antibiotic susceptibility of

strains was tested on LB-agar plates with and without antibiotics

and on Muller Hinton agar using antibiotic disks. Antibiotics were

added, as required, at the following concentrations (mg/ml):

kanamycin (30); chloramphenicol (50); and ampicillin (100).

PCR Amplification, Sequencing and Computational
Analysis
PCR amplification of DNA was performed using GotaqH DNA

Polymerase (Promega). PCR reaction products were resolved on a

1% agarose gel and visualized with Syber-green staining with UV

or blue light source. Detection of ecpA in 167 APEC isolates and

ColV plasmid-associated genes (iss, cvi, ompT, iroN, iutA, tsh) in

x7503 was performed by PCR amplification using primers

specified in Table 2 and as previously described [12]. For

comparison purposes, the sequence of the operon ecpRABCDE

was derived from the whole genomic DNA of APEC x7122
(NZ_HE962388.1), CFT073 (NC_004431.1), and E2348/69

(FM180568.1). BLAST programs (http://www.ncbi.nlm.nih.gov)

were used to carefully review, confirm the annotation of every

gene and compare between sequences.

For sequencing the ecp upstream region that includes the ecp

promoter from selected APEC strains, DNA templates were

Table 1. E. coli strains and plasmids used in this study.

Strains Characteristics/genotype Parent
Reference/
source

x7122 APEC O78:K80:H9, gyrA NalR StrR [13]

x7234 Wild-type APEC O18 isolated from a deceased turkey presenting signs of colibacillosis Lab. collection

x7503 Wild-type APEC O1 isolated from a deceased chick presenting signs of colibacillosis Lab. collection

x7615 DecpA::cat, CmR x7503 This study

x7616 DecpD::cat, CmR x7503 This study

x7617 DecpA::cat DecpD::km, CmR, KmR x7615 This study

x7744 x7615 (DecpA) complemented with pMAT9, CmR, AmpR x7615 This study

x7745 x7616 (DecpD) complemented with pDB5, CmR, AmR x7616 This study

Plasmids

pKD46 AmR, l Red recombinase expression, Temperature sensitive plasmid. [21]

pKD3 Plasmid containing the Cm cassette [21]

pKD4 Plasmid containing the Km cassette [21]

pMAT9 ecpAB in pSE380, AmR pSE380 [4]

pDB5 ecpD in pBR322, AmR pBR322 [6]

doi:10.1371/journal.pone.0086565.t001

Figure 5. Biofilm formation by APEC x7503 and its derivatives.
Bacteria were grown in either LB or DMEM media at 28uC for 48 hours.
Biofilm-associated cells were visualized by crystal violet staining. The
data represent means and standard deviations of three independent
experiments. Asterisks show significant difference versus the wild-type
strain (*, P,0.05; **, P,0.005).
doi:10.1371/journal.pone.0086565.g005
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generated by PCR using primers specified in Table 2. The PCR

products were purified from the agarose gel by using Qiaquick Gel

Extraction Kit (Qiagen) and sequenced by the DNA laboratory

Sequencing Core at Arizona State University (https://sols.asu.

edu/about-us/labs/dna). The sequence data have been deposited

in the GenBank database under Accession numbers: x7499
(KF366455); x7237 (KF366456); x7244 (KF366457); x7503
(KF366458); x7507 (KF366459); x7508 (KF366460); x7514
(KF366461); x7516 (KF366462); x7258 (KF366463); x7520
(KF366464); x7233 (KF366465); x7521 (KF366466); x7234
(KF366467); x7254 (KF366468); x7523 (KF366469); x7528
(KF366470); x7535 (KF366471); x7537 (KF366472); x7543
(KF366473); x7545 (KF366474); x7554 (KF366475); x7555
(KF366476); x7560 (KF366477); 16269 (KF907797); 16331

(KF907798); 16423 (KF907799); 16924 (KF907800); 16998

(KF907801); 17002 (KF907802); 17162 (KF907803); 17270

(KF907804); 17310 (KF907805); 17328 (KF907806); 17343

(KF907807); 17355 (KF907808); 17504 (KF907809); 17669

(KF907810); 17713 (KF907811); 17840 (KF907812); 17914

(KF907813); and 19268 (KF907814).

A phylogenetic tree was generated by comparing the nucleotide

levels of these sequences and the sequences of APEC available on

the public database with those of related sequences of other

bacteria obtained from the GenBank database by neighbor-joining

(1,000 replicates) using Molecular Evolutionary Genetics Analysis

software version 4.0 (MEGA4) (http://megasoftware.net/). Boot-

strap values are indicated at branch positions. GenBank accession

numbers of nucleotide sequences of APEC and other bacteria used

Figure 6. Swimming ability of bacteria in semi-solid LB medium. x7503 and its ecp-derivatives were compared for their swimming ability in
semi-solid LB agar at both 28uC and 37uC. The data represent means and standard deviations of three independent experiments. Asterisks show
significant difference versus the wild-type strain (*, P,0.05).
doi:10.1371/journal.pone.0086565.g006

Figure 7. Pathogenicity of APEC x7503 and its ecp-derivative strains in 1-day-old chicks. The survival percentages were evaluated for
groups of chicks inoculated subcutaneously at 7 days after inoculation with either wild-type strain x7503 or its ecp-derivative strains. A group of
chicks inoculated with PBS was used as a control.
doi:10.1371/journal.pone.0086565.g007
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in this study are: x7122 (NZ_HE962388.1), CFT073

(NC_004431.1), APEC O1 (NC_008563.1); BEN374

(JN377377); BEN79 (JN377376); CB9615 (CP001846); SMS-3-5

(CP000970); E2348/69 (FM180568.1); DH1 (CP001637);

UMN026 (CU928163.1); 789 (JN377380); TW14359

(CP001368); IMT2125 (NZ_HE964769); E24377A (CP000800);

APEC O78 (NC_020163.1); BL21(DE3) (NC_012892.2); 55989

(CU928145.2); 11368 (AP010953); Shigella boydii Sb227

(NR_076357.1); K. pneumoniae Ec18 (NZ_HF536482.1).

Construction of Mutants
Genes ecpA and/or ecpD were deleted in one of the APEC strains

tested, named x7503 (Table 1), using l Red-recombineering

technology [21], a one-step gene inactivation method using

primers listed in Table 2. The strain x7503 was selected because

it tested ecpA+ and ECP+, the strain was from the serogroup O1

(Fig. 2), one of the most prevalent serotypes among APEC isolates

[1], and tested positive for most genes associated with APEC as

determined above. Insertions and deletions in generated mutant

strains were verified by PCR using the primers in Table 2. The

LPS profile of strains was evaluated by sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE) and visualized by

silver staining [22], to eliminate rough variants if they arise. Strains

were verified for their similar growth and antibiotic sensitivity.

Bacterial Interaction with HeLa Cells
HeLa cells at 70–80% confluence were cultivated in 24-well

tissue culture plates containing glass coverslips and DMEM

supplemented with 10% bovine fetal serum (Gibco Invitrogen,

USA) and 1% antibiotics (Gibco Invitrogen, USA). After one wash

with phosphate-buffered saline (PBS) pH 7.4, 1.0 mL of fresh

medium (DMEM supplemented with 2% fetal bovine serum) was

added to the cell monolayers [9]. APEC strains were grown

overnight in DMEM broth without shaking at 28uC. Bacteria were
diluted 1:100 in the medium contained in the microplates. After an

incubation time of 6 hours at 37uC, cells were washed with

phosphate buffered saline (PBS) to remove non-adherent bacteria.

Cells were fixed with 2% formaldehyde and were either stained

using a Giemsa staining kit or used for immunofluorescence

microscopy as described below [5].

To examine the ability of anti-ECP antibodies to inhibit

adherence, the bacterial inoculum was pre-incubated for 30 min

with 1:10, 1:50, and 1:100 dilutions of the anti-ECP before

addition to the cells.

Biofilm Assay
To measure biofilm formation in bacteria, assays were

performed in 96-well polystyrene microtiter plates (Becton

Dickinson, Franklin Lakes, NJ). An O/N standing LB culture of

the strains was diluted 1:100 in fresh media of either LB or

DMEM low glucose with 0.5% Mannose. Aliquots of 200 mL for

Figure 8. Colonization ability of x7503 and its ecp-derivative strains in 1-day-old chicks. Abilities of strains to cause systemic infection and
invade internal organs of chicks were evaluated at 12 hours post-subcutaneous challenge in day-old chicks. Statistically significant differences
compared with the wild-type strain are indicated.
doi:10.1371/journal.pone.0086565.g008

Table 2. Primers used in this study.

Primer Sequence Target gene/purpose Reference

ecpA-L GTAACGGTGTTTACCGGCAT ecpA (screening) This study

ecpA-R GATCATCACGGTATCGCCAG ecpA (screening) This study

G60 GTTCTGGCAATAGCTCTGGTAACGGTGTTTACCGGCGTGTAGGCTGGAGCTGCTTC ecpA (mutagenesis) [5]

G61 TTAACTGGTCCAGGTCGCGTCGAACTGTACGCTAACCATATGAATATCCTCCTTAG ecpA (mutagenesis) [5]

G90 AACAGCAATATTAGGGGCGTG ecpA (screening mutant) [5]

G91 GGATAACAGCAGAGCGAGAAG ecpA (screening mutant) [5]

ecpD-cat/km-L GTGCCGCCAGCATACAGACCGCTGTCAGCAGGGCCGTGTAGGCTGGAGCTGCTTC ecpD (mutagenesis) This study

ecpD-cat/km-R CATCGTGGGCGGCGGTGACGCAGACAGGAGAAGAGACATATGAATATCCTCCTTAG ecpD (mutagenesis) This study

ecpD-V-F ATAGCACTGATGGCAATACG ecpD (screening mutant) This study

ecpD-V-R GTGGCACTGGAACTCAACCA ecpD (screening mutant) This study

doi:10.1371/journal.pone.0086565.t002
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each dilution were dispensed per well into a microtiter plate. Each

strain was tested in multiples of twelve, with wells containing sterile

medium used as negative controls. After incubation for 48 h at

28uC, biofilms were quantified using Crystal Violet staining. The

absorbance was measured at 570 nm in an absorbance spectro-

photometer (SpectraMax M2, Molecular Devices). All tests were

carried out at least three times, and the results were averaged.

Biofilm-associated bacteria for evaluation of ECP production

assay was performed in 24-well plates (Nunc) with glass coverslips.

A 20-ml aliquot of a standing O/N culture of bacteria grown in LB

broth was added to the wells containing 500 ml DMEM low

glucose containing 0.5% mannose and incubated at 28uC for 48 h.

Wells were washed three times with PBS to remove unbound

bacteria and the biofilms were fixed with 2% formalin and

processed for IFM or TEM as described below.

Detection of ECP Expression by Immunoblotting
Overnight bacterial cultures obtained from DMEM were

adjusted to an absorbance of 1.1 at OD600. Equal numbers of

bacteria were used to prepare whole-cell extracts after treatment

with acidified water (pH 1.2), boiling for 5 min, addition of SDS-

PAGE sample buffer and neutralization with 1 N NaOH as

previously described [5]. The samples were electrophoresed in

16% polyacrylamaide gels under denaturing SDS-PAGE condi-

tions. Detection of DnaK with anti-DnaK antiserum (Sigma

Aldrich) served as a control for equal amounts of protein loaded

onto the gels. The proteins were electroblotted onto PVDF

membranes, blocked with 1% dry milk, and the immobilized

proteins were bound with primary antibodies against ECP,

followed by incubation with goat anti-rabbit IgG conjugated to

peroxidase (Sigma Aldrich). The substrate used was a chemo-

luminescent reagent (Amersham).

Detection of surface expression of ECP
Surface expression of ECP in biofilm- or cell-associated bacteria

was visualized via immunofluorescence and TEM using Rabbit

anti-EcpA antibodies [5]. Immunofluoresence was accomplished

using Alexa Fluor conjugated anti-Rabbit antibodies (Green) at a

concentration of 1:7,500 in PBS. Bacterial cells were stained with

Propidium Iodide. ECP was visualized under TEM using Goat-

anti-Rabbit IgG with 10 nm colloidal gold (MP Biomedicals) at a

concentration of 1:250.

Ultrastructural Analysis of ECP Expression by Electron
Microscopy
DMEM bacterial cultures were spotted onto 300-mesh carbon-

Formvar copper grids, negatively stained with 10 ml of 1%

phosphotungstic acid (pH 7.4) for 5 min, and analyzed for the

presence of pili by transmission electron microscopy (TEM).

Immuno-EM studies were performed to confirm the presence of

ECP by incubating the bacteria for 1 h with rabbit anti-ECP

antibody (diluted 1:10) in PBS containing 10% BSA and 1 h-

incubation with goat anti-rabbit IgG conjugated to 10-nm gold

particles diluted 1:10 (BB International) as previously described

[23].

Motility Assays
Isolated colonies of each strain from an O/N fresh LB plates

were inoculated with sterile toothpicks on swimming plates (1.0%

Difco Bactotryptone, 0.5% Difco Yeast Extract, 0.5% NaCl, and

0.3% Difco Agar) prepared the same day and dried for 6 hours

before inoculation. Plates were incubated either O/N at room

temperature or 6 hours at 37uC. Swimming halo diameters were

measured. At least six colonies from each strain were tested, and

the test was repeated at least twice.

Evaluation of the Virulence of the Strains in vivo
Specific-pathogen-free fertile White Leghorn chicken eggs were

obtained from Charles River Labs (Wilmington, MA) and hatched

at the animal facilities of the Biodesign Institute. During the study

chickens were housed in isolators equipped with HEPA filters in

the BSL2 facilities.

Lethality for 1-day-old chicks was assessed by subcutaneously

inoculating 5 groups of 10 1-day-old chicks with 0.1 ml of either

PBS or an overnight broth culture of strains (about 108 CFU) [24].

Death/survival was recorded for 7 days after inoculation.

The difference in the abilities of strains to disseminate in the

bloodstream and internal organs of chicks was also determined.

Briefly, 3 groups of 7 day-old chicks were subcutaneously

inoculated with 108 CFU of either the wild-type, DecpD mutant,

or its complemented strain respectively. Birds were observed every

two hours and euthanized at 12 h post-infection by CO2

asphyxiation and then necropsied. Blood was collected in

heparinized syringes and organs (spleen and liver) were aseptically

removed and homogenized in PBS, the presence and number of

bacteria were determined by plating serial dilutions of samples on

MacConkey agar plates.

Statistical Analysis
Data were analyzed by one-way analysis of variance (ANOVA),

followed by Bonferroni’s multiple-comparison test (GraphPad

Prism software, version 6.01). Differences between average values

were also tested for significance by performing an unpaired, two-

sided Student t test. The levels of significance (P values) are

reported and values #0.05 were taken to be significant.

Supporting Information

Figure S1 Schematic of the Genetic organization of the
ecp operon of APEC x7122. Arrows represent genes of the ecp

operon. The numbers inside of the arrows represent the size of the

genes in base pairs (bp).

(TIF)

Table S1 Percent sequence identity and positive substitutions

of ECP protein sequences of x7122 compared to two ECP+ strain

(CFT073) [6] and E2348/69 [5,14] and one ECP- strain (APEC-

O1) (NC_008563.1) (this study).

(DOC)
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