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Abstract

Background: Genetic and genomic data analyses are outputting large sets of genes. Functional comparison of these gene
sets is a key part of the analysis, as it identifies their shared functions, and the functions that distinguish each set. The Gene
Ontology (GO) initiative provides a unified reference for analyzing the genes molecular functions, biological processes and
cellular components. Numerous semantic similarity measures have been developed to systematically quantify the weight of
the GO terms shared by two genes. We studied how gene set comparisons can be improved by considering gene set
particularity in addition to gene set similarity.

Results: We propose a new approach to compute gene set particularities based on the information conveyed by GO terms.
A GO term informativeness can be computed using either its information content based on the term frequency in a corpus,
or a function of the term’s distance to the root. We defined the semantic particularity of a set of GO terms Sg1 compared to
another set of GO terms Sg2. We combined our particularity measure with a similarity measure to compare gene sets. We
demonstrated that the combination of semantic similarity and semantic particularity measures was able to identify genes
with particular functions from among similar genes. This differentiation was not recognized using only a semantic similarity
measure.

Conclusion: Semantic particularity should be used in conjunction with semantic similarity to perform functional analysis of
GO-annotated gene sets. The principle is generalizable to other ontologies.
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Introduction

With the continued advance of high-throughput technologies,

genetic and genomic data analyses are outputting large sets of

genes. The amount of data involved requires automated compar-

ison methods [1]. The characterization of these sets typically

consists in a combination of the following three operations [2,3]:

first, synthesize the over- and under-represented functions of these

genes [4,5]; second, identify how these genes interact with each

other [6]; third, identify and quantify the common shared features

and the differentiating features [7,8]. A widely used method for

genes sets study called ‘‘Gene Set Enrichment Analysis’’ (GSEA)

determines which gene features are over-represented in a gene set

[9]. Numerous tools have been developed in this purpose: BiNGO

[10], GOEAST [11], ClueGO [12], DAVID [13], GeneWeaver

[14], GOTM [15]. See Hung et al. recent work for a review [16].

GSEA is useful for clustering a set of genes into subsets sharing

over-represented features. Among these features, the biological

processes (BP), molecular functions (MF) and cellular components

(CC) annotating each gene are represented using the Gene

Ontology (GO) [17]. GO is species-independent, and thus

supports cross-species comparison [18]. The GO graph itself is

also widely used for genes semantic similarity analysis [19].

Semantic similarity
Within a given gene set, the genes sharing identical or similar

GO annotations can be grouped into clusters using two

approaches [20]. The GSEA approach computes these clusters

considering the GO terms over-representation. The semantic

similarity approach takes into account GO properties to cluster

genes considering the quantity and the importance of their shared

annotations [21–24]. Both approaches are not exclusive, as

semantic measures can be involved in GSEA in order to improve

the analysis [25]. If these terms were independent, the gene set

characterization could be performed by a straightforward set-

based approach such as the Jaccard index or Dice’s coefficient.

However, GO terms are hierarchically-linked. Consequently, the

characterization needs to take into account the underlying

ontological structure of the GO annotations [26].

Semantic similarity measures rely on ontologies to systematically

quantify the weight of the shared elements. They exploit the

formal representation of the meaning of the terms by considering

the relations between the terms (e.g. for inferring new annotations

that were implicit as each term inherits all the properties of its

ancestors) and by attributing different weights to each term

depending on how much information they convey. When working
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with annotation databases, it should be routine practice to use the

ontology hierarchy to infer implicit annotation [26]. Pesquita et al.

performed an extensive review of the main semantic similarity

measures [27] and identified two main categories, i.e. node-based

methods and edge-based methods, as well as a handful of hybrid

methods.

Node-based semantic similarity measures rely on how informa-

tive the terms are. Typically, they consider that two terms sharing

an informative lowest common ancestor are more similar than two

terms with a less informative lowest common ancestor. Histori-

cally, Information Content (IC) value was used to quantify how

informative a term is, with the least frequent terms having the

highest IC value. This concept, borrowed from Shannon’s

Information Theory [28], was used to measure similarities using

ontologies [29–31] such as WordNet [32]. To compare two terms,

these methods rely on their most informative common ancestor

(MICA). The IC of this ancestor is the semantic similarity value

between the compared terms. These methods developed in

linguistics have been applied to GO [33,34] using the frequency

with which a term annotates a gene as a marker of its rarity.

Consequently, the IC of a GO term is inversely proportional to the

frequency with which it annotates a gene using the Gene Ontology

Annotations (GOA) database [35]. GOA specifies also how each

annotation has be attributed through Evidence Codes (EC). In

their method called ‘‘IntelliGO’’, Benabderrahmane et al. use a

weighting corresponding to each GO term EC in addition to their

IC [36]. Retrieving only the most informative common ancestor to

compute a semantic similarity ignores the possibility that two GO

terms can share several common ancestors. These situations result

in a loss of information. A possible solution has been proposed that

consists in using the average of the IC values of all disjoint

common ancestors (DCA) instead of the maximum IC of this

common set [37]. For the node-based methods relying on IC, the

terms’ frequencies used to compute the IC values depend on the

corpus of reference. In the context of genes comparison, IC-based

methods have three main limits related to their dependence on a

GOA-based corpus. First, it can prove difficult or even impossible

to obtain a relevant corpus. GOA provides single and multi-species

annotation tables. Although using a species-specific table is well-

suited to intra-species comparisons, it becomes problematic for

cross-species comparisons. Second, using a multi-species table (like

the UniprotKB table) in these cases is biased towards the most

extensively annotated species such as human or mice. Third, the

well-studied areas of biology have high annotation frequencies and

are therefore less informative and see their importance down-

graded, whereas the less-studied areas are artificially upgraded

[38–40].

Edge-based semantic similarity measures use the directed graph

topology to compute distances between the terms to compare.

Rada distance is based on the shortest path between the two terms

[41]. Such distances rely on the average path among multiple

paths [27]. Other approaches take into account the length of the

path between the root of the ontology and the least common

ancestor (LCA) of the terms, with the result that terms with a deep

common ancestor are more similar than terms with a common

ancestor close to the root [42–46]. The edge-based methods using

depth as a proxy for precision are not dependent on a particular

corpus. This can be a good thing when it is difficult or impossible

to determine a representative corpus, or a bad thing when corpus-

dependent frequencies are relevant. Moreover, another constraint

to consider is that granularity is not uniform in GO, so terms at the

same depth can have different precisions [47].

Pesquita et al. also identified ‘‘hybrid’’ methods that combine

different aspects of node-based and edge-based methods. In

Wang’s method [22], each term has a ‘‘semantic value’’ that

represents how informative the term is, conforming to the node-

based approach. However, the semantic value of a term is

obtained by following the path from this term to the root and

summing the semantic contributions of all the ancestors of this

term. As the semantic value depends on the ontology topology, it

also conforms to the edge-based approach.

Pesquita et al. do not single out any particular semantic

similarity measure as the best one, as the optimal measure will

depend on the data to compare and the level of detail expected in

the results. The main advantage of Wang’s method compared to

purely node-based methods is that the semantic value is not GOA-

dependent, unlike information content. It is thus well-suited to

cross-species comparisons. As cross-species comparison is one of

the key stakes in biology, further development in the domain of

semantic comparison should support such comparisons.

Limitations of semantic similarity
All the semantic similarity measures appear appropriate for

identifying and quantifying common features. However, as these

measures are focusing on common features, they may lead to an

incomplete analysis when comparing genes having particular

features along side similar ones [48]. For example, parts A and B

of Figure 1 respectively present the MF terms annotating the

Exportin-5 orthologs of human (hsa) and rat (rno) and the

Exportin-5 orthologs of human and drosophila (dme). Wang’s

method allows to compute cross-species semantic similarity. The

results on MF annotations are: Sim(hsa, rno) = 0.797 and Sim(hsa,

dme) = 0.726. This is consistent with the fact that globally, the

Exportin-5 orthologs share the same functions between hsa, rno

and dme. However, there are also five times as many human-

specific MF terms compared to drosophila as compared to rats. It

has been demonstrated that Exportin-5 orthologs are functionally

divergent among species [49]. The tiny difference of semantic

similarity (0.071) correctly reflects the fact that the orthologs share

the same main function, but is not sufficient to identify that some

species also have additional functions.

We assume that considering only similarity measures is not

enough to compare sets of annotations. This analysis is valid for

any set of annotations that refer to an ontology. We hypothesize

that gene set analysis can be improved by considering gene

particularities in addition to gene similarities. We propose a

general definition and some associated formal properties. We

propose also a new approach based on the notion of GO term

informativeness to compute gene set particularities.

Methods

Definition of semantic particularity
The semantic particularity of a set compared to another is the

value that reflects the importance of the features that belong to the

first set but not the second. To compare two genes, we rely on the

similarity and the respective particularities of their sets of

annotations. The particularity of a gene g1 annotated by the set

Sg1 compared to a gene g2 annotated by the set Sg2 depends on

the annotations of Sg1 that are not related to any annotation of

Sg2.

Formal properties
Like for semantic similarity, we compute a value bounded by 0

(least particular) and 1 (most particular). Four important properties

arise from the semantic particularity definition:

N The semantic particularity is non-symmetric:

Semantic Particularity Measure Using Gene Ontology
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Par(Sg1, Sg2) = x)/ Par(Sg2, Sg1) = x (Prop 1)

N Compared to itself, a set of annotations has no semantic

particularity:

Par(Sg1, Sg1) = 0 (Prop 2)

If Sg1 =1, this comparison is meaningless.

N The semantic particularity of a set of annotations Sg1 (=1) is

maximal when it is compared to an empty set of annotations:

Par(Sg1, 1) = 1 (Prop 3.1)

And conversely:

Par(1, Sg1) = 0 (Prop 3.2)

N The particularity of a set Sg1 of annotations compared to a set

Sg2 does not depend on the elements of Sg2 that do not belong

to Sg1:

Sg3\Sg1 =1[Par(Sg1, Sg2) = Par(Sg1, Sg2|Sg3) (Prop 4)

Measure of semantic particularity
In order to compute the particularity of Sg1 compared to Sg2,

we focus on the terms of Sg1 that are not members of Sg2. This

requires to address two problems: the terms are not independent,

and they do not convey the same amount of information.

Some of the terms of Sg1 that are not members of Sg2 may be

linked in the graph. Taking several linked terms into account

would result in considering them several times. For example, in

Figure 1B, considering both ‘‘RNA binding’’ and ‘‘tRNA binding’’

would result in counting twice the contribution of ‘‘RNA binding’’.

Therefore, we should only focus on the terms of Sg1 that do not

have any descendant in Sg1 and that are not members of Sg2.

Some of these terms might be ancestors of terms of Sg2 and should

be considered as common to Sg1 and Sg2. We call Sg* the union

of Sg and the sets of ancestors of each element of Sg. We call

MPT(Sg1, Sg2) the set of most particular terms of Sg1 compared

to Sg2. MPT(Sg1, Sg2) is the set of terms of Sg1 that do not have

any descendant in Sg1 and that are not members of Sg2*. In the

Figure 1B, MPT(hsa, dme) = [‘‘tRNA binding’’].

Using the set theory, we could define Par(Sg1, Sg2) as the

proportion of elements of Sg1 that belong to MPT(Sg1, Sg2).

When computing card(MPT(Sg1, Sg2)), all the elements have the

same weight. However, considering the semantics underlying these

elements, some of them may be more informative than others and

should ideally be emphasized. Different strategies, similar to those

already proposed for the computation of the semantic similarity,

can be applied.

We then define PI(Sg1, Sg2), the particular informativeness of a

set of GO terms Sg1 compared to another set of GO terms Sg2, as

the sum of the differences between the informativeness (I) of each

term tp of MPT(Sg1, Sg2) and the informativeness of the most

informative common ancestor (MICA) between tp and Sg2. The

PI of a set of terms is the information that is not shared with the

other set.

PI(Sg1,Sg2)~
X

tp[MPT(Sg1,Sg2)

I(tp){I(MICA(tp,Sg2)) ð1Þ

In the Figure 1B, PI(hsa, dme) = I(tRNA binding)2I(binding).

We have no sum in this example since MPT(Sg1, Sg2) only

contains one term.

We last normalize PI to compute Par(Sg1, Sg2), the semantic

particularity of the set of GO terms Sg1 compared to the set of GO

terms Sg2. We define MCT(Sg1, Sg2), the set of the most

informative common terms of Sg1 and Sg2, as the set of the terms

belonging to the intersection of Sg1* and Sg2* that do not have any

descendant either in Sg1* or in Sg2*. In the Figure 1B, MCT(hsa,

dme) = [‘‘protein transporter activity’’, ‘‘protein binding’’].

Par(Sg1, Sg2) is the ratio of PI(Sg1, Sg2) and the sum of the

informativeness of Sg1 most informative terms (i.e. those Sg1-

specific and those common with Sg2; the MICA in the PI formula

for the Sg1-specific guarantees that the informativeness of

common terms is not counted twice).

Figure 1. Representation of Exportin-5 orthologs annotations. Common terms between species are displayed in blue. The terms annotating
only the human ortholog are displayed in red. Part A of this figure displays the MF annotations of the human and rat orthologs of Exportin-5. Part B
displays the MF annotations of the human and drosophila orthologs of Exportin-5. In this example, there is no rat nor drosophila-specific term. The
semantic similarity values obtained in these cases do not reflect the difference of human particularity between each part.
doi:10.1371/journal.pone.0086525.g001
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Par(Sg1,Sg2)~
PI(Sg1,Sg2)

PI(Sg1,Sg2)z
P

tc[MCT(Sg1,Sg2) I(tc)
ð2Þ

For the example of the Figure 1B, this formula becomes:

Par(hsa,dme)~

I(tRNA binding){I(binding)

(I(tRNA binding){I(binding))z(I(p: trsp: activity)zI(protein binding))

ð3Þ

Several measures of informativeness have been proposed. The

widely used Information Content (IC) family depends on an

annotation corpus (e.g. GOA). The IC of a term t is its negative log

probability P(t).

IC(t)~{log(P(t))

In the context of GO terms comparison, the probability of

occurrence of a term P(t) is estimated by its frequency in

annotations [27]. It is necessary to take into account Gene

Ontology subsumption hierarchy when computing this frequency

in order to also consider implicit annotations to the terms

descendants [26]. IC is typically used when a representative corpus

is available such as human GOA for studying human genes

functions.

The alternative approach is corpus-independent. A term

informativeness is a function of its distance to the root. It is

typically used when a relevant corpus cannot be computed (for

comparing elements from several species) or does not exist (for

poorly studied species). Wang’s Semantic Value (SV) computes

this type of informativeness. The relevance of the results obtained

by this approach has previously been demonstrated [22,27]. Wang

first computes the semantic contributions of the ancestors of each

term to compare to these terms, following:

SA(A)~1

SA(t)~maxfwe � SA(t’)Dt’[children of (t)gif t=A

�

where SA (t) is the semantic contribution of the term t to the term A

and we is the semantic contribution factor for edge e linking a term

t with its child term t’. According to Wang, we use a semantic

contribution factor of 0.8 for the ‘‘is a’’ relations and 0.6 for the

‘‘part of’’ relations, and we added a 0.7 factor for the ‘‘[positively]

[negatively] regulates’’ relations. An additional study not presented

here showed that the value of the regulation factor had minimal

impact (+/20.01) on the overall value.

Then, for each target term to compare, the semantic value is the

sum of the semantic contributions of all its ancestors:

SV (A)~
X
t[TA

SA(t)

As shown in the equation 3, four terms are involved in the

calculation of the MF particularity of the human Exportin-5

ortholog compared to the drosophila Exportin-5 ortholog. This

comparison is cross-species, so a semantic value-based informa-

tiveness measure is relevant. According to the previous formula,

the semantic values of the terms involved in the equation 3 are:

SV(tRNA binding) = 4.201, SV(binding) = 1.8, SV(protein trans-

porter activity) = 2.952 and SV(protein binding) = 2.44. Conse-

quently, we can compute: Par(hsa, dme) = 0.308. Likewise, for

Figure 1A, Par(hsa, rno) = 0.082.

Results

To study the benefits of our approach over an analysis based

only on similarity, we considered three biological cases. In order to

determine if we could extend Wang’s initial results, our first use

case was Saccharomyces cerevisiae tryptophan degradation. As both

the ontology and the annotations have evolved since 2007 [39], we

computed the updated semantic similarity. Then, we computed

the particularity measure in order to evaluate its benefits. In case

2, we computed the similarity and particularity values on a set of

51 gene products belonging to a same human metabolic pathway.

The motivation is to study whether the results of the case 1 can be

generalized to a larger set of genes. We also studied how using IC-

based or semantic value-based similarity and particularity

measures affects the conclusions. In case 3, we applied the

semantic similarity and particularity measures on all the groups of

homolog genes from the the HomoloGene database. This

approach aims to identify systematically homologues expected to

be similar and having also particular functions.

In all these cases, we used the GOSemSim R package to

compute Lin’s similarity and to provide IC tables used in the

computation of the IC-based particularity [50]. We used a

personal implementation of Wang’s similarity and the correspond-

ing SV used in SV-based particularity computation.

Case 1: Saccharomyces cerevisiae tryptophan degradation
We first tested our approach on the example chosen by Wang

[22]: Saccharomyces Cerevisiae tryptophan degradation [51]. We

computed the semantic similarity according to Wang’s method

(Table S1) using the most recent version of annotation data

available (August 2013 versions of GOA and GO).

Wang’s conclusions remained true: we can still distinguish the

three groups of genes involved in the three main steps of

tryptophan degradation. Similarity values for the group [ARO8,

ARO9] involved in the first step were 0.92. Similar results were

observed for the group [ARO10, PDC6, PDC5, PDC1] involved

in the second step and for the group [SFA1, ADH5, ADH4,

ADH3, ADH2, ADH1] involved in the last step. The similarities

measured between genes of 2 different groups (‘‘inter-group

measures’’) were greater than in Wang’s original study but

remained lower than the intra-group comparison measures. We

found the same three groups as Wang. These groups are

biologically relevant because they are involved in the three steps

of Saccharomyces cerevisiae tryptophan degradation pathway. To

obtain these groups, Wang used a threshold of 0.770 in 2007. We

used a threshold of 0.745.

We completed the previous results with the measures of

semantic particularity, using Wang’s Semantic Value as informa-

tiveness (Table S2). The highest particularity values were between

genes from different groups which is consistent with the analysis of

the semantic similarity values.

Our approach also identified a characteristic of the compared

genes that the similarity ignored. Indeed, some of the genes

belonging to the same group have also some particular functions

(i.e. high similarity and relatively high particularity). For example,

all the genes of the third group are similar. However, Table S2

shows that all the genes of this group have a high particularity

value compared to ADH4. Notably, the similarity between SFA1

and ADH4 was 0.745 and SFA1 particularity was 0.388 whereas

Semantic Particularity Measure Using Gene Ontology
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most of the other intra-group particularity values in this group

were zero or close to zero. Figure 2 presents the distribution of GO

annotations between genes ADH4 and SFA1. It shows that the

observed particularity value is mostly related to SFA1-specific

nucleotide binding function. So, two genes can be similar while at

least one of them has some particular functions.

The similarity values show that Wang results are still valid. We

also identified a benefit of using a particularity measure in addition

to a similarity measure for identifying particular functions between

similar genes.

Case 2: Homo sapiens aquaporin-mediated transport
In the previous case, we found an example of a relatively high

particularity value between similar genes. In this second case, we

aim to study a larger dataset in order to determine the frequency

and the importance of this situation. We used a dataset composed

by 51 well-annotated human genes involved in the aquaporin-

mediated transport pathway for Homo sapiens. We used the list of all

involved genes provided by the Reactome database [52]. In

continuity with the first case, we computed the Wang similarity

and S-Value-based particularities for each pair of genes of this list.

As the Human annotation database is one of the most

comprehensive, we also duplicating the study using Lin’s measure

as an IC-based similarity, and IC as a value of GO term

informativeness for our specificity. All the results are available in

File S1. Tables 1, 2 and 3 present the average, standard deviation,

minimum and maximum values of particularity measured in this

study for each branch of GO. We classified these statistics in 20

similarity categories containing all the comparison results ranging

from sim = 0.5 to sim = 0.999 with steps of sim = 0.025.

The relatively high particularity between similar genes that we

observed in case 1 is confirmed in this case 2. In each 20 categories

in the human aquaporin-mediated transport pathway, some of the

genes have an important particularity compared to the others.

Again, these genes cannot be identified using only a similarity

measure.

Figure 3 illustrates this case giving the MF annotation graph of

two couples of genes: AQP8 and AQP5 in part A and AQP6 and

AQP3 in part B. The corresponding similarity and particularity

values are presented in Table 4. The two couples have close

similarity values regardless the method used but they show a very

different particularity profile, with much higher particularities

Figure 2. Representation of ADH4 and SFA1 Saccharomyces cerevisiae annotations. The particularity of 0.388 for SFA1 compared to ADH4 is
explained notably by the term ‘‘nucleotide binding’’, to which the closest ancestor with ADH4 annotations is at a distance of three edges. The other
red terms are also responsible for this particularity.
doi:10.1371/journal.pone.0086525.g002
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between AQP6 and AQP3 than between AQP8 and AQP5. The

two distinct informativeness measures used to compute the

particularity led to the same conclusion. The same phenomenon

can be observed in the 20 categories of similar genes.

These results confirm that among similar genes, some also have

some particular functions, and show that this situation can be

observed throughout the full range of similarity values. Therefore,

the situation described in the first use case was not an isolated case.

Case 3: Homologs comparison
The previous cases focused on the similarity and particularity of

different genes in a same pathway. In this third case, we compared

homolog genes across different species. IC-based methods cannot

be used in this cross-species context. To investigate the frequency

of similar homolog genes and the frequency of homolog genes

having particular functions, we computed Wang’s semantic

similarity and SV-based particularities for each group of the

HomoloGene database. The August 2013 version of this database

contained 43,074 groups of homolog genes. Each group contained

from 2 to 839 genes (average: 6.02, standard deviation: 7.46). We

computed all the 5,531,994 intra-group similarity and particularity

measures. Table 5 categorizes the comparisons according to the

number of annotated genes.

To be valid, a comparison has to involve two annotated genes.

Overall, 21.94% of the comparisons were valid. For BP, CC and

MF, we used the number of valid comparisons as the baseline to

analyze the different configurations of similarity and particularity.

We focused on these valid comparisons and found that 89.93% of

them had a similarity greater than or equal to 0.5. In 82.26%, the

genes were similar and had particularities lower than 0.5.

Although there were differences between BP, MF and CC, on

the whole HomoloGene database, the particularity values allowed

us to identify 7.63% of the valid comparisons that denote similar

genes, one of these genes having a particularity greater than 0.5.

As an example illustrating the results, we analyzed the

comparisons of the GO molecular functions associated to

Exportin-5 orthologs for 9 species (Table S3). 27 of the 36

comparisons (75%) involved pairs of genes with a similarity greater

than 0.5. 12 of these 27 comparisons involved similar pairs of

genes, one of them having a particularity greater than 0.3 (mostly

for Canis canis and Drosophila melanogaster). Among these, five

comparisons involving Canis canis resulted in a similarity value over

0.5 and one particularity value over 0.5. The remaining 9 of the 36

comparisons involved genes with a similarity lower than 0.5 and

particularities greater than 0.5 (mostly for Arabidopsis thaliana and

one for Canis canis).

Altogether, the case 3 results showed that ortholog genes were,

as expected, mostly similar. We have also demonstrated that some

of them may have high particularity values that denote particular

functions. Last, some orthologs may have diverged to present a low

similarity and high particularities.

Discussion

Semantic particularity
Semantic similarity measures have been extensively used for

comparing genes and gene sets [19] but they only tell a part of the

story. Similarity is symmetric. It decreases slowly as the number of

gene-particular annotations increases. However, similarity alone

does not indicate which gene has some particular functions and

Table 1. Particularity value statistics in 20 similarity values ranges from case 2 - BP measures.

BP S-value-based particularity IC-based particularity

Similarity Average Std dev. Min Max Average Std dev. Min Max

½0.5–0.524� 0.401 0.2 0.013 0.844 0.562 0.223 0 0.904

½0.525–0.549� 0.386 0.174 0 0.794 0.532 0.284 0 0.89

½0.55–0.574� 0.347 0.199 0 0.707 0.497 0.244 0 0.886

½0.575–0.599� 0.352 0.198 0 0.798 0.502 0.241 0 0.895

½0.6–0.624� 0.315 0.203 0 0.671 0.495 0.208 0 0.794

½0.625–0.649� 0.292 0.145 0 0.629 0.437 0.25 0 0.882

½0.65–0.674� 0.299 0.162 0 0.615 0.439 0.258 0 0.876

½0.675–0.699� 0.229 0.15 0 0.529 0.451 0.216 0.039 0.839

½0.7–0.724� 0.228 0.166 0 0.631 0.403 0.239 0 0.859

½0.725–0.749� 0.22 0.145 0 0.501 0.35 0.233 0 0.727

½0.75–0.774� 0.202 0.108 0 0.482 0.403 0.207 0 0.775

½0.775–0.799� 0.178 0.118 0 0.563 0.319 0.222 0 0.671

½0.8–0.824� 0.177 0.106 0 0.418 0.31 0.209 0.043 0.646

½0.825–0.849� 0.125 0.071 0 0.327 0.258 0.184 0 0.589

½0.85–0.874� 0.105 0.131 0 0.418 0.201 0.136 0 0.625

½0.875–0.899� 0.061 0.066 0 0.248 0.179 0.123 0 0.651

½0.9–0.924� 0.039 0.061 0 0.211 0.207 0.156 0 0.614

½0.925–0.949� 0.041 0.067 0 0.248 0.193 0.181 0 0.572

½0.95–0.974� 0.032 0.041 0 0.111 0.099 0.076 0 0.196

½0.975–0.999� 0.005 0.006 0 0.015 0.077 0.152 0 0.519

This table gives the average, standard deviation, minimum and maximum particularity value for the BP comparisons of the case 2. The 20 categories contain all the
results that range from a similarity of 0.5 to 0.999 with steps of 0.025.
doi:10.1371/journal.pone.0086525.t001

Semantic Particularity Measure Using Gene Ontology

PLOS ONE | www.plosone.org 6 January 2014 | Volume 9 | Issue 1 | e86525



does not even reveal these particular functions. There is a need for

a measure to qualify this particularity (does gene1 have some

particular functions compared to gene2, even if gene1 and gene2

are similar?) and to quantify these respective differences (what is

the importance of gene1’s particular functions compared to

gene2?). Simple comparisons of the sets of terms annotating two

genes, such as Venn diagram representations, give an initial

picture of each gene’s particularity. However, this approach is

biased due to the relations between the terms of an ontology. Like

for similarity, measuring particularity has to take semantics into

account. Diaz-Diaz et al. proposed a semantic approach to

compute a dissimilarity measure in order to evaluate the functional

coherence of entire gene sets [46]. The dissimilarity of two terms is

obtained by measuring a distance in edges in the GO graph and

weighting the result with the depth of the considered terms, as in

Wu and Palmer’s similarity measure [43]. This notion of

dissimilarity is therefore strongly related to similarity and does

not provide a way to compute the particularity as we defined

earlier (high dissimilarity indicates low similarity, and vice versa).

However, the two categories of similarity measures, i.e. ‘‘edge-

based’’ and ‘‘node-based’’, can be used for this purpose. Each

approach has its drawbacks [33]. Edge-based methods are biased

because the GO terms are not homogeneously distributed across

the tree, while node-based methods that use an IC value are

dependent on a specific annotation corpus, which puts a limit on

their use for cross-species comparisons. In cross-species studies, it is

impossible to compare IC values relying on term frequencies

obtained from different corpora. Using a global corpus instead,

such as the UniprotKB GOA table is biased in favor of the most

studied functions in the most studied species. Therefore, graph-

based approaches relying on the distance to the root are more

appropriate in such situation.

We based our semantic particularity measure on the concept of

informativeness of GO terms. This informativeness can either be

an Information Content (IC) [29–31,33,34] value or a Semantic

Value (SV) [22]. The choice between these two alternatives

depends on the data to compare. IC is preferred to compare genes

from a same species when an important annotation corpus is

available for this species. SV is preferred to compare genes from

different species or genes from a same species without an

important annotation corpus. Therefore, we advise to use a

combination of either IC-based or of SV-based similarity and

particularity measures when computing profiles based on similar-

ity and particularity values.

The interpretation of the similarity and particularity values

depends on the number and quality of the annotations. If at least

one of two genes has few annotations, the similarity and

particularity values will suffer from a lack of precision (the values

are sensitive to the addition of new annotations) regardless of their

accuracy.

Furthermore, annotations are associated with different Evidence

Codes (EC), ranging from automatic inference to experimental

validation. The biological interpretation of similarity and partic-

ularity values is more convincing when their computation refers to

experimentally-confirmed annotations. However, electronically-

inferred annotations may still yield valid similarity and particu-

larity values. As the GO consortium recommends against using

EC as a measure of quality of the annotation [53], we did not use

them to weight the similarity and particularity values. However,

we paid attention to this aspect when interpreting the results of our

Table 2. Particularity value statistics in 20 similarity values ranges from case 2 - MF measures.

MF S-value-based particularity IC-based particularity

Similarity Average Std dev. Min Max Average Std dev. Min Max

½0.5–0.524� 0.341 0.26 0 0.798 0.494 0.162 0.296 0.701

½0.525–0.549� 0.35 0.219 0 0.818 0.429 0.212 0 0.703

½0.55–0.574� 0.364 0.32 0 0.731 0.422 0.265 0 0.849

½0.575–0.599� 0.382 0.265 0 0.694 0.378 0.148 0.125 0.591

½0.6–0.624� 0.242 0.079 0.132 0.47 0.397 0.205 0 0.81

½0.625–0.649� 0.207 0.113 0 0.531 0.302 0.145 0.158 0.475

½0.65–0.674� 0.281 0.106 0.117 0.482 0.609 0.137 0.13 0.806

½0.675–0.699� 0.223 0.181 0 0.562 0.453 0.249 0 0.763

½0.7–0.724� 0.26 0.267 0 0.564 0.389 0.248 0 0.806

½0.725–0.749� 0.179 0.176 0 0.482 0.419 0.211 0 0.763

½0.75–0.774� 0.171 0.177 0 0.371 0.315 0.216 0 0.643

½0.775–0.799� 0.125 0.167 0 0.482 0.33 0.241 0 0.777

½0.8–0.824� 0.063 0.056 0 0.137 0.239 0.218 0 0.574

½0.825–0.849� 0.119 0.13 0 0.415 0.316 0.222 0 0.574

½0.85–0.874� 0.041 0.036 0 0.116 0.266 0.175 0 0.531

½0.875–0.899� 0.045 0.05 0 0.126 0.179 0.093 0.086 0.272

½0.9–0.924� 0.024 0.025 0 0.055 0.163 0.153 0 0.388

½0.925–0.949� 0.02 0.026 0 0.086 0.09 0.107 0 0.272

½0.95–0.974� 0.005 0.007 0 0.023 - - - -

½0.975–0.999� - - - - - - - -

This table gives the average, standard deviation, minimum and maximum particularity value for the MF comparisons of the case 2. The 20 categories contain all the
results that range from a similarity of 0.5 to 0.999 with steps of 0.025. ‘‘-’’ value denotes an empty category.
doi:10.1371/journal.pone.0086525.t002
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case studies. Our approach consisted in comparing two genes

using a tuple of one symmetric similarity value and the two

particularity values. Having high similarity and low particularities

for two genes indicates that these genes globally have the same

characteristics in the compared domain (BP, MF or CC) and none

of them has any major additional particularity. Conversely, a low

Table 3. Particularity value statistics in 20 similarity values ranges from case 2 - CC measures.

CC S-value-based particularity IC-based particularity

Similarity Average Std dev. Min Max Average Std dev. Min Max

½0.5–0.524� 0.353 0.233 0 0.846 0.621 0.244 0 0.911

½0.525–0.549� 0.36 0.214 0 0.819 0.707 0.15 0.185 0.977

½0.55–0.574� 0.33 0.187 0 0.799 0.64 0.202 0 0.897

½0.575–0.599� 0.341 0.185 0 0.752 0.613 0.194 0 0.896

½0.6–0.624� 0.317 0.183 0 0.754 0.621 0.165 0 0.888

½0.625–0.649� 0.268 0.18 0 0.706 0.592 0.207 0 0.852

½0.65–0.674� 0.28 0.177 0 0.656 0.553 0.227 0 0.888

½0.675–0.699� 0.24 0.177 0 0.583 0.495 0.241 0 0.845

½0.7–0.724� 0.13 0.159 0 0.543 0.466 0.24 0 0.825

½0.725–0.749� 0.196 0.151 0 0.579 0.428 0.268 0 0.82

½0.75–0.774� 0.134 0.122 0 0.484 0.383 0.246 0 0.819

½0.775–0.799� 0.15 0.127 0 0.489 0.391 0.267 0 0.768

½0.8–0.824� 0.144 0.093 0 0.269 0.19 0.187 0 0.625

½0.825–0.849� 0.133 0.123 0 0.421 0.352 0.231 0 0.73

½0.85–0.874� 0.146 0.152 0 0.373 0.255 0.216 0 0.624

½0.875–0.899� 0.051 0.051 0 0.11 0.145 0.152 0 0.381

½0.9–0.924� 0.067 0.085 0 0.269 0.095 0.095 0 0.189

½0.925–0.949� - - - - - - - -

½0.95–0.974� - - - - 0.131 0.131 0 0.262

½0.975–0.999� 0.012 0.012 0 0.024 0.049 0.049 0 0.098

This table gives the average, standard deviation, minimum and maximum particularity value for the CC comparisons of the case 2. The 20 categories contain all the
results that range from a similarity of 0.5 to 0.999 with steps of 0.025. ‘‘-’’ value denotes an empty category.
doi:10.1371/journal.pone.0086525.t003

Figure 3. MF annotations of two couples of human aquaporins. Part A: AQP8 and AQP5 share most of their annotations. Part B: AQP6 and
AQP3 share numerous molecular functions, but each gene also have particular functions.
doi:10.1371/journal.pone.0086525.g003
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similarity and high particularities between two genes indicates that

these genes are different in the compared domain. Furthermore,

among highly similar genes, finding that one gene has also a high

particularity value allows to identify additional features for this

gene not present in the other one despite their high similarity. This

contributed to a more accurate analysis than using similarity alone

by distinguishing interesting sub-groups of features with close

similarity values.

Case studies: benefits of the semantic particularity
Particularity refined the similarity-based analysis by identifying

some couples of similar genes with important particularities. All

three use cases illustrated this point in intra-species or in cross-

species.

In the first case study on the Saccharomyces Cerevisiae tryptophan

degradation pathway, SFA1 and ADH4 had similarity values close

to those of the other genes of the same sub-group. However, SFA1

and to a lesser extent all the other genes that catalyze the same

reaction had some particular functions compared to ADH4.

Consequently, it is possible that two similar genes also have some

particular functions (i.e. high similarity and relatively high

particularity). The particularity is not systematically inversely

proportional to the similarity. Moreover, some of these these

atypical cases may be of biological interest.

We have gone further in the case 2, comparing 51 genes that

belong to a same human pathway. With this case, we wanted to

see three things. First, we wanted to know whether the

observations made in the first case remained true on a bigger

example. They did. Then, we wanted to assess the effect of the

kind of informativeness used. Semantic value and information

content gave different semantic similarity and particularity values,

but they leaded to the same conclusions. Consequently, the choice

of this method only depends on the data we want to compare. IC

can be used as an informativeness measure if the data are relative

to one single species and if this species is sufficiently annotated to

offer a meaningful corpus. Otherwise, the best informativeness

measure may be the semantic value. Last, we wanted to assess our

conclusions on the three branches of Gene Ontology. Concerning

this point, we obtained high particularity values between similar

genes regarding any branch of GO.

The third case showed comparisons of ortholog genes that also

resulted in interesting sub-cases with high-similarity profiles. As

suspected, the results confirmed that ortholog genes are mostly

similar. Moreover, particularity measures made it possible to

observe that among the pairs of similar genes, some are composed

of at least one gene having also an important particularity. Indeed,

among the 1,213,588 valid comparisons across the whole

HomoloGene database, we identified 93,152 (7.68%) comparisons

for which the genes were similar, but at least one of them had an

important particularity, denoting some particular function(s). This

confirm the observations made in the cases 1 and 2. These 7.68%

of valid comparisons resulting in the identification of genes having

Table 4. Similarity and particularity values of two couples of genes from case 2.

SV-based AQP6 AQP3 IC-based AQP6 AQP3

2*Sim AQP6 1 0.696 2*Sim AQP6 1 0.81

AQP3 1 AQP3 1

2*Par AQP6 0 0.247 2*Par AQP6 0 0.531

AQP3 0.415 0 AQP3 0.388 0

SV-based AQP8 AQP5 IC-based AQP8 AQP5

2*Sim AQP8 1 0.704 2*Sim AQP8 1 0.8

AQP5 1 AQP5 1

2*Par AQP8 0 0 2*Par AQP8 0 0

AQP5 0.19 0 AQP5 0.13 0

The similarity between AQP6 and AQP3 is very close to the similarity between AQP8 and AQP5 regardless the method used (SV or IC-based). However, the particularity
profile obtained for each couple is very different. Again, the SV-based and IC-based methods led to the same conclusion.
doi:10.1371/journal.pone.0086525.t004

Table 5. Similarity and particularity pattern in pairwise comparisons on homolog genes in the HomoloGene database.

Branch of GO BP MF CC All

Number of comparisons 1,843,998 1,843,998 1,843,998 5,531,994

Only one gene is annotated 511,899 574,815 581,819 1,668,533

No annotated gene 939,010 823,444 887,419 2,649,873

Two genes annotated 393,089 445,739 374,760 1,213,588

Sim§0.5; All Par,0.5 287,288 396,412 314,572 998,272

Sim§0.5; One Par§0.5 39,312 20,754 32,531 92,597

Sim§0.5; Two Spe§0.5 410 91 54 555

Sim,0.5 66,079 28,482 27,603 122,164

The five last lines refer to valid comparisons where the two genes were annotated.
doi:10.1371/journal.pone.0086525.t005

Semantic Particularity Measure Using Gene Ontology

PLOS ONE | www.plosone.org 9 January 2014 | Volume 9 | Issue 1 | e86525



some particular features, which however have enough common

GO annotation to remain similar are biologically very interesting.

This demonstrates the benefit s of using the semantic particularity

measure in addition to semantic similarity.

In the third case, we developed the Exportin-5 example to

illustrate the limitations of the semantic similarity measures. The

results of a similarity measure did not reflect that the amount of

particular functions while comparing the human gene to the

drosophila ortholog (‘‘tRNA binding’’ and four of its ancestors are

human-specific) is greater than while comparing it to the rat

ortholog (only ‘‘protein binding’’ is human-specific). The partic-

ularity measure showed that the human and drosophila Exportin-5

orthologs are not only similar, but that some quantifiable features

are in reality very specific to the human gene. Furthermore, the

high particularity of these orthologs is consistent with the results of

Shibata et al., who demonstrated that Exportin-5 orthologs are

functionally divergent among species [49].

Interpretation of similarity and particularity values
The case studies showed that combining similarity and

particularity makes it possible to identify some genes’ particular

functions that cannot be distinguished using similarity only. These

particular functions may be the result of a real biological

difference, a default of annotation, or a combination of both. If

we suspect a default of annotation, the results should be

interpreted carefully until the annotations are improved.

In the case 3, the number of annotations vary between the

compared orthologs. On the one hand, the results can reflect a real

particularity of function for some genes. On the other hand, the

high particularity of a gene can be the result of a lack of

annotations of the other gene. For example, when comparing MF

annotations for hsa and ath orthologs of Exportin-5, we observed

very high particularities for both species (respectively 0.641 and

0.871). We consider these results to be relevant, as the genes of

both species are well annotated (11 annotations in the expanded

set of hsa, 18 annotations in the expanded set of ath). Conversely,

care is warranted when interpreting the particularity of hsa over

Canis canis (cca). For these species, sim(hsa, cca) = 0.428, spe(hsa,

cca) = 0.611 and spe(cca, hsa) = 0. However, the expanded set of

annotations for the cca ortholog had only 4 terms compared to 11

for hsa. In this case, the high particularity of hsa could be

attributed to the lack of cca annotations.

Synthesis
We showed that gene set analysis can be improved by

considering gene-set particularities in addition to their similarity.

We proposed a set of formal properties and a new GO semantic

measure to compute gene-set particularity. We first showed that

particularity is a useful complement to similarity for comparing

gene sets, making it possible to detect similar gene sets for which

one of the sets also had some particular functions, and to identify

these functions. We also showed that using particularity also

improves gene clustering. Our particularity measure relies on the

informativeness of GO terms. This informativeness of a term can

be its Information Content or its Semantic Value. In this paper, we

combined our particularity measure with a similarity measure to

compare genes annotated GO terms, but this same principle can

be generalized to other ontologies.

Supporting Information

File S1 Complete results for the case 2 about Homo
sapiens aquaporin-mediated transport.

(ZIP)

Table S1 Semantic similarity values between genes
involved in the Saccharomyces cerevisiae tryptophan
degradation pathway. Color gradient according to similarity

value (0 = white, 1 = blue). The given numbers of annotations

(‘‘Annots’’) consider the GO terms that annotate directly the genes

and their ancestors.

(TIF)

Table S2 Semantic particularity values between genes
involved in the Saccharomyces cerevisiae tryptophan
degradation pathway. Color gradient according to particular-

ity value (0 = white, 1 = red or green). If Par(gene1, gene2) is

displayed in green, Par(gene2, gene1) is displayed in red. The

value contained in a cell is the particularity of the gene displayed at

its row header compared to the gene displayed at its column

header. For example, Par(ARO10, ARO8) = 0.62 and Par(ARO8,

ARO10) = 0.506. The given numbers of annotations (‘‘Annots’’)

consider the GO terms that annotate directly the genes and their

ancestors.

(TIF)

Table S3 Semantic similarity and particularity values
between Exportin-5 orthologs in 9 species. Color gradient

according to similarity value (0 = white, 1 = blue) and particularity

values (0 = white, 1 = red or green). If Par(gene1, gene2) is

displayed in green, Par(gene2, gene1) is displayed in red. The

value contained in a cell is the particularity of the gene displayed at

its row header compared to the gene displayed at its column

header. The given numbers of annotations (#Annot) consider the

total number of GO terms that annotate the genes either directly

or indirectly).

(TIF)
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