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Abstract

Data arising from social systems is often highly complex, involving non-linear relationships between the macro-level
variables that characterize these systems. We present a method for analyzing this type of longitudinal or panel data using
differential equations. We identify the best non-linear functions that capture interactions between variables, employing
Bayes factor to decide how many interaction terms should be included in the model. This method punishes overly
complicated models and identifies models with the most explanatory power. We illustrate our approach on the classic
example of relating democracy and economic growth, identifying non-linear relationships between these two variables. We
show how multiple variables and variable lags can be accounted for and provide a toolbox in R to implement our approach.
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Introduction

Social science usually aims to explain macro-level phenomena,

such as stratification, segregation, democratisation, economic

development and changes in values. From the vast number of

examples studied across sociology, politics and economics, a few

examples include: Does inequality decrease or increase ethnic

segregation [1]?; Do economic growth and changing cultural

values of a society promote democracy [2,3]? What are the causes

of economic growth [4]? How does the structure of a social

network affect opinion dynamics [5]? In these wide ranging

questions, the macro-level variables can concern a variety of scales,

from schools and neighbourhoods, up to companies and countries.

The questions about them are similar: from observed macro-level

patterns, can we work out the relationships that characterize these

patterns [6].

While it is widely recognized that understanding at the micro-

level is the key to causal mechanisms in sociology [7–9], it is

possible to gain some understanding of social systems through

macro-level patterns alone. One example of macro-level inference

is fitting sigmoidal and saturating curves to describe diffusion of

innovations [10,11]. In this case, the type of growth curve is

hypothesized to differ depending on whether innovation is driven

by endogenous or exogenous factors at the micro-level. Specifi-

cally, by fitting the growth curve

dx

dt
~ azbxð Þ(1{x) ð1Þ

to the proportion of individuals adopting a particular activity x

over time t, we can infer the relative importance of exogenous and

endogenous (social) factors from the relative weights of the

parameters a and b, respectively. While having certain known

limitations [12,13], this approach has been usefully applied in the

context of, for example, medical innovations and radio airplay.

Only a very small subset of social systems are characterized by

sigmoidal growth curves. However, non-linear interactions

between variables in social systems are common, and using

differential equations to give an initial insight into macro-level

relationships has a great deal of potential [14–16]. Econometrics

provides a starting point for such an analysis. For example, in

growth econometrics cross-country data is used to find which

factors promote economic growth [17–19]. However, growth

econometric analyses usually focus on the rate of change of one

variable as a function of many potential factors, rather than

dynamic interactions between variables. It is precisely these

dynamic feedbacks which are of most interest in the social sciences

and where reliable statistical approaches are required [4]. In

recent years, detailed data describing long term changes in social

systems has become widely available. For example, a variety of

indicators now measure changes in the economics [20,21], social

development [21], political systems [22–24] and cultural values

[25] of different countries and local regions. Identifying relation-

ships between these macro-level indicators poses new challenges,

but also opens up new opportunities. These challenges are not

unique to between country comparisons, but arise in everything

from social movements, workplaces, and neighbourhoods, down to

modeling individual panel data on emotion dynamics [26,27].

The approach we take here is inspired by machine-learning and

algorithmic modeling [28,29], in that we use the available data to

inform model selection from a pool of feasible models rather than

testing specific models against data. We use Bayesian model

selection as a measure of the reliability and robustness of the

differential equation models, basing our selection on the Bayes

factor of each model. Our aim is to identify potential relationships

in macro-level data, that can be further investigated in terms of
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mechanisms at the micro-level. Identifying this link is achieved by

fitting polynomial differential equations, because they describe

how change in an indicator variable occurs as an explicit function

of the state of other indicators. This stands as a contrast to other

function-fitting frameworks used in machine-learning, such as

artificial neural networks or Gaussian processes, where the

relationship between the variables is more opaque. In the preface

to their book, Rasmussen and Williams [30] argue that statistics is

concerned with understanding data and relationships in terms of

models, whereas machine-learning is more focused on making

accurate predictions. Mackay [31] (chapter 45) also highlights the

limitations of advanced machine-learning methods for identifying

‘features’ in the data. While our methodology is inspired by such

algorithmic model-search methods of machine-leaning, our goals

are aligned with those of statistics and, of course, sociology, to

identify explicit and clearly understandable relationships in the

data.

We illustrate our approach on the classic problem of determin-

ing an interaction between GDP per capita and democracy (Fig. 1),

which are known to correlate while the causal link and specific

character of their relations remains an issue of debate [32–36].

The analysis has been performed on a set of 74 countries from

1981 to 2006. We implemented the method of Bayesian

Dynamical Systems Modelling in an R package that is now

openly available (Bayesian Dynamical System Model, bdynsys, to be

found on CRAN (http://cran.r-project.org) and we used this

package to do the analysis on the relation between GDP per capita

and democracy. Our intention in this paper is not to speculate

over why certain relationships exist, but rather to outline the

methodology for identifying existing relationships.

Methods

Our basic approach to understanding interactions between

indicator variables is to model changes in one variable between

times t and tz1 as a function of all included model variables at

time t. Suppose that we are studying a social system with N
indicator variables Xi,i~1,:::,N. Let us assume that we have

longitudinal or panel data for the N variables for M entities (such

as countries, organisations, individuals etc.) over a length of time

T . We denote the data as xi(j,t) where j~1,:::,M and t~1,:::,T .

The changes in the variables over a time period are denoted as

dxi(j,t)~xi(j,tz1){xi(j,t). We write xi to denote the

M|(T{1) matrix (the values at time T are not used in the

modeling so we drop them from this matrix) whose elements are

given by xi(j,t). Similarly, dxi is the M|(T{1) matrix with

elements dxi(j,t). We now outline our approach for two variables

and then move on to the general case.

Systems with Two Variables
Our aim is to take these time series and fit an ordinary

differential equations model to them. A system of differential

equations with two variables can be represented as

dX1

dt
~f1(X1,X2) ð2Þ

dX2

dt
~f2(X1,X2) ð3Þ

for some appropriate functions f1 and f2. Note that since we have

discrete data, we need to use difference equations instead of

differential equations when performing the fitting. However, we

express our model in terms of continuous time both for

mathematical convenience and because the underlying social

process is often continuous.

We can think of the time series of the indicator variables for

each entity j as corresponding to different trajectories obtained

from the same system. We assume that any individual entity on

reaching a certain state, represented by a unique set fXig, will
experience the same effect, with distortions due to random,

uncorrelated noise. The advantage of this approach is that we can

use data arising from different initial conditions in different entities

to build up an estimate of the functions fi(:). The potential

disadvantage of this approach arises in cases where there are

systematic differences between entities. This limitation should be

borne in mind when we consider the results of the fitting.

In order to model as many non-linearities as possible, we take

fi(:) to be polynomial of sufficiently high degree. For computa-

tional purposes, we assume that the functions are polynomial in

the indicator variables with each term being of degree {1,0,1 in

the variables or a product of such terms. We also allow for terms

that are quadratic and cubic in single variables. This keeps the

number of evaluated models sufficiently small, while still allowing

us to capture complex interactions. Higher order terms are

important because they typically result in multi-stable states, which

are characteristic of realistic social systems [16].

In our standard implementation of a two variable model, we

study models of the form:

f1(X1,X2)~a0z
a1

X1
z

a2

X2
za3X1za4X2
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2Figure 1. Country-based correlation scatter plot for log GDP

per capita and Democracy for the year 2006. The Pearson
correlation coefficient between the two variables is 0.571 (p,0.01).
doi:10.1371/journal.pone.0086468.g001
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A model is defined by a subset of coefficients fa0,:::,a16g
obtained by multiple regression of the change variable with the

corresponding polynomial terms. The number of terms m in the

model is given by the number of non-zero coefficients. Thus there

are 17 models with one term and
17

m

� �
, models with m terms.

The objective of the model selection algorithm is to choose among

these models the one that best fits the data. We do this in two

stages.

In the first stage, we aim to rapidly narrow our search by finding

the maximum-likelihood model for each possible number of terms

m. We fit the changes in the indicator variables using multiple

linear regression over all 217~131,072 possible functions

f1(X1,X2). For all models we compute the log-likelihood value

logP(dx1Dx1,x2,w) ð4Þ

where w is the set of parameters that defines each specific model.

Assuming that errors are due to additive Gaussian noise, finding

the maximum log-likelihood is equivalent to finding the minimum

of the sum of squared errors (SSE) scaled by the variance [29], i.e.,

1

2s2e

Xj~M,t~T{1

j~1,t~1

f1(x1(j,t),x2(j,t); w){dx1(j,t)ð Þ2 ð5Þ

For each number of terms m we determine the best fit model

f �1 (X1,X2; w
�
1(m)), where the parameter set w�1(m) maximizes the

log-likelihood over all models with m terms.

We assume that the noise variance s2e is equal to the data

variance. If the noise variance is unknown, the posterior

distribution will not be Gaussian and hence maximizing the

likelihood might not be equivalent to minimizing the SSE. But we

can use Monte Carlo methods to compute the log-likelihood value

by integrating over all possible noise variances provided we know a

prior distribution for s2e . Note that the sum of squared errors can

be used to calculate the coefficient of determination or the R2

value as

R2~1{
SSE

M(T{1)s2e

Instead of reporting R2 values for our models, we report the

maximum log-likelihood values

L1(m)~ logP(dx1Dx1,x2,w
�
1(m))

In the second stage of our model selection algorithm, we choose

the best model among those obtained in the first stage based on

their ‘robustness’. Clearly, L1(m)§L1(m{1) for all m, that is, the

maximum log-likelihood value increases monotonically with

number of terms, since each term allows an extra degree of

freedom on curve fitting (in extremis the additional coefficient can

be set zero to obtain the same likelihood). For a finite data set, this

extra degree of freedom can fit artifactual patterns due to noise. As

a result, reliance on L1(m) alone can lead to overfitting the data by

selecting too many terms and thus accepting a model that

accurately fits the existing data but that generalises poorly to

unseen data and has little predictive power (see [31] Chapter 20).

To address this problem and evaluate the fit of these models, we

adopt a Bayesian approach [31,37–40]. We calculate the Bayesian

marginal-likelihood [31,41] or the Bayes factor B1(m) for the set of

models which have the largest log-likelihood value among models

with their respective number of terms. Note that ‘Bayes factor,’

which refers to a ratio of model likelihoods is used in Bayesian

literature to compare pairs of models [37,42]. We use the same

term in this paper to refer to the Bayesian marginal likelihood as

defined above, with the understanding that this measure would

have the same function as the Bayes factor when comparing

between more than two models.

The Bayes factor compensates for the increase in the dimensions

of the model search space by integrating over all parameter values

[31], i.e.,

Bi(m)~

ð
wi (m)

P(dxi Dx1,x2,wi(m))p(wi(m))dwi(m) ð6Þ

where i~1,2. The Bayes factor is thus the likelihood averaged

over the parameter space with a prior distribution defined by

p(wi(m)). The prior distribution says how likely we thought a

particular parameter value was before we started the fitting

procedure [29]. We choose a non-informative prior distribution,

such that, p(wi(m)) is uniform over a range of parameter values.

This reflects our lack of knowledge about what parameter values

might arise. In many social systems, domain experts may actually

have prior knowledge and this can be directly incorporated into

p(wi(m)). We do not do incorporate such information here, but

envisage that it could be an important part of combining our data-

driven methodology with existing knowledge.

In our implementation the range of values for p(wi(m)) is chosen
to include all feasible values but to be small enough for the integral

to be computed using Monte Carlo methods. Bi(m) is computa-

tionally expensive to calculate. Therefore we use the two stage

algorithm described above, since models of equal complexity

(same number of terms in this context) can be more fairly

evaluated in terms of their log-likelihood values.

We compute the Bayes factor for the models f �1 (X1,X2; w
�
1(m))

with different numbers of terms m and obtain the function B1(m).
Using this and other background information, we can choose the

best model. For example, in the absence of any prior information,

the model with the highest Bayes factor is the optimum choice.

However, there may be theoretical considerations for the

particular system being studied that makes another model

preferable even if it does not have the highest Bayes factor. In

this case, we could, in theory, incorporate this information when

choosing the prior distribution for the parameters. But where that

is not straightforward, we use the Bayes factor plot to serve as a

guide in comparing between the models while choosing the most

efficient one for the problem being studied.

We repeat the same process to obtain the Bayes factor plots for

the f �2 (X1,X2; w
�
2(m2)) models, in order to calculate B2(m).

In our implementation, and the application given below, we

choose to use a uniform prior distribution for p(wi(m)). The non-

informative prior is reasonable when we have no information

about the parameter space except its likely range. If we know the

parameter distribution is symmetric and the parameter is less likely

to be a large value, then a normal distributed prior is a reasonable

assumption. In this case, the Bayes factor can be evaluated directly

and we do not need to use a Monte Carlo evaluation. Specifcally,

suppose wi(m)*N(0m,l
2Im). The integrand in equation 6 is then

the product of normal distributions and the integral is itself a

normally distributed random variable with mean 0M(T{1) and
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covariance matrix given by l2 � (X � X ’)zs2e � IM(T{1) evaluated

at the observed values of dxi [42]. Here X is the M(T{1)|m
matrix of the observed values of x1 and x2 modified according to

the terms chosen in the particular m-term model we are

evaluating.

Systems with More than Two Variables
Most social systems have many interacting variables and we can

easily extend our methodology to systems with more variables. In

this case, we need to get the best possible models

f �i (X1,X2,:::,XN ; w
�
i (mi)),i~1,:::,N using Li(m) and Bi(m) as

described in the two variable case. The main constraint to this

approach is that the number of possible models that need to be

evaluated grows exponentially with number of variables. For

models with three variables, with the polynomial functions that we

look at, there are 39 possible models with one term and
39

m

� �
models with m terms. Due to the computational complexity

involved, we only search the model space for models with up to 5
terms in this case.

One approach to solve this problem is to use a model pruning

algorithm that will search only a fraction of the entire model space

by looking only at models with higher terms that are extensions of

the best models with fewer terms. For instance, suppose

f �1 (X1,:::,XN ; w
�
1(2)) was the best two term model and is

represented by the non-zero coefficients ai1,ai2. Then, when

evaluating three term models we only look at models that have

these terms and an additional term ai3. In this manner, we restrict

the number of models that we need to evaluate to a very small

number. Clearly this might not be optimal in all cases, so instead

of extending only the best 2 term model, a better strategy would be

to evaluate all 3 term models that are extensions of, say, the 10
best 2 term models.

Lag and Lead Times
In social systems, there is often a lag or lead effect in variables. A

change in one variable at any instant t is often not a function of the

level of another variable at t but of its level a few timesteps in the

past. The approach as we describe above already captures

autocorrelation, because we fit Xi(tz1){Xi(t) as a function of

Xi(t), but it does not capture second order effects where, for

example

dX1

dt
~f1(X1(t),X1(t{1),X2(t),::::)

To handle this issue, we can extend our approach by including

as a new variable the time-lagged variable of interest. For instance,

in a two variable system, if there is evidence to suggest that dx2(j,t)
may be a function of both x1(j,t{1) and x1(j,t), a simple

implementation would be to look at the three variable system

comprising x1,x2,x3, where

x3(j,t)~x1(j,t{1),j~1,:::,M,t~2,:::,T{1. Now we can com-

pute the best possible models f �1 (X1,X2,X3; w
�
1(m) and

f �2 (X1,X2,X3; w
�
2(m)) to understand the effects of lagged variables.

Correlated Noise
In the methodology described above, best fit regressions on dxi

are performed assuming that the errors are uncorrelated to obtain

the best possible models f �i (X1,X2,:::XN ; w
�
i (m)) with m terms. But

often the distortion or the noise in the socio-economic process

occurs due to systematic reasons, for instance due to latent

variables that affect all the model variables simultaneously, and

hence is correlated across the variables. We have to account for

the correlated noise in finding the best fit models and we handle

this using the seemingly unrelated regressions approach [43].

Consider, for simplicity, the two variable system. The residual

errors for the models f1(X1,X2; w1) and f2(X1,X2; w2) are given by

ei~dxi{fi(x1,x2; wi),i~1,2,t~1,:::,T{1 where the ei are

M|(T{1) matrices. In performing least squares regression, we

used the standard assumption that the errors are independent

Gaussian processes. Thus, e1(j1,t1) the error in the model for the

first variable for entity j1 at time t1 is independent of e2(j2,t2) the
error in the model for the second variable for entity j2 at time t2
for any j1,j2, t1,t2.

In the case of correlated noise processes, e1(j,t) and e2(j,t) are
correlated whereas the errors in different entities and at different

times are still uncorrelated. Thus in this model, we have the

covariance matrix defined by

C~
s2e1 s12

s12 s2e2

" #

where the noise variances are s2e1 and s2e2, and the noise

covariance is given by s12. In the N variable case this is a

symmetric N|N matrix with the elements defined similarly.

In the seemingly unrelated regressions approach, we obtain the

regression coefficients w1(m1) and w2(m2) for the models f1 and f2
as before. To calculate the regression coefficients in the presence of

correlated noise, we use these coefficients and compute the

observed error covariance matrix as

ĈC~
ŝs2e1 ŝs12

ŝs12 ŝs2e2

" #

where the diagonal terms are computed as

ŝs2e1~
1

M(T{1)

X
j,t

e21(j,t){
1

M(T{1)

X
j,t

e1(j,t)

 !2

and similarly for ŝs2e2. The off-diagonal elements are given by

ŝs12~
1

M(T{1)

X
j,t

e1(j,t){
1

M(T{1)

X
j,t

e1(j,t)

 !

� e2(j,t){
1

M(T{1)

X
j,t

e2(j,t)

 !

Using this estimated covariance matrix, we perform multiple

regression using the standard methods for regressions in the

presence of correlated noise [42] and re-estimate regression

coefficients. Using the new coefficients we re-calculate the errors

and the estimate of the noise covariance matrix as detailed above

and iterate this process until the regression coefficients converge.

This typically happens in a few steps, but if convergence is not

achieved in a fixed number of steps a stopping criterion can be set.

If the underlying noise covariance matrix is almost diagonal,

indicating that error terms are uncorrelated, the parameters

estimated by the seemingly unrelated regressions approach will not
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differ significantly from the parameters obtained assuming

uncorrelated errors.

Results

We now investigate a frequently studied macro-level phenom-

enon, the relation between democracy and GDP per capita, using

our proposed methodology [32–36]. We used data for GDP per

capita that is provided by the World Bank (http://data.worldbank.

org), and a democracy index [44], based on the Freedom House

political rights and civil liberties scores [22,23], weighted by the

countries’ human-rights-performance, measured by two indices

from the Cingranelli/Richards Human Rights data project

[24,25]. We modeled the interaction of democracy and GDP

per capita for the years 1981–2006 for 74 countries.

We start our analysis with two variable models, in which

changes in democracy (dD=dt) are a function of democracy itself

(D) and log GDP per capita (G). Figure 2 shows that the maximum

log-likelihood L(m) for this model strictly increases with the

number of terms m. The Bayes factor B(m) grows significantly

when we add a second term, decreases slightly for m~3 and m~4
terms, before increasing again for m~5 terms and decreasing

finally when a sixth term is added.

The best two term model for changes in democracy is

dD

dt
~0:11G3{0:067

D

G
ð7Þ

In words, this model tells us that democracy grows once GDP

per capita has reached a certain threshold, with this threshold

being determined by democracy itself. Specifically, democracy

grows when Dw1:64G4.

The best five term model, and the best overall model is

dD

dt
~0:077G3z1:9D{0:85

D

G
{0:96DG{0:14D2 ð8Þ

As such complex models are usually more difficult to interpret in

words, we might prefer the second best model with just two terms

whose Bayes factor is only slightly smaller. Accepting simpler

models makes interpretation of the interaction of GDP per capita

and democracy more straightforward. On the other hand, the

Bayes factor has already taken model complexity in to account,

and we should look carefully at what the more complex model tells

us.

We can investigate the difference between the two and five term

models by visualizing the functional form of the two dD models

(see Fig. 3). In this figure, the blue colours represent where

democracy decreases and the yellow/red colours where democ-

racy increases. The threshold for transition from positive to

negative growth is approximately the same in both models (black

line in Fig. 3), although the five term model has a point of

inflection. A more important difference is that, countries with high

GDP but low democracy (bottom right-hand corner of Fig. 3),

experience slower growth in democracy in the five term model

than in the two term model. The additional flexibility of the five

term model thus captures the slow growth in democracy of rich,

but undemocratic countries.

Now that we understand better what impact GDP per capita

has on democracy, we turn our attention to changes in GDP per

capita, dG=dt. The best model (Fig. 4) for dG=dt as a function of

GDP itself and democracy is,

dG

dt
~0:014z0:0064DG{0:02G ð9Þ

The model shows that GDP is primarily growing at a constant

rate, but is additionally positively affected by democracy interact-

Figure 2. Change in Democracy models. (a) The Log Likelihoods and (b) Bayes Factors for the same models.
doi:10.1371/journal.pone.0086468.g002
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ing with GDP. Moreover, the growth is self-limiting at high levels

of GDP.

With the interactions between democracy and GDP per capita

identified, they can be displayed visually using a phase portrait We

provide phase portraits with example trajectories both from the

data (Fig. 5a) and the model-predictions made by numerically

integrating equations 7 and 9 (Fig. 5b). The model predicts quite

well the general trajectories of the countries. For example,

increases in democracy for Albania and Argentina and the initial

decrease then increase in democracy in Bangladesh. The model is

deterministic and therefore does not capture fluctuations seen in

the data, but the overall pattern seen for specific individual

countries is reproduced.

We now implement the various extensions presented in the

methods section. We start by testing for correlated noise in the

models. Computing the error correlations for equations 7 and 9

gives an error correlation of 0:113. This correlation is not big, but

possibly not negligible either. Accounting for error correlation and

re-estimating parameters results in changes of the coefficients:

dD

dt
~0:052G3{0:036

D

G
ð10Þ

dG

dt
~0:024z0:0042DG{0:018G ð11Þ

The re-estimated coefficients are only slightly different than

those originally determined and do not make a significant

difference to the phase portrait. Generally, it appears that the

Figure 3. A heatmap of change in democracy models. For (a) the two term model given by equation 7 (b) the five term model given by
equation 8. The colour scale gives the rate of change of democracy (i.e. dD

dt
) as a function of D and G. The black line is the solution dD

dt
~0.

doi:10.1371/journal.pone.0086468.g003

Figure 4. Changes in GDP per capita models. (a) The Log Likelihoods and (b) Bayes Factors for the same models.
doi:10.1371/journal.pone.0086468.g004
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effects of both democracy on GDP per capita and of GDP on

democracy are slightly overestimated using the original method.

A natural extension to three variables in this case is the inclusion

of a lag. In particular, we might expect earlier levels of GDP to

influence future changes in democracy. We therefore look at

changes in democracy dD~Dtz1{Dt as a function of itself (Dt),

GDP per capita (Gt) and lagged GDP per capita (Gt{1). We now

use the additional subscript to make clear the lags involved. Using

Gt{1 as an additional variable results in the following best model:

dD

dt
~0:085G3

t{1z0:34
Dt

Gt{1

{0:24
Dt

GtGt{1

{0:14D2 ð12Þ

The Bayes factor for both three variable lagged and two

variable non-lagged models are shown in Fig. 6. While this model

does have a better Bayes factor than both the two and five term

non-lagged models, the difference is marginal. Moreover, equation

12 resembles the best five-term model for changes in democracy in

equation 8. Gt{1 has a positive non-linear effect on democracy,

and democratic growth remains self-limiting. These observations

lead us to conclude that the additional complexity added by the

lagged term outweigh the marginal improvement in goodness of

fit.

The best model (see Fig. 6) for changes in GDP per capita when

fitting a three term model with Gt{1 is

dG

dt
~9:7G2

tz8:8G2
t{1{18GtGt{1 ð13Þ

Here, democracy is no longer a predictor for GDP per capita,

which is now solely predicted by itself at different points in time.

This is now a significantly different model than the one given by

equation 9. Moreover, the model in equation 13 fits the data

significantly better than the model given by equation 9 (see Fig. 6).

It is possible that in the two variable models democracy, to an

extent, played the role of the lag variable, rather than acting as a

proper predictor of change in GDP. We then further note that

factoring equation 13, we get

dG

dt
&9 Gt{Gt{1ð Þ2 ð14Þ

suggesting that the growth in G between times t{1 and t is the

best predictor of changes between times t and tz1. This

possibility is confirmed if we use Gt{Gt{1 as the third indicator

variable. Now, fitting dG as a function of Dt,Gt and Gt{Gt{1 we

find that the best model for changes in GDP per capita has only a

single term,

dG

dt
~0:7Gt Gt{Gt{1ð Þ ð15Þ

This models turns out to be the overall best model for changes in

GDP per capita (Fig. 7).

For completeness, we also checked whether changes in

democracy improve with Gt{Gt{1 as the third indicator. In this

case, the best model is again equation 8, and the best two term

model is equation 7, indicating that lags in GDP are not important

in modeling changes in democracy.

Figure 5. Phase portraits with trajectories. From (a) country by country data and (b) model predictions made by integrating equations 7 and 9,
with coloured circles representing the initial conditions. The arrows in the phase portrait indicate the direction and magnitude of the changes dG and
dD as a function of the two variables D and G themselves. Specifically the arrows are the vector (dG,dD) given by equations 7 and 9. These arrows
are the same in both sub-figures.
doi:10.1371/journal.pone.0086468.g005
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Discussion

The approach to studying social systems we present here

emphasizes exploratory model fitting. Exploratory approaches

help to identify new and unexpected patterns and explanations

[46–48]. Such an approach is not completely atheoretical, since

we need to think about which variables to investigate. However,

instead of defining how the variables should interact and then

testing this pre-defined relation in the data, we allow the data to

inform us about the mathematical linear or non-linear relation-

ships between the indicator variables. This does not imply that our

approach is only applicable in cases where there is no existing

theory. Indeed, if a theory can be expressed in terms of relations in

a differential equation then it can also be compared, via Bayes

factor, to other alternative models.

Our methodology can be applied to any social system which has

reasonable amounts of longitudinal or panel data, that is data with

repeated measurement over time for a number of independent

entities. On the macro-level the method can be used to study cross-

national development dynamics, for instance, the relationship

between a country’s gross domestic product, child mortality and

education levels. If regional or city district data is available it is

possible to use the method to study for instance neighbourhood

segregation processes. On a meso-level the researched entities

could be organisations, companies or schools, to study, for

instance, dynamic female employment patterns of companies.

In studying social systems there is seldom one single unique best

fit model that fully explains the data. As we saw when comparing

the Bayes factor of equations 7, 8 and 12, several models provided

a robust fit to data. The advantage of using Bayes factor is that

complicated models are automatically punished. Including more

terms does not necessarily improve fit, since all of the extra

parameters are included in the stochastic integration in equation 6.

For example, the complex non-linear interaction (given by

equation 8 and visualized in in Fig. 3) whereby rich, undemocratic

countries showed slower democratic growth than some poorer and

more democratic countries gives only a slightly more robust fit to

data than the simpler two-term interaction (given by equation 7

and visualized in Fig. 3). At this stage, we should accept both as

plausible models.

We do not attempt here to give a political or sociological

interpretion of the best fit models. However, the dynamic nature of

the fitted models provides a starting point for thinking about causal

mechanisms [7,8]. For example, we see that the best model for

explaining change in democracy as a function of economic

development involves a threshold. When GDP is sufficiently high,

democracy typically increases. This observation certainly provides

Figure 6. Choosing the best models. (a) Bayes factors for the two-variable dD models (black) and for the three-variable dD models (violet). The
two red marked models refer to equation 8 and equation 12. (b) Bayes factors for the two-variable dG models (black) and for the three-variable dG
models (violet). The two red marked models refer to equation 9 and equation 13. In both cases, the Bayes factor for the two and three variable
models are calculated over the same subset of data, which is (necessarily) one year shorter than that used in Fig. 2 and Fig. 4.
doi:10.1371/journal.pone.0086468.g006

Figure 7. Bayes factor plots. For the two-variable dG models (black),
the three-variable dG models with lag GDP per capita (Gt{1) (violet)
and the three-variable dG models with Gt{Gt{1 as the third indicator
variable (blue).
doi:10.1371/journal.pone.0086468.g007
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more understanding than the correlation presented in figure 1, but

it does not fully open up the black box relationship between the

two indicators. In order to open up this black box, we need to

investigate both the role of other indicator variables in linking

democracy and economic growth, as well as proposing possible

micro-level mechanisms which can explain the transitions to

democracy.

The suggestion that the terms in the fitted models could relate to

plausible causal mechanisms is one argument for adopting an

approach based on differential equations. If our aim was only to

predict future changes in indicator values then any one of a range

of statistical or machine learning techniques, such as Gaussian

processes or neural networks, could be employed in model fitting.

We could further employ Bayesian model averaging in which we

weight models according to their Bayes factor [19]. While these

techniques are undoubtedly of use in making predictions,

differential equations lend themselves more readily to interpreta-

tion. The use of differential equations has been the strength of

earlier work using logistic growth to model the diffusion of

innovations [10]. Fitting models has informed debate over micro-

level mechanisms [12,13]. The methods outlined here provide a

rigorous extension of the differential equation approach to a

general set of interactions between multiple indicators.
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