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Abstract

Larvae and imagos of bees rely exclusively on floral rewards as a food source but host-plant range can vary greatly among
bee species. While oligolectic species forage on pollen from a single family of host plants, polylectic bees, such as
bumblebees, collect pollen from many families of plants. These polylectic species contend with interspecific variability in
essential nutrients of their host-plants but we have only a limited understanding of the way in which chemicals and
chemical combinations influence bee development and feeding behaviour. In this paper, we investigated five different
pollen diets (Calluna vulgaris, Cistus sp., Cytisus scoparius, Salix caprea and Sorbus aucuparia) to determine how their
chemical content affected bumblebee colony development and pollen/syrup collection. Three compounds were used to
characterise pollen content: polypeptides, amino acids and sterols. Several parameters were used to determine the impact
of diet on micro-colonies: (i) Number and weight of larvae (total and mean weight of larvae), (ii) weight of pollen collected,
(iii) pollen efficacy (total weight of larvae divided by weight of the pollen collected) and (iv) syrup collection. Our results
show that pollen collection is similar regardless of chemical variation in pollen diet while syrup collection is variable. Micro-
colonies fed on S. aucuparia and C. scoparius pollen produced larger larvae (i.e. better mates and winter survivors) and fed
less on nectar compared to the other diets. Pollen from both of these species contains 24-methylenecholesterol and high
concentrations of polypeptides/total amino acids. This pollen nutritional ‘‘theme’’ seems therefore to promote worker
reproduction in B. terrestris micro-colonies and could be linked to high fitness for queenright colonies. As workers are able
to selectively forage on pollen of high chemical quality, plants may be evolutionarily selected for their pollen content, which
might attract and increase the degree of fidelity of generalist pollinators, such as bumblebees.
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Introduction

Pollen is one of the prime nutrient resources used for adult and

larval development of bees [1–3]. Major components of pollen

include lipids, carbohydrates, proteins, amino acids, vitamins,

carotenoids and flavonoids [4–7]. Pollen chemical content is

species-dependant but closely related floral species could display

similar composition [7–12]. Interspecific variability in essential

nutrients (e.g. proteins, sterols and carbohydrates) may be a

constraint for bee development and species permanence at least

for polylectic bees that mix pollen resources (i.e. constraint

hypothesis developed by [13–15]). Previous studies on the

generalist species Apis mellifera, Bombus terrestris, Osmia bicornis and

Osmia cornuta confirmed that some pollen diets are inadequate for

bee development [14–19]. Assessment of pollen quality based on

chemical composition may thus be a factor driving foraging

behaviour in polylectic species [11,20]. Previous empirical studies,

however, did not analyze a significant range of pollen nutrients

and did not evaluate the impact of the presence of these nutrients

on global feeding behaviour (pollen and nectar collection). The

effects of pollen quality on the development and behaviour of

polylectic bees thus remain largely unknown.

Pollen nutritional value is currently evaluated by its crude

protein content (i.e. evaluated from nitrogen content) as protein

level is crucial for reproduction, growth, immunocompetence and

longevity of bees and insects in general [5,11,17,21–26]. However,

the ‘‘protein’’ value does not distinguish different molecules like

polypeptides, free amino acids or essential amino acids that display

diverse physiological functions [27,28]. On the one hand,

‘‘polypeptides’’ (molecular weight .10000 Da) can enhance

immune functions in insects [24,25] and play other functional

roles in insect diets such as binding fats, binding flavours (i.e.

polypeptides have little flavor of their own, but influence flavor

perception via binding and/or adsorption of flavor compounds)

and storage [29]. They may act as emulsifiers and may give the
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diet greater elasticity or other texture features that may be either

desirable or detrimental. Moreover polypeptides include enzymes

that may impact the nutritional value of diets, including the

degradation of nutrients such as lipids and proteins or the

formation of insoluble or indigestible complexes [29]. On the

other hand, amino acids include free amino acids and protein-

bound amino acids. Whereas free amino acids can be modified in

non-protein analogs which are toxic for bees [29], protein-bound

amino acids constitute the usable part of the total amino acids in

pollen (including the essential amino acids; [29]). Like many

animals, bees need to assimilate certain essential amino acids from

their food [16,30]. The ideal composition of essential pollen amino

acids was determined for the honeybee, Apis mellifera, by De Groot

[16]. These amino acids are the same as those needed by other

animal taxa [30]. Thus, it can be assumed that bees do not vary

significantly in their nutritional requirements concerning relative

amino acid composition.

Growing evidence suggests that high protein content in pollen

may be detected by polylectic species, given that some species, like

bumblebees, forage preferentially on pollen with high protein

content [11,20]. Furthermore, it seems likely that amino acid

composition has a greater influence on the amount of pollen

required by bees than crude protein content [31].

Another contributing factor to host plant suitability may be

sterols [32], which play an essential role in hormone synthesis,

gene expression and cell membrane function [27,32]. Not all

insects can synthesize these compounds that must thus be ingested.

As nectar contains extremely low levels of sterols, bees must

assimilate these compounds from pollen [33]. More than a

hundred different sterols have been identified in plants [34]. These

phytosterols (i.e. dominant plant sterols) have generally additional

carbon(s) compared to cholesterol, the most used and usually

sufficient sterol for insect requirements [32]. Some insects are able

to dealkylate phytosterols into cholesterol but this ability is lost in

the more derived members of Hymenoptera like bees [32]. As far

as known, bees use alternatively synthesis of a particular moulting

hormone from phytosterol (C28 Makisterone A or C29 Makisterone

C in place of C27 Ecdysone synthetized from C27 cholesterol) [35].

It seems likely that dietary sterol requirements affect feeding

behaviour of generalist bees [32]. This hypothesis was partly

corroborated by studies showing that the generalist honeybee does

not forage on Arbutus unedo because it lacks metabolic capabilities to

use the main sterolic component from this plant, b-sitosterol [10].

However, this hypothesis has never been verified for wild species

through experimental tests such as rearing.

In this paper, we performed a comprehensive nutrional study of

five pollen diets by analysing their chemical contents (e.g.

polypeptides, amino acids and sterols) and measuring their impact

on the development and feeding behaviour of bumblebee micro-

colonies. We addressed two specific questions: (i) what is chemical

composition of a beneficial diet for the polylectic species Bombus

terrestris, and (ii) do Bombus terrestris workers adapt their collection of

pollen and/or nectar according to pollen quality?

Materials and Methods

Bumblebee model
We selected Bombus terrestris L. (Hymenoptera, Apidae) as a

model of polylectic bee species. This social species forages on

hundreds of different plant species and numerous plant families

[20,36,37]. Nutritive value of pollen diet has even more impact on

bumblebee development, as individual workers do not change the

composition of the diet they supply to the brood, unlike honeybee

[38]. It is a widespread and common bumblebee species

throughout Europe and its rearing is quite easy and well-

documented [17,19,39].

Diets
We selected five pollen diets that are expected to have different

effects on the development of a bumblebee colony. Based on

previous study, Calluna vulgaris* (Ericaceae) and Cistus sp.*

(Cistaceae) are considered as poor pollen resources for Bombus

terrestris because they display low protein content and low

performance for colony development [19]. Conversely Cytisus

scoparius (Fabaceae), Sorbus aucuparia (Rosaceae) and Salix caprea

(Salicaceae) are considered as good pollen diets [18,19,40]. These

five pollen diets were prepared using honeybee pollen loads. Pollen

loads of Cytisus scoparius, Salix caprea and Sorbus aucuparia were

supplied by hives with pollen trap in particular areas and periods

where the target plant is dominant. Commercial pollen samples

were purchased from the company ‘‘Pollenergie France’’ for

Calluna vulgaris and Cistus diets. This company sorts the incoming

batches with high proportion of a dominant pollen species and

stored them at 230uC for human consumption. We obtained five

monofloral pollen diets by removing all non-target pollen based on

the color of pollen loads. Purity of floral composition was checked

under light microscope (LEITZ) at magnification of 400X or

1000X and compared with a reference pollen collection. A

fraction of each monofloral diet was lyophilized and stored at

220uC for chemical analyses. The five monofloral pollen loads

were mixed with inverted sugar syrup (BIOGLUCH, Biobest) (90%

and 10% w/w respectively), which resulted in monofloral pollen

pastes at 77% pollen dry matter. These pollen pastes were used to

form monofloral candies, which were provided to the micro-

colonies. Candies were weighted and stored at 220uC.

The different samples of pollen investigated did not involve

endangered or protected species. No specific permits were

required for the described field studies as pollen collection did

not occur in privately owned or protected locations.

Chemical analyses of pollen diets
Polypeptide analysis. Polypeptide content was assessed

using five milligrams (dried weight) of each of five pollen diets in

triplicate following the method described in [28]. The pollen was

first ground by bead beating under nitrogen. The multi-step

procedure can be summarized as follows: (i) three successive

washes with TCA/acetone, methanolic ammonium acetate and

acetone, respectively, to remove contaminants, (ii) elimination of

acetone to pellet dryness, (iii) polypeptide extraction with a

phenol/SDS mixture, (iv) polypeptide precipitation from phenol

phase with methanolic ammonium acetate, (v) washes (methanol

and acetone), followed by air-drying the polypeptide pellet, and (v)

resuspension of the polypeptide pellet in a 4M guanidine HCl

buffer.

Quantifications of total polypeptide content were performed

using BCA Protein Assay Kit (Pierce, Thermo Scientific) with

standard curve of BSA (bovine serum albumin).

Amino acid analysis. We added 1 ml of hydrolysis solution

(6N HCl, 0.1% phenol and 500 mM norleucine) to 3–5 mg pollen

(dried weight). The tube was put in liquid nitrogen for one minute

to avoid methionine degradation (24 h, 110uC). The hydrolysate

was dried by vacuum in a boiling bath at 100uC. Afterwards, 1 ml

of buffer pH 2.2 was added into the tube. The sample solution was

mixed and poured in a HPLC vial after filtration (0.2 mm). Total

amino acids were measured separately with an ion exchange

chromatograph (Biochrom 20 plus amino acid analyser).

Free amino acids were extracted from 30–50 mg (dry weight)

pollen with 200 ml of extraction solution (1 mM norleucine, 0.1 N
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HCl and 2% thiodiglycol) in an ultrasonic bath for 30 min.

Afterwards, 100 ml of 15% dihydrated 5-sulfosalicylic acid were

added for precipitation of proteins in the ultrasonic bath for 5 min.

After centrifugation (11 000 rpm for 5 min), 250 ml of the

supernatant was poured into a microcentrifuge tube with filter

(0.2 mm). After centrifugation (10 000 rpm) and membrane

filtration for 10 min, 100 ml of a pH adjustment solution (1:1,

1.5 N NaOH and pH 2.2 buffer) were added to 240 ml of the

supernatant. The microcentrifuge tube was mixed and 200 ml of

the sample were transferred into an insert for HPLC vial before

measurement in the amino acid analyser.

For both extractions, norleucine constituted the internal

standard allowing further amino acid quantification. Only

tryptophan was omitted because its isolation requires a separate

alkaline hydrolysis from additional amount of sample. Moreover,

tryptophan is hardly ever a limiting essential amino acid [41].

Sterol analysis. Sterol content was analysed using 20 milli-

gram samples of pollen (dried weight) according to the method

described in [42]. The multi-step procedure can be summarized as

follows: (i) saponification of the samples with methanolic potassium

hydroxide, (ii) extraction of the unsaponifiable (USM) fraction with

diethylether and several water-washings of the organic phase, (iii)

evaporation of solvent, (iv) USM fractionation into its components

using thin-layer chromatography (TLC), (v) derivatization of the

sterols (scraped from the silicagel) into trimethylsilyl ethers (TMS),

and (vi) separation of TMS by Gas Liquid Chromatography

(GLC). The total sterol content was determined considering all

peaks of sterols (at concentrations above the LOQ) eluted between

cholesterol and betulin. Individual sterols – quantified on the basis

of peak areas from analyses – were expressed as percentages of the

total sterol content. Compounds were identified by comparing the

relative retention times (b-sitosterol –TMS = 1.00) with those of

oil reference (sunflower oil with well-known composition). These

identifications were checked by GC/MS (Gas Chromatograph/

Mass Spectrometer) analyses [42].

Micro-colony rearing
Two-day-old workers of Bombus terrestris were provided by

Biobest bvba (Westerlo, Belgium). They were divided into 35

micro-colonies (seven micro-colonies for each diet) of four workers

and placed in different plastic boxes (10616616 cm). These

micro-colonies were reared in a dark room at 26–28uC and 65%

relative humidity. They were fed ad libitum with inverted sugar

syrup (BIOGLUCH, Biobest) and pollen candies during a 12-day

period following the first episode of egg-laying of a worker.

To evaluate diet performance and bumblebee feeding response,

we measured several parameters for each micro-colony (param-

eters adapted from [19]): (i) Number and fresh weight of larvae

(total and mean weight of larvae), (ii) pollen collection (i.e. amount

of pollen consumed and stored) per micro-colony (fresh matter),

(iii) pollen efficacy which was calculated by dividing the total

weight of larvae by the weight of pollen collected and (iv) syrup

collection (i.e. amount of syrup consumed and stored). Pollen

candies were weighed before introduction into the micro-colony

(0.5 g, 1 g or 1.5 g depending on the age of the micro-colony) and

again after their removing to measure pollen collection. New

pollen candies were provided every two days.

Such a method using queenless Bombus terrestris micro-colonies

for testing the nutritive value of pollen diets has been shown to be

a good estimate of queenright colony development at least under

laboratory conditions with ad libitum food [43].

Data analysis
Univariate analyses. We performed a one-way analysis of

variance (one-way ANOVA) to test the null-hypothesis of no-

difference in quality criteria (see above) and in essential amino acid

content between the pollen species. Since it is a parametric test

based on an F-distribution, the following assumptions were

checked: (i) independent observations, (ii) normality of the

residuals (normal QQ-plot and Shapiro test) and (iii) homosce-

dasticity (Bartlett test). As all these assumptions were met (p-

values.0.05 for Shapiro and Bartlett tests), the data were not

transformed and the one-way ANOVA produced the p-value for

each hypothesis test. When the ANOVA was significant, we

performed multiple pairwise comparisons (post-hoc test). P-values

were adjusted using Bonferroni’s correction to avoid increases in

type error I due to multiple testing. All data visualization and

analyses were performed in R version 2.2.1 with Sciviews R

Console (version 0.9.2) [44].

Multivariate analyses. In order to detect differences

between the diet compositions (sterols and amino acids), we

performed a perMANOVA using Bray-Curtis distances and 999

permutations (‘‘adonis’’ command, R-package vegan, [45]). Prior

to this permutational analysis of variance, the multivariate

homogeneity of within-group covariance matrices was verified

using the ‘‘betadisper’’ function implementing Marti Anderson’s

testing method. When the returned p-value was significant

(p,0.05), multiple pairwise comparisons were conducted on the

data; p-values were adjusted using Bonferroni’s correction to avoid

increases in type error I due to multiple testing. The differences

were visually assessed on a non-metric multidimensional scaling

(nMDS) ordination using a Bray-Curtis similarity matrix, two

dimensions and 50 runs. Statistics were conducted in R using

functions from ecodist [46], ellipse [47] and BiodiversityR [48].

Indicator compound analyses were also performed in R using the

‘‘indval’’ function from the labdsv package [49] to identify the

compounds that were indicative of one diet. All multivariate

analyses were conducted in R version 2.9.1 [50] using data

expressed as concentrations in mg/g for each sterolic compound

or amino acid (absolute abundances). In addition, the Bray-Curtis

dissimilarity index was used to measure the deviation of essential

pollen amino acid composition from the ideal composition

determined for the honeybee by De Groot [16]; namely arginine

11%, histidine 5%, isoleucine 14%, leucine 16%, lysine 11%,

methionine 5%, phenylalanine 9%, threonine 11%, tryptophan

4% and valine 14%. This Bray-Curtis index is often used by

ecologists to determine dissimilarities between samples. Such use

(i.e. for deviation from ideal composition) has been already made

in similar study [28]. The Bray-Curtis index was calculated by R

software as during perMANOVA analyses.

Results

Pollen nutritional contents
Polypeptide and amino acid contents. Polypeptide con-

tents of C. scoparius, S. caprea and S. aucuparia were quite similar,

around 7–8% of lyophilized weight, but were lower for Cistus sp.

and C. vulgaris, around 2% of lyophilized weight. These results

were corroborated by the total amino acid contents, which were

higher in C. scoparius, S. caprea and S. aucuparia (from 19% to 30% of

lyophilized weight) than in Cistus sp. and C. vulgaris, around 14% of

lyophilized weight (Table 1). Although the proportions of free and

protein-bound amino acids were variable among the different

diets, the proportion of essential amino acids was highly conserved

in the different amino acid profiles, around 50% of total amino

acids (Figure 1 and Table 2).
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Although the five diets contained the full spectrum of essential

amino acids, one-way ANOVA showed significant difference

between the five pollen diets according to their essential amino

acid content (F4,11 = 29258, p,0.001). C. scoparius, S. caprea and S.

aucuparia displayed the highest concentrations of essential amino

acids with, on average, 146 mg/g, 96 mg/g and 112 mg/g of

lyophilized pollen, respectively. However C. scoparius had a

significantly less ideal composition of essential pollen amino acids

on the basis determined by [16] for honeybees than the other four

plants investigated (F4,11 = 33.312, p,0.001, Table 2). Neverthe-

less Bray-Curtis dissimilarity index between pollen diet and the

ideal composition remained low (Table 2). Only isoleucine and to

Figure 1. Amino acid profile of the five diets: Calluna vulgaris, Cistus sp., Cytisus scoparius, Salix caprea and Sorbus aucuparia. All
measured amino acids are displayed and separated into free and protein-bound fractions. (Arg = arginine, GABA= c-aminobutyric acid, His =
histidine, Ile = isoleucine, Leu= leucine, Lys = lysine, Met = methionine, Orn = ornithine, Phe= phenylalanine, Thr = threonine, Val = valine, Ala =
alanine, Asp= aspartic acid, Cys = cysteine, Glu = glutamic acid, Gly = Glycin, Pro = proline, Ser = serine, Tyr = tyrosine).
doi:10.1371/journal.pone.0086209.g001
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a lesser extent valine were found in smaller proportions than

determined by De Groot [16].

PerMANOVA detected a significant difference in the compo-

sition of essential amino acids (free and protein-bound pooled)

among the pollen diets (F4,11 = 124.02, p,0.001). Pairwise

comparisons arranged the different pollen species into three

groups: (i) one with C. scoparius, S. aucuparia and Cistus sp., (ii) one

with S. caprea, and (iii) one with C. vulgaris which did not

significantly differ from Cistus sp. Indicator Compound Analysis

showed that all essential amino acids were significantly associated

with C. scoparius pollen because of their higher concentrations in

this diet. The decrease in concentration of essential amino acids

among the pollen diets was well reflected by the gradient along

NMDS 2 on nMDS ordination (stress value = 0.010, Figure 2).

Sterol content. The different pollen diets displayed concen-

trations of total sterols from 2.5 to 9.6 mg/g of lyophilized matter,

for Cistus sp./Cytisus scoparius and Sorbus aucuparia, respectively

(Table 3). The major phytosterols were common C29 sterols like b-

sitosterol and d5-avenasterol but in some pollen, we found also

high amounts of d7-avenasterol (C. vulgaris, 20.23%) or 24-

methylenecholesterol/campesterol fraction (S. aucuparia, 84.07%).

In all pollen diets, cholesterol, desmosterol, stigmasterol, choles-

tenone, d7-avenasterol (except for C. vulgaris) and d7-stigmasterol

concentrations were low (Table 3).

PerMANOVA detected a significant difference in sterolic

composition between the pollen diets (F4,12 = 23.49, p,0.001).

Pairwise comparisons and nMDS ordination arranged the

different pollen species into three distinctive groups: (i) one with

C. vulgaris, (ii) one with S. caprea, C. scoparius and Cistus sp. and (iii)

one with S. aucuparia which did not significantly differ from Cistus

sp. (F1,4 = 54.77, p= 0.058) (stress value = 0.116; Figure 3).

Indicator Compound Analysis showed that 24-methylenecholes-

terol/campesterol fraction was significantly associated with S.

aucuparia pollen (p= 0.024, indicator value = 82.26%), and d7-

avenasterol (p= 0.010, indicator value = 0.896) as well as d7-

stigmasterol (p= 0.018, indicator value = 0.626) with C. vulgaris.

Micro-colonies development
One-way ANOVA detected a significant difference between the

five pollen diets (F4,27 = 12.87, p,0.001) with regard to total

weight of larvae. Post-hoc testing arranged the different pollen

species into three distinctive groups: one for the C. scoparius, S.

aucuparia and S. caprea, one for C. vulgaris; and one for the Cistus sp.

As no significant difference was detected in number of larvae

among the treatments (F4,27 = 1.66, p= 0.189), the analyses clearly

showed that pollen diet significantly influenced the mean weight of

larvae (F4,27 = 6.87, p,0.001): micro-colonies raised with C.

vulgaris, C. scoparius, S. aucuparia or S. caprea pollen diet produced

significantly larger larvae (from 0.29 g to 0.36 g) than those raised

with pollen of Cistus sp. (0.12 g) (Table 4).

One-way ANOVA did not show significant differences in pollen

consumption (total weight of consumed pollen) (F4,29 = 2.59,

p= 0.057) but analyses of pollen efficacy showed significant

differences (F4,27 = 30.05, p,0.001). Side-by-side box plot

diagram and post hoc tests separated the five pollen diets into

four groups (Figure 4). Efficacies of diet from the pollen of C.

scoparius (1.15 efficacy) and S. aucuparia (0.98 efficacy) were

significantly higher than those constituted with pollen of C. vulgaris

(0.65 efficacy) or Cistus sp. (0.24 efficacy). Salix caprea diet offered

intermediate results with 0.77 efficacy.

Interestingly, the pollen diet provided to the micro-colonies

appeared to affect their consumption of syrup (ANOVA,

F4,29 = 5.60, p= 0.002) (Table 4). Pairwise comparisons detected

significant differences between C. scoparius and Cistus sp. (t=24.30,

p= 0.002) as well as between C. scoparius and Calluna vulgaris

(t=23.82, p= 0.005).

Table 1. Polypeptide and total amino acid contents from the five pure pollen diets expressed as percentage of lyophilized matter
(mean 6 sd).

Family – species Polypeptide content (%) Total amino acid content (%)

Cistaceae – Cistus sp. 1.9460.20 13.5360.59

Ericaceae – Calluna vulgaris 2.2460.38 13.5360.86

Fabaceae – Cytisus scoparius 7.7360.66 30.0762.34

Rosaceae – Sorbus aucuparia 7.3860.42 23.5560.47

Salicaceae – Salix caprea 7.1560.84 18.6560.89

doi:10.1371/journal.pone.0086209.t001

Table 2. The total concentration of free and protein-bound amino acids as well as percentage of essential amino acids and
deviation of ideal essential pollen amino acid composition for the five pollen diets (mean).

Pollen diet
Protein-bound AA (mg/g
lyophilized weight)

Essential protein-
bound AA (%)

Free AA (mg/g
lyophilized weight)

Essential free AA
(%)

De Groot deviation (Bray-
Curtis index)*

Calluna vulgaris 132.98 49.43 2.33 45.90 0.072 d

Cistus sp. 128.47 45.68 6.84 10.50 0.091 bc

Cytisus scoparius 278.33 51.77 22.41 9.51 0.113 a

Salix caprea 182,49 51.39 4.02 57.12 0.097 b

Sorbus aucuparia 222.06 49.43 13.5 13.73 0.086 c

AA= amino acids.
*Numbers (mean) with the same letter are not significantly different.
doi:10.1371/journal.pone.0086209.t002
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Discussion

Chemical composition of a beneficial diet for
bumblebees

Our results show that ad libitum pollen collection per micro-

colony of Bombus terrestris is independent of pollen chemical

composition. Workers do not adjust their own consumption and

larval provisions to compensate for low nutritional quality of

pollen diet. Consequently larval mean weight (i.e. micro-colony

development) differs significantly according to pollen diet.

Variability in pollen efficacy is therefore directly dependent on

pollen nutritional quality and not on other factors like differences

in larval feeding stimuli [51] or presence of chemical repellent

[52]. These findings are congruent with similar studies, which

have highlighted Bombus terrestris feed on similar amount of pollen

despite the protein quality of pollen [18,19].

As the diets investigated were similar in their composition of

amino acid (i.e. similar proportions of aspartic and glutamic acids

important for nitrogen assimilation as well as full spectrum of

essential amino acids), this nutritional trait is probably not

responsible for the observed reduced performance of Calluna and

Cistus diets. These results are consistent with previous studies

suggesting that amino acid profiles are highly conserved among

plants [22,27]. However investigated diets differ strongly in their

proportions of free and protein-bound amino acids. Among the

five pollen species, Cytisus scoparius displays the highest percentage

of free amino acids (7%) and was the diet that led to the highest

mortality rate during our three weeks experiment (unpubl. data).

Direct toxic effects of non-protein amino acids have been already

highlighted in previous studies and occur through several

mechanisms, including misincorporation into proteins, obstruction

of primary metabolism, and mimicking and interfering with insect

neurological processes [53].

Figure 2. nMDS ordination plot based on Bray-Curtis distances calculated on absolute amounts (mg/g) of essential amino acids in
pollen diets showing (A) essential amino acids vectors a, arginine; b, histidine; c, isoleucine; d, leucine; e, lysine; f, methionine; g,
phenylalanine; h, threonine and i, valine; and (B) replicates within pollen type (n=3, except for Salix caprea, n = 4). Stress value = 0.010.
doi:10.1371/journal.pone.0086209.g002

Table 3. Sterolic compounds from the five pure pollen diets.

Sterols Calluna vulgaris (n = 5) Cistus sp. (n = 2) Cytisus scoparius (n = 3) Salix caprea (n = 3) Sorbus aucuparia (n = 4)

Cholesterol 4.0161.38 0.24 6.2262.09 4.3762.40 2.0361.27

Desmosterol 0.0960.10 0.87 ,LOD 0.1660.10 0.2460.21

24-Methylenechol./campesterola 6.2862.23 22.21 20.0863.01 7.2063.44 84.0761.13

Stigmasterol 0.5760.19 1.11 0.4460.38 0.4760.17 0.7260.11

Unk. 484 ,LOD 12.88 ,LOD ,LOD ,LOD

b-sitosterol 25.9662.89 12.02 51.2462.16 45.8266.32 3.0060.51

d5-avenasterol 37.8663.07 42.58 20.3664.2 38.4564.37 9.1561.45

Cholestenone 0.6460.61 1.94 0.1460.13 0.3460.59 0.0760.14

d7-stigmasterol 4.3660.31 3.68 0.560.4 1.6960.39 0.3360.36

d7-avenasterol 20.2364.21 2.48 1.0260.9 1.5161.49 0.4060.50

TOTAL (mg/g in
lyophilized matter)

7.3662.17 2.47 2.4661,10 5.3361.05 9.6461.68

The concentrations are expressed as percentage of total sterolic compounds. The three most abundant sterols in the investigated samples are printed in bold. , LOD,
under limit of detection.
aUnder the analytical conditions applied campesterol and 24-methylenecholesterol are nearly impossible to separate; the results are therefore pooled.
doi:10.1371/journal.pone.0086209.t003
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A significant association was found between polypeptide/amino

acid concentrations of pollen and pollen efficacy. Previous studies

have already documented that rich protein resources seem to be

linked to efficient development of bumblebee colonies [17–19] and

floral preferences [11].

When we compared the phytosterols composition with pollen

efficacy, 24-methylenecholesterol, b-sitosterol and d5-avenasterol

appear to be positively associated to bumblebee larval develop-

ment. It is now well established that 24-methylenecholesterol is the

precursor of Makisterone A (i.e. 24-methyl-20-hydroxyecdysone),

a 28-carbon ecdysteroid which has been isolated from the ovaries

of Apis mellifera [54,55]. 24-methylcholesterol is therefore an

essential sterol in bee metabolism influencing moulting and the

development of ovaries [33,56,57]. Whereas b-sitosterol is known

to have antifeedant effects on A. mellifera, pollen rich in b-sitosterol

(e.g. Arbutus unedo) is freely collected by B. terrestris [10]. This

phytosterol as well as d5-avenasterol might be involved in some

metabolic pathways of B. terrestris or have a phagostimulant effect

on this bumblebee species [58]. Moreover phytosterols were

described as stimuli of foraging behaviour in Apis mellifera [59,60].

Based on the present study, high concentration of polypeptides/

amino acids, low concentration of free amino acids and abundance

of 24-methylenecholesterol, b-sitosterol or d5-avenasterol appear

to promote production of larger larvae in B. terrestris micro-

colonies. Larger workers can be better at foraging than smaller

workers, bringing back more nectar per unit time, removing more

pollen from buzz-pollinated flowers, flying at cooler temperatures,

probing deeper flowers, and possibly being less prone to predation

[61–66]. Worker size also positively correlates with the numbers of

egg cells and emerging workers produced [67], while larger queens

have greater hibernation survival and reproductive success

[68,69]. Previous work has found that micro-colonies can be a

reasonable analogue for whole colonies when testing the effects of

pollen diets, at least under laboratory conditions with ad libitum

food [43], so our results suggest pollen diet may impact offspring

size and then potentially fitness in B. terrestris colonies. However,

experiments with full-size colonies in the field will be necessarily to

validate this, particularly in the context of natural variation in

pollen diet composition.

Selection of pollen chemical compounds in floral reward
Previous studies demonstrated that bumblebees could select

pollen of high chemical quality (i.e. with high protein concentra-

tion; other compounds like sterols were not tested) [11,20,70,71],

possibly based on perception of particular volatile compounds

[72]. Moreover bumblebees appear quite flexible in their host

plant use as they can readily switch from one plant species to

another that was previously less preferred but can display most

abundant rewards at a given period [37]. Our results additionally

show that workers could not change their pollen collection as a

Figure 3. nMDS ordination plot based on Bray-Curtis distances calculated on absolute amounts (mg/g) of sterolic compounds in
pollen diets showing (A) sterolic vectors with a, cholesterol; b, desmosterol; c, 24-methylenecholesterol/campesterol; d,
stigmasterol; e, unk.484; f, b-sitosterol; g, d5-avenasterol; h, cholestenone; i, d7-stigmasterol and j, d7-avenasterol; and (B)
replicates within pollen type (n are mentioned in Table 3). Stress value = 0.116.
doi:10.1371/journal.pone.0086209.g003

Table 4. Parameters of pollen quality measured over a 12-day period for each diet.

Criteria of pollen quality Calluna vulgaris Cistus sp. Cytisus scoparius Salix caprea Sorbus aucuparia

Total weight of larvae (g) (1) 2.5260.60 0.9360.65 3.7760.82 2.7860.99 3.0560.68

Mean weight of larvae (g) 0.2960.11 0.1260.04 0.3160.10 0.2960.08 0.3660.12

Number of larvae 1064 764 1364 1165 964

Weight of collected pollen (g) (2) 3.9060.63 3.8460.61 3.2760.40 3.2660.89 3.0860.34

Pollen efficacy ((1)/(2)) 0.6560.11 0.2460.18 1.1560.13 0.7760.22 0.9860.14

Syrup collection (ml) 63.8663.67 65.1462.27 53.6767.20 59.4365.38 60.5764.54

The mentioned values are the mean 6 sd for seven bumblebee micro-colonies.
doi:10.1371/journal.pone.0086209.t004
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function of pollen quality. This kind of feeding behaviour (i.e.

constant amount of collected pollen) was already described in the

honeybees and the generalist, primitively eusocial bee Lasioglossum

zephyrum [22,60]. However, bumblebees might offset poorer

nutritive value with larger syrup consumption (i.e. nectar foraging)

to improve the cost-benefit balance of foraging activity.

Pollen of poor quality has a negative impact on offspring size

and probably leads to high energetic cost related to additional

nectar foraging. This fundamental aspect probably leads to the

selection of foragers able to detect rewards of good chemical

quality [70]. Preferential selection of pollen may be one factor by

which bees influence evolutionary modification in floral traits

[73,74]. Conversely, floral rewards of high quality in polypeptides,

amino acids and sterols could be an adaptive response of plants to

attract bumblebees and to promote their fidelity. Growing

evidence suggests that chemical traits of pollen could be

considered as a pollination syndrome since they can shape bee-

flower interactions [11].
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4. Hügel MF (1962) Etude de quelque constituants du pollen. Ann abeille 5: 97–

133.

5. Day S, Beyer R, Mercer A, Ogden S (1990) The nutrient composition of
honeybee-collected pollen in Otago, New Zealand. J Apicult Res 29: 138–146.

6. Herbert EW (1992) Honey bee nutrition, 197–233. In J. M. Graham [ed.], The
hive and the honey bee. Dadant, Hamilton, IL.

7. Roulston TH, Cane JH, Buchmann SL (2000) What governs protein content of

pollen: pollinator preferences, pollen-pistil interaction, or phylogeny? Ecol
Monogr 70: 617–643.

8. Schmidt JO, Thoenes SC, Levin MD (1987) Survival of honey bees, Apis mellifera
(Hymenoptera: Apidae), fed various pollen sources. Ann Entomol Soc Am 80:

176–183.

9. Roulston TH, Cane JH (2000) Pollen nutritional content and digestibility for

animals. Plant Syst Evol 222: 187–209.

10. Rasmont P, Regali A, Ings TC, Lognay G, Baudart E, et al. (2005) Analysis of
pollen and nectar of Arbutus unedo as a food source for Bombus terrestris

(Hymenoptera: Apidae). J Econ Entomol 98: 656–663.

11. Hanley ME, Franco M, Pichon S, Darvill B, Goulson D (2008) Breeding system,

pollinator choice and variation in pollen quality in British herbaceous plants.
Funct Ecol 22: 592–598.

12. Vanderplanck M, Vereecken JN, Paroulek M, Lognay G, Michez D. Floral
generalist or sterol specialist? Pollen sterolic profiles and the exploitation of

alternative host plants in solitary bees. In prep.

13. Praz CJ, Müller A, Dorn S (2008) Specialized bees fail to develop on non-host

pollen: do plants chemically protect their pollen? Ecology 89: 795–804.

14. Sedivy C, Müller A, Dorn S (2011) Closely related pollen generalist bees differ in

their ability to develop on the same pollen diet: evidence for physiological

adaptations to digest pollen. Funct Ecol 25: 718–725.

15. Haider M, Dorn S, Müller A (2013) Intra- and interpopulational variation in the

ability of a solitary bee species to develop on non-host-pollen: implications for

host range expansion. Funct Ecol 27: 255–263.

16. De Groot AP (1953) Protein and Amino Acid Requirements of the Honey bee

(Apis mellifera). Physiol Comp Ecol 3: 197–285.

17. Regali A, Rasmont P (1995) Nouvelles méthodes de test pour l’évaluation du
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