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Abstract

We propose a tetrahedral Gray code that facilitates visualization of genome information on the surfaces of a tetrahedron,
where the relative abundance of each k-mer in the genomic sequence is represented by a color of the corresponding cell of
a triangular lattice. For biological significance, the code is designed such that the k-mers corresponding to any adjacent pair
of cells differ from each other by only one nucleotide. We present a simple procedure to draw such a pattern on the
development surfaces of a tetrahedron. The thus constructed tetrahedral Gray code can demonstrate evolutionary
conservation and variation of the genome information of many organisms at a glance. We also apply the tetrahedral Gray
code to the honey bee (Apis mellifera) genome to analyze its methylation structure. The results indicate that the honey bee
genome exhibits CpG overrepresentation in spite of its methylation ability and that two conserved motifs, CTCGAG and
CGCGCG, in the unmethylated regions are responsible for the overrepresentation of CpG.
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Introduction

One of the first steps in exploring the huge amount of

information contained in genomes is content visualization of short

nucleotide sequences of a fixed length of k (k-mers). The landmark

study of such visualization is Jeffrey’s chaos game representation

(CGR) [1]. CGR is a transformation between a DNA sequence

and a position in a unit square. All sequences having the same

prefix are transformed into the corresponding box as shown in

Fig. 1(a). When all suffixes in a genome are transformed, its

frequency distribution in the unit square represents the content

information. Because of the simplicity and visibility of CGR,

several applications and extensions have been proposed, such as

extensions to protein or arbitrary sequences [2,3], alignment-free

comparisons of genomes [4], fractal analysis [5,6], and analysis of

Markov properties [7]. For the purpose of information visualiza-

tion, however, CGR has a serious drawback in that adjacent k-

mers can be completely different from each other, e.g., CTT and

GAA in Fig. 1(a). Thus, physical proximity in CGR does not

necessarily indicate similarity of the corresponding k-mers.

Besides CGR, we can consider various transformations of DNA

sequences. What transformation is most informative for DNA

sequence analysis? One of the best candidates is the Gray code [8].

The Gray code is originally defined as an ordering of binary

numbers in which adjacent numbers differ from each other by

only one bit. We can easily extend it to quaternary numbers

corresponding to DNA sequences [9], i.e., the Hamming distance

between the adjacent k-mers is always one in the code. Such DNA

Gray code has been applied to motif discovery [10].

Another candidate for transformation is the de Bruijn code (or

cycle) [11]. In the de Bruijn code, adjacent k-mers have the shift

relation, i.e., the edit distance between them is always two.

Although differ in the measure (Hamming distance and edit

distance), the Gray code and the de Bruijn code share the property

of a constant distance between neighbors. However, we prefer to

use the Gray code because it has the hierarchical structure

favorable for visualization such that all k-mers with a same prefix

are included in a closed set, whereas the de Bruijn code does not

have such a property.

Although the original Gray code is one-dimensional, the Gray

code can be extended to two-dimensional (2D) space similar to

CGR [12]. In the 2D Gray code, the k-mers corresponding to two

boxes adjacent in the vertical and horizontal directions differ from

each other by only one nucleotide (Fig. 1(b)). Our biological

knowledge suggests that similar sequences tend to have an

identical or similar function, as exemplified by synonymous

codons and iso-regulatory cis-elements. As a neighboring region

always corresponds to a set of similar sequences, the 2D Gray code

may be more useful than CGR that lacks such a property.

The 2D Gray code has a toric structure such that the top and

bottom boundaries and the left and right boundaries are

respectively connected to each other. This implies that the Gray

code structure is closed on the surface of a torus. Unfortunately,

however, it is difficult to realize a toric structure in the 3D space

with an actual material, such as a paper craft.

In this paper, we propose a tetrahedral Gray code (TGC) in

which the Gray code is generated on tetrahedral surfaces. Whereas
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the basic unit of the 2D Gray code is rectangular, that of TGC is

triangular (Fig. 2). In TGC, a k-mer differs from each of its three

neighbors by only one nucleotide. This relationship is valid even at

the edges of the tetrahedron. We demonstrate here an algorithm

and its implementation that enables us to draw the development of

TGC on a paper with a conventional PC and a printer. As a

tetrahedron can be easily constructed by paper craft (Fig. 3), the

complete structure of the Gray code can be closely scrutinized in

one’s hands. Moreover, a set of tetrahedrons generated from the

genomic sequences of various organisms can be displayed in a

tree-structured object to visually demonstrate the evolutionary

changes in genome contents along the tree of life.

Methods

Construction of tetrahedral Gray code (TGC)
We refer to a triangle corresponding to a k-mer as a cell. We

generate the (kz1)-mer codes from a k-mer code by dividing the

original cell into four smaller sub-cells corresponding to the four

nucleotides, A, C, G, and T, which are appended to the original k-

mer. The problem is how to assign the four nucleotides to the four

sub-cells. In TGC, we use a specific generator tetrahedron to

determine the assignment (Fig. 4).

As illustrated in Fig. 4, each cell on a surface of the generator

represents a unique nucleotide. An important feature of the

generator is that the nucleotides corresponding to the two cells

bordering each other on an edge are identical. To construct TGC,

we start with the monomer tetrahedron whose four surfaces are

labeled with the four kinds of nucleotides. Then, we recursively

apply the following procedure up to the predefined depth, i.e., the

(kz1)-mer code is formed from the k-mer code by rotation and

stamping of the generator, as shown in Fig. 5 (k~2 in this case). As

a result of the stamping, the parental cell is divided into four sub-

cells. By appending the nucleotides on the surface of the generator

to the parental k-mer, we generate four unique (kz1)-mers,

which are then assigned to the corresponding sub-cells (Fig. 5(c)).

All the cells in the original k-mer TGC are stamped by rotating

the generator around each edge (Fig. 5(d)). Obviously, all possible

(kz1)-mers are generated by this inductive procedure and these

(kz1)-mers are unique. After the procedure reaches the

predefined depth, we apply the genome information to TGC as

described in the later subsection ‘‘Visualization of genome

contents’’.

We argue that this procedure produces TGC from the following

observations. If two adjacent cells in the (kz1)-mer TGC are

derived from the same parental (i.e., k-mer) cell, their sequences

differ by only one nucleotide because the first k-mers are identical

while the last ones are unique because of the feature of the

generator. On the other hand, if the two adjacent cells come from

different parental cells, those parental cells must have been

adjacent. Here, we assume that the parental cells satisfy the TGC

conditions, i.e., the sequences of the parental cells differ by only

one nucleotide. The last nucleotides of those adjacent (kz1)-mers

are identical because the nucleotides on both sides of an edge in

the generator are identical. Therefore, the sequences of two

adjacent cells differ by only one nucleotide even if those cells come

from different parental cells. Consequently, the (kz1)-mer code is

inductively a TGC as the monomer code is obviously a TGC.

The above consequence is dependent on the assumption that

the generator can return to the first cell with the same surface and

orientation after a certain number of rotations are applied to it. If

this assumption were invalid, inconsistencies would occur in some

cells during the procedure, i.e., two or more different k-mers would

Figure 1. Transformations of CGR (a) and 2D Gray code (b) of trimers.
doi:10.1371/journal.pone.0086133.g001

Figure 2. Transformation of TGC of trimers. Flaps indicate
connecting boundaries in order to make a tetrahedron.
doi:10.1371/journal.pone.0086133.g002

Tetrahedral Gray Code
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be mapped in the same cell. The assumption of the recurrence of

the generator is valid as proved in the next subsection.

Recurrence of generator
Akiyama has shown that a tetrahedron can return to the first

cell with the same surface and orientation after a certain number

of rotations over a triangular lattice on a plane [13,14]. However,

movements of the generator on the plane and on the surfaces of

the tetrahedron are not exactly the same because the tetrahedron

is closed at its edges. A proof on the plane is therefore not directly

applicable to that on the tetrahedron. In this regard, we have to

show that the recurrence of the generator holds even when the

generator moves over the edges of the tetrahedron.

The key point is that the edge rotation of the generator should

be equivalent to a half turn (180u) of the triangular development of

the generator around each midpoint of its three boundaries.

Consider two generators with the states before and after an edge

rotation as shown in Fig. 6(a) and (b), respectively. These

generators are developed by cutting open the same three edges

including the rotation edge such that each development becomes a

triangle. As a result, we obtain the two triangular developments

ABC and DCB as shown in Fig. 6(c). These triangles including

their internal patterns are identical to each other when the half

turn around midpoint X of boundary BC is applied to them,

implying the equivalence of the rotation of the generator around

edge BC and this half turn. This relationship holds for the other

two midpoints of boundaries AB and CA.

Similarly to the movement of a tetrahedron [13,14], the

recurrence of the triangle holds on the plane because the process of

half turns generates a type of transformation group called the plane

crystallographic group or the wallpaper group in group theory (Group p2

in our case) [15]. By the half turns, the development of the

generator moves on the triangular lattice on which each triangle

consists of four cells. The wallpaper group is defined as a set of

such transformations and their compositions. As each half turn

does not change the stamps as shown in the previous paragraph, its

repeat (or composition) does not also change them. Therefore, all

transformations belonging to the wallpaper group do not change

the stamps.

We remark here that the invariance of stamps does not always

imply the recurrence of the triangle on the plane, i.e., it is only a

necessary condition. Thus, we have to show that such a

discordance does not occur in our case. In general, we can

assume five transformations besides the identical transformation,

such that a regular triangle is transformed into itself as a result of

the composition of a certain number of transformations: two 120u
rotations around the center and three reflections. However, these

five transformations change the stamps and hence the assumption

is inconsistent with the fact that a composition does not change the

stamps. Therefore, only the identical transformation is allowable

as the composition such that the triangle returns to the initial

position after a certain number of half turns, proving the

recurrence of the triangle on the plane [15].

To emulate the movement of the generator on the surfaces of

the tetrahedron, we consider the development of a TGC (triangle

ABC) and one of its half turns (CDA) in Fig. 7(a). The movement

of the generator over boundary AC corresponds to its movement

over the edge of the tetrahedron. Segments AM and CM contact

each other at the edge of the tetrahedron made from triangle

Figure 3. Paper crafts of TGC. Content information of human and honey bee genomes is depicted on the left and center paper crafts,
respectively.
doi:10.1371/journal.pone.0086133.g003

Figure 4. Generator represented by a development (a) and a
tetrahedron (b).
doi:10.1371/journal.pone.0086133.g004

Tetrahedral Gray Code
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ABC. The correspondence holds because segment AM (or CM) of

triangle CDA is the transformed (turned) image of segment CM (or

AM) of ABC, i.e., these segments of the two developments contact

each other in the same way as they contact at the edge of the

tetrahedron. This correspondence holds for the other half turns of

ABC. This fact implies that the recurrence of the generator on the

tetrahedral surfaces is equivalent to the proposition that ‘‘a pair of

identical cells in the original and transformed images has an

identical stamp when the generator moves over the boundary

between the two developments’’. Note that the identical stamp

implies the identical orientation of the generator as shown in the

previous paragraph. Therefore, we only have to prove this

proposition to complete the proof of the recurrence of the

generator.

Figure 5. Procedure for formation of trimer code from dimer code. (a) The dimer code is assumed. (b) The generator is stamped on a cell. (c)
The generator is rotated around an edge and stamped again. (d) Repeating the rotation and stamping for all cells yields the trimer code.
doi:10.1371/journal.pone.0086133.g005

Figure 6. Equivalence between edge rotation of a tetrahedron and half turn of its development. (a) The tetrahedron before an edge
rotation. (b) After an edge rotation of (a). (c) Triangles ABC and DCB are the developments of (a) and (b), respectively. These developments are
related by the half turn around point X.
doi:10.1371/journal.pone.0086133.g006

Tetrahedral Gray Code
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The movement of the generator over boundary AC is shown in

Fig. 7(b). The three half turns around points X1, X2, and X3 move

the generator from the initial AEM to the last CGM positions.

Triangles AEM and CGM have point symmetry around M.

Moreover, the identical cells are also located symmetrically around

M as shown in Fig. 7(a). Therefore, each pair of identical cells has

an identical stamp. This property holds for longer k-mers because

the half turn around M belongs to the wallpaper group and hence

all stamps are symmetric around M. Consequently, the above

proposition is proved and then the proof for the recurrence of the

generator on the tetrahedral surfaces is completed.

Algorithm
To draw TGC with a computer program, we first establish a

relationship between a position of a triangular cell and a

quaternary sequence that we call an address, D, which is defined by:

D~d1d2 � � � di � � � dk, di [ f0,1,2,3g, ð1Þ

where the size of D equals k when we use k-mer codes. The four

digits assigned to each quaternary base di correspond to the four

affine transformations defined by:

Mn~

an 0 xn

0 bn yn

0 0 1

0
B@

1
CA, n [ f0,1,2,3g, ð2Þ

where,

(an,bn,xn,yn)~

(
1

2
,
1

2
,
1

4
,

ffiffiffi
3
p

4
) if n~0

({
1

2
,{

1

2
,
3

4
,

ffiffiffi
3
p

4
) if n~1

(
1

2
,
1

2
,0,0) if n~2

(
1

2
,
1

2
,
1

2
,0) if n~3

8>>>>>>>>>>><
>>>>>>>>>>>:

: ð3Þ

Each affine transformation maps a regular triangle of unit length

into an inner triangle as explained in Fig. 8. To transform a point

(x,y), we use a vector v~(x,y,1) and a product MnvT , where T
denotes the transposition.

As the product of these affine transformations, we obtain a

transformation MD of the address D:

MD~Md1
Md2
� � �Mdi

� � �Mdk
: ð4Þ

The transformation of the regular triangle ABC by MD

identifies the cell corresponding to the address D. The relationship

between the address of length 2 and the cell is exemplified in

Fig. 9(a).

Figure 7. Development of a TGC (ABC) and its half turn (CDA) (a) and movements of the generator (b). (a) The positions of identical cells
have point symmetry around M as shown by dotted lines. (b) The generator AEM successively moves to FME, MFC, and CGM by half turns at X1 , X2 ,
and X3 , respectively. Each arrow inside the generator indicates its orientation. The initial triangle AEM and the last triangle CGM have point symmetry
at M.
doi:10.1371/journal.pone.0086133.g007

Figure 8. Relationship between addresses and cells (a) and
affine transformations (b). Points A, B, and C are vertexes of a
regular triangle and positioned at (1=2,

ffiffiffi
3
p

=2), (0,0), and (1,0),
respectively. Points D, E, and F are the midpoints of the three
boundaries, respectively. Each affine transformation moves triangle ABC
into an inner triangle indicated in (b).
doi:10.1371/journal.pone.0086133.g008

Figure 9. Address of length 2 (a) and generator (b). Note that (b)
is a mirror image of the generator because this is a stamped image.
doi:10.1371/journal.pone.0086133.g009
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Each address D is associated with a k-mer DNA sequence

through the generator stamping rule. Fig. 9 shows an example of

this association in the case of k~2, where each nucleotide in the

generator specifies the second nucleotide of the dimer. The

assignment of the first nucleotide is arbitrary and we here assign

the first bases (0,1,2,3) into (A,T,C,G). Consequently, for example,

the addresses (10,11,12,13) are assigned into (TT,TA,TG,TC) and

(20,21,22,23), into (CC,CG,CA,CT). Note that a base in the

address does not directly represent the corresponding nucleotide

but the assignments of the second bases depend on the first base of

the address. This assignment rule is recursively applicable to a pair

of (i{1)-th and i-th bases, and the address-to-sequence transfor-

mation T can be expressed as:

T(D)~s1s2 � � � si � � � sk, ð5Þ

si~Kdi{1di
, K~

A T C G

T A G C

C G A T

G C T A

0
BBBBBB@

1
CCCCCCA

, ð6Þ

where K is the relation matrix defined by the generator, Kij

denotes an element of K , and d0~0 is arbitrarily chosen to assign

the first bases. The algorithm for the construction of TGC is

summarized in the pseudocode (Fig. 10). All k-mers are displayed

by calling tetracode(’’,I ,0), where I is the 3|3 identity matrix.

Visualization of genome contents
We use TGC to visualize genome information represented by

the k-mer frequency f , which is defined by:

f (S)~
(number of S in genome)

( length of genome)
, ð7Þ

where S denotes a k-mer, S~s1s2 � � � si � � � sk, si [ fA,T ,C,Gg.
For sequence analysis, k-mer frequencies relative to some

background frequencies are often more useful than the raw values.

For example, we can adopt the zeroth-order Markov model as the

background frequencies fB:

fB(S)~P(s1)P(s2) � � �P(sk), ð8Þ

where P is the probability of occurrence of a nucleotide in the

genome. Other examples of background frequencies are a higher-

order Markov model for emphasis of longer-range sequence

characteristics and k-mer frequencies of another genome for

comparative genomics.

To demonstrate the contrast between the observed and

background k-mer frequencies, we use the log odds ratio g

defined by:

g(S)~ log2

f (S)

fB(S)
, ð9Þ

which is color-encoded (Fig. 11) and depicted on TGC.

Results and Discussion

Educational use of TGC
In a science outreach event, we used TGC to exhibit the

genomic landscape along the tree of life. The genomic landscape is

displayed in a mobile sculpture that is arranged to accord with a

phylogenetic tree composed of 34 organisms (Fig. 12 and S1).

Specifically, in the mobile sculpture, a fulcrum corresponds to a

branch point of organisms and an object dangling from a

horizontal bar by a rod corresponds to a TGC expressing the

genome information of a specific organism.

In the mobile sculpture, we can observe evolutionary conser-

vation and variation among neighboring organisms at a glance.

For example, organisms in vertebrates have similar patterns in

TGC, whereas those in insects are more diversified as we discuss in

the following subsections in detail. Thus, this mobile sculpture can

give us a concise insight into comparative genomics.

For calculation of a TGC of the complete human genome (total

size of 2.95 Gbp), for example, the calculation time was 28 s

(linearly dependent on genome size) and the memory usage was

17 MB on a normal PC. Thus, the application of TGC is

sufficiently feasible for creating a large mobile sculpture. Further-

more, we provide an auxiliary tool named GENOREP to select an

appropriate number of representatives from a potentially huge set

of genomic sequences as described in Text S1.

Figure 10. Algorithm for displaying TGC of k-mers.
doi:10.1371/journal.pone.0086133.g010

Figure 11. Color coordinate of log odds ratio g.
doi:10.1371/journal.pone.0086133.g011
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Analytical use of TGC
Genome information and CpG methylation. Figure 13

shows the TGC of the human genome. For this and other

examples, we use the frequency distribution of octamers (k = 8) for

color visualization. Since the number of the cells is huge

(48~65536 for octamers), we indicate only the first three letters

common to a closed set of octamers. This display is feasible

because the Gray code has the hierarchical structure as we

mentioned in Introduction. The background frequency is deter-

mined by the zeroth-order Markov model that is constructed from

the given genome itself. The most remarkable feature perceivable

in Fig. 13 is the depletion of k-mers having CpG dinucleotides,

which is demonstrated by the large blue area around the prefix

CG. The CpG depletion is caused by the methylation of the

cytosine of CpG [16]. The spontaneous deamination of methyl-

cytosine causes mutations to thymine, which are difficult to repair

as thymine is a normal DNA component. As the methylation of

CpG is adopted as the functional regulator in vertebrates, the

characteristics of CpG depletion are ubiquitously observed in

vertebrate genomes (Fig. S2–S5).

In invertebrates, such as insects, the patterns of methylation are

much more diversified. In accordance with the observation that

the methylation of the fruit fly (Drosophila melanogaster) genome is

restricted to the early stages of embryonic development [17],

appreciable CpG depletion is not observed (Fig. 14). By contrast,

the CpG methylation in the honey bee (Apis mellifera) genome

contributes to important developmental determinations to become

a queen or a worker [18]. Unexpectedly, however, the CpG-

containing k-mers are overrepresented (Fig. 15) in contrast to the

observations of vertebrate genomes. To solve this discrepancy, we

analyze the methylation of the A. mellifera genome in more detail.

Methylation of A. mellifera genome. The methylation

status of the A. mellifera genome was obtained from the results of

bisulfite sequencing of queen brain genome [19] (accession

Figure 12. Exhibition of TGCs in a science outreach event. The mobile sculpture is composed along the tree of life.
doi:10.1371/journal.pone.0086133.g012

Tetrahedral Gray Code
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number: SRA012457) by means of the same method as that

explained in the original paper [19].

It is known that the methylation sites are specifically located at

exons [19] and CpG methylation of them is used to control the

activities of the genes [20]. Then, we classify a gene into two

categories, methylated and unmethylated, by the criterion whether

the gene has at least one methylated exon or not. The CpG

observation/expectation (o/e) ratios of the A. mellifera genes (i.e.,

f (CG)=f (C)=f (G)) have a bimodal distribution [20] and the

methylated genes are categorized into the low CpG class [19].

Indeed, the average CpG (o/e) ratio of the methylated genes is

0.632 whereas that of the unmethylated genes is 1.13. This result

indicates that the CpG depletion actually occurs in the methylated

genes.

Because of their larger sizes, intergenic regions have a greater

contribution than intragenic regions to the characteristics of the

whole genome. Then, we extract two types of intergenic regions,

those between methylated genes (IGm) and those between

unmethylated genes (IGu). Although the discrimination between

IGm and IGu is made by the methylation states of its adjacent

genes but not by those of IGm and IGu themselves, IGm has

significantly more methylation sites than IGu (Table S1). In

addition, the length of IGm (average 2,880 bp and total *9 Mbp)

is one order of magnitude less than that of IGu (19,133 bp and

*39 Mbp) (Fig. S6). Therefore, IGu is mainly responsible for the

CpG overrepresentation of the A. mellifera genome.

It is still unclear whether the CpG overrepresentation in IGu is

simply explained by the lack of methylation. To answer this

question, we compare IGu with the intergenic regions of the D.

melanogaster genome which is not methylated at the adult stage [17].

TGC is critical for such a comparative analysis, in which we use

the intergenic sequences of D. melanogaster as the background

frequency fB in Equation (9). The result shows that the CpG-

containing k-mers are more overrepresented in the A. mellifera IGu

than in the intergenic regions of D. melanogaster (Fig. 16), suggesting

that the CpGs in A. mellifera IGu are maintained more actively than

the passive effect of unmethylation.

It is notable that not all but only particular CpG-containing

sequences, e.g., CGA, CGT, ACG, TCG, and CGCG, are

overrepresented (Fig. 16). This result suggests the existence of

motifs around CpG. To find a potential motif(s) around CpG in

IGu, we plot the weight matrix, i.e., the log odds ratio m of the

conditional probability:

m(X ,i)~ log2

f (X Di)
f (X )

, X [ fA,T ,C,Gg, ð10Þ

where i is the position from CG and f (X Di) indicates the

conditional frequency of nucleotide X at position i. As shown in

Figure 13. TGC of human genome (Homo sapiens). Octamer
frequencies are depicted. The background frequency is determined by
the zeroth-order Markov model.
doi:10.1371/journal.pone.0086133.g013

Figure 14. TGC of fruit fly genome (Drosophila melanogaster).
Octamer frequencies are depicted. The background frequency is
determined by the zeroth-order Markov model.
doi:10.1371/journal.pone.0086133.g014

Figure 15. TGC of honey bee genome (Apis mellifera). Octamer
frequencies are depicted. The background frequency is determined by
the zeroth-order Markov model.
doi:10.1371/journal.pone.0086133.g015

Tetrahedral Gray Code
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Fig. 17, the most prominent motif is CTCGAG and the second

most prominent motif is CGCGCG.

The consensus sequence CTCGAG coincides with the recog-

nition site of restriction enzyme XhoI. This enzyme is known to

recognize unmethylated CpG, suggesting that the consensus

sequence may be the binding target of a protein that has DNA

binding ability and competes with methyltransferase. By contrast,

the consensus sequence CGCGCG can originate from tandem

repeats of CpG. Because it is known that tandem repeats tend to

be unmethylated in the A. mellifera genome [21], this motif may be

involved in the mechanisms preventing DNA in tandem repeats

from methylation. These motifs are overrepresented in IGu in

comparison with IGm and these characteristics are also conserved

in related species (Fig. S7 and S8). Consequently, CTCGAG and

CGCGCG are considered to be functional motifs specific to the

unmethylated regions and the reason for the CpG overrepresen-

tation is that these consensus sequences having CpG are

significantly conserved in IGu that occupies most of the A. mellifera

genome.

The heterogeneity of the GC content within the A. mellifera

genome has been studied by Kent et al. [22] in association with the

higher recombination rate in GC-rich regions; they showed that

the mutation rate of A/T to G/C is higher than the reverse rate

because of the higher recombination rate in GC-rich regions and

hence the regions are maintained in GC-rich states. Since the

CpG (o/e) ratio and the GC content are statistically independent

of each other, the result of Kent et al. does not directly explain the

CpG overrepresentation in A. mellifera. However, the existence of

the GC-rich motifs we found is consistent with their result because

the motifs should be conserved and hence the mutation rate of G/

C to A/T should be suppressed in the motifs.

Conclusions

We have proposed the tetrahedral Gray code (TGC) to visually

represent the genome information of various organisms. The

mobile sculpture of TGC is informative for comparative genomics.

Indeed, we got the idea of the specificity of the A. mellifera genome

by observing this mobile sculpture. For a single genome, the TGC

condition is useful for finding motif-like structures observed as a

contiguous region with high frequencies. The boundary of such a

region is also important. As k-mers bordering each other on the

boundary differ by only one nucleotide, the drastic change of their

frequencies ensures the importance of this divergent nucleotide.

This contiguous property helps us to better understand the

observed characteristics compared with CGR in which neighbor-

ing k-mers can be completely different.

The structure of TGC is clarified by making its paper craft. In

order to make a paper craft of given genomes, the online and

stand-alone versions of the application, named Padog, are

available at our website:

http://www.genome.ist.i.kyoto-u.ac.jp/,ichinose/padog/.

Supporting Information

Figure S1 Exhibition of TGCs of 34 organisms in a
science outreach event. The mobile sculpture is composed

along the tree of life.

(TIFF)

Figure S2 TGC of mouse genome (Mus musculus).
Octamer frequencies are depicted. The background frequency is

determined by the zeroth-order Markov model.

(TIFF)

Figure S3 TGC of chicken genome (Gallus gallus).
Octamer frequencies are depicted. The background frequency is

determined by the zeroth-order Markov model.

(TIFF)

Figure S4 TGC of frog genome (Xenopus tropicalis).
Octamer frequencies are depicted. The background frequency is

determined by the zeroth-order Markov model.

(TIFF)

Figure S5 TGC of zebrafish genome (Danio rerio).
Octamer frequencies are depicted. The background frequency is

determined by the zeroth-order Markov model.

(TIFF)

Figure S6 Distributions of lengths of intergenic regions
IGm and IGu.

(TIFF)

Figure 16. Comparative visualization of IGu of A. mellifera
genome with intergenic regions of D. melanogaster genome.
Octamer frequencies are depicted. The background frequency is
determined by D. melanogaster genome.
doi:10.1371/journal.pone.0086133.g016

Figure 17. Motif around CpG in IGu regions.
doi:10.1371/journal.pone.0086133.g017
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Figure S7 Normalized motif frequencies of CTCGAG
for seven insects. (A) honey bee, (B) dwarf honey bee, (C) buff-

tailed bumblebee, (D) jewel wasp, (E) red imported fire ant, (F)

silkworm, and (G) pea aphid. The asterisks imply that the motif is

significantly enriched in IGu (significance level: a~0:01).

(TIFF)

Figure S8 Normalized motif frequencies of CGCGCG
for seven insects. (A) honey bee, (B) dwarf honey bee, (C) buff-

tailed bumblebee, (D) jewel wasp, (E) red imported fire ant, (F)

silkworm, and (G) pea aphid. The asterisks imply that the motif is

significantly enriched in IGu (significance level: a~0:01).

(TIFF)

Table S1 Number of methylated or unmethylated CpG
in IGm and IGu.

(TIFF)

Text S1 Details of supporting information.

(PDF)
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