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Maria Angeles Lopez-Garcı́a6, Daniel Osuna1, Enrico Lucarelli4, Francesco Alviano5, Arjan Lankester3,

Katia Scotlandi2, Enrique de Álava1,6*
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Abstract

Background: Ewing Sarcoma (EWS) is a mesenchymal-derived tumor that generally arises in bone and soft tissue. Intensive
research regarding the pathogenesis of EWS has been insufficient to pinpoint the early events of Ewing sarcomagenesis.
However, the Mesenchymal Stem Cell (MSC) is currently accepted as the most probable cell of origin.

Materials and Methods: In an initial study regarding a deep characterization of MSC obtained specifically from EWS patients
(MSC-P), we compared them with MSC derived from healthy donors (MSC-HD) and EWS cell lines. We evaluated the
presence of the EWS-FLI1 gene fusion and EWSR1 gene rearrangements in MSC-P. The presence of the EWS transcript was
confirmed by q-RT-PCR. In order to determine early events possibly involved in malignant transformation, we used a
multiparameter quantitative strategy that included both MSC immunophenotypic negative/positive markers, and EWS
intrinsic phenotypical features. Markers CD105, CD90, CD34 and CD45 were confirmed in EWS samples.

Results: We determined that MSC-P lack the most prevalent gene fusion, EWSR1-FLI1 as well as EWSR1 gene
rearrangements. Our study also revealed that MSC-P are more alike to MSC-HD than to EWS cells. Nonetheless, we also
observed that EWS cells had a few overlapping features with MSC. As a relevant example, also MSC showed CD99
expression, hallmark of EWS diagnosis. However, we observed that, in contrast to EWS cells, MSC were not sensitive to the
inhibition of CD99.

Conclusions: In conclusion, our results suggest that MSC from EWS patients behave like MSC-HD and are phenotypically
different from EWS cells, thus raising important questions regarding MSC role in sarcomagenesis.
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Introduction

EWS is a malignant mesenchymal-derived tumor that mainly

affects children and young adults. EWS usually arises in bone and

soft tissue and is characterized by the presence of a chromosomal

translocation between the EWSR1 gene, in the vast majority of

cases, and a member of the ETS family of genes, typically FLI1

[1]. This gene fusion encodes a chimerical protein responsible for

the transcriptional deregulation of target genes such as the

membrane receptor CD99 [1–3]. Currently, consensus about the

cell of origin of EWS is lacking. This has long been the focus of

intensive research and despite recent studies on Neural Crest Stem

Cells (NCSC) also suggesting that NCSC can be permissive to

EWS fusion, the Mesenchymal Stem Cell (MSC) compartment has

been proposed as the most acceptable possibility [1,4–9]. Together

with the usual primary location of EWS in mesoderm-derived

tissue, in vitro and in vivo evidence, suggests that MSC may be able

to transform into sarcoma-like-cells [10–15]. Moreover, EWSR1-

FLI1 knockdown shifts gene expression profile from EWS towards

an MSC-like signature [16]. Furthermore, the ectopic expression

of the EWSR1 fusion in mouse MSC led to tumor development

with overlapping features with EWS, namely CD99 overexpres-

sion [4]. However these studies were performed in MSC-HD or

mouse MSC, while to date MSC-P have never been studied

[4,10,11,17]. This fact limits our current knowledge regarding

their specific role in sarcomagenesis. More importantly, previous

studies performed in MSC derived from cancer patients other than

sarcomas, namely multiple myeloma or myelodysplastic syndrome,

have shown that in comparison with MSC-HD, MSC from
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patients exhibit a different genomic or transcriptomic profile

[18,19]. Herein, we characterized MSC-P according to their

phenotypical profile and presence of the EWS gene fusion. Our

results revealed that MSC-P behave as MSC-HD thus raising

important questions regarding their role in EWS sarcomagenesis.

Materials and Methods

MSC isolation, expansion and long-term culture
Bone Marrow (BM) samples were harvested by aspiration from

the iliac crest from molecularly-confirmed EWS patients under

general anesthesia. If the primary tumor was located in the iliac

bone, the contra-lateral site was used for BM harvesting (Table 1).

The ethical committee of the Rizzoli Institute, LUMC and

HUSAL approved the studies, and written informed consent was

obtained from all subjects involved. BM mononuclear cells were

isolated by Ficoll density gradient separation. Washed cells were

resuspended in Dulbecco’s modified Eagle’s-low glucose medium

(Gibco, Life Technologies) supplemented with 10% Fetal Bovine

Serum (FBS) and Penicillin/Streptomycin (P/S). Cultures were

maintained at 37uC in 75 cm2 flasks. When cultures reached

approximately 70% confluence, cells were detached by treatment

with trypsin/EDTA and replated, non-adherent cells were

discarded. Cells were stained with trypan blue (Sigma) and

counted in a Neubauer chamber. Cells were divided up to a

maximum of 6 times. A similar approach was used regarding

MSC-HD and MSC from healthy tissues. For full description refer

to supplemental data.

EWS tumor samples
Frozen tissue from EWS samples, (n = 9) were used to assess the

expression of CD90, CD105, CD34 and CD45. All H&E and

CD99 stained sections were carefully examined by experienced

pathologists, confirming the diagnosis.

EWS cell lines culture
EWS cell lines TC71; RM82; RD-ES; STAET1 and A4573

were cultured in RPMI medium (Gibco) with 10% FBS (Gibco).

A673 cell line was cultured in DMEM medium supplemented with

10%FBS. STAET 10, CADO-ES and STAET2.1 were cultured

in RPMI medium supplemented with 20%FBS. All media were

supplemented with 1% Glutamine (Gibco) and 1% P/S (Gibco).

Cell lines have been previously characterized within the

EUROBONET consortium [20].

Multiparameter Flow Cytometry
Cells were collected as described earlier and 26105 cells were

used for each tube.Multiparameter flow cytometry (MFC)

immunophenotypic studies were performed with the following

monoclonal antibody (MAb) combinations: AF700/AmCyan//

PerCPCy5.5/PacificBlue/PE/FITC/APC/PerCPCy7):CD90/CD

45/CD34/CD105/CD99, CD166, CD271/CD54, CD106,CD

19/CD117,CD73,HLA-DR/CD14, CD13 and CD10 (Table S1
in File S1). Cells were stained with the appropriate conjugation of

MAb and incubated out of light for 15 minutes. (Table S2 in File
S1) For CD99 staining, functional studies were performed by

indirect immunofluorescence using cloneO13 (Signet, Dedham,

MA), as primary antibody diluted 1:80 and goat anti-mouse FITC

(Pierce Biotechnology, Rockford, IL), diluted 1:100, as secondary

antibody.

Fluorescence in situ hybridization (FISH)
We used a commercial EWSR1 break-apart FISH probe

(Abbott-Vysis) for the detection of ES fusion transcripts. Further-

more, an additional, home-made dual-colour FISH probe for the

detection of EWSR1-FLI1 rearrangements was developed as

follows: three BAC clones (CTD-2307I11, RP11-53D4, CTD-

2126E12) spanning the chromosomal region (chr11q24.3) and two

BAC clones (RP11-367E7, RP11-480L23) spanning a region on

chromosome (chr22q12.1-12.2) were labeled with spectrum green-

dUTP (green signal) (Vysis Downers Grove, IL) and spectrum red-

Table 1. CD99 intensity levels on MSC-P as assessed by Multiparameter Flow Cytometry.

Sample CD99 MFI1 PN 2 Age Fusion type Primary tumor Remarks

MSC-P-01 + P1 12 EWSR1-FLI1 Humerus -

MSC-P-02 + P2 15 EWSR1 BA3 positive Intramuscular -

MSC-P-03 + P3 18 EWSR1-FLI1 Humerus -

MSC-P-05 + P1 17 EWSR1-FLI1 Iliac crest -

MSC-P-07 + P2 20 EWSR1 BA3 positive Fibula -

MSC-P-08 +/2 P2 17 EWSR1 BA3 positive Fibula -

MSC-P-09 + P3 24 EWSR1 BA3 positive Rib -

MSC-P-10 + P2 21 EWSR1 BA3 positive Th7 -

MSC-P-11 +/2 P2 29 EWSR1-FLI1 Iliac crest MD4

MSC-P-12 +/2 P3 19 EWSR1 BA3 positive L1 vertebra MD4

MSC-P-13 + P2 31 EWSR1 BA3 positive Humerus -

All samples were positive for CD99 with low to moderate levels of intensity. Samples were analyzed at low passages (1–3). Primary tumors were located in distinct
locations and all presented EWSR1 gene rearrangements and EWS-FLI 1 fusion in some cases. This situation was analyzed with comparison to a control which is the
median of all tubes without antibody and intensity levels were calculated with ration between sample/control. (ratio,12 2; ratio around 1 2; ratio = 1, +/2, ratio .2 +,
ratio.10 ++, ratio.100 +++).
1MFI stands for Median Fluorescence Intensity,
2PN stands for Passage Number;
3BA stands for Break Apart;
4MD stands for Metastasis at diagnosis.
doi:10.1371/journal.pone.0085814.t001
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PLOS ONE | www.plosone.org 2 February 2014 | Volume 9 | Issue 2 | e85814



dUTP, respectively, by nick translation (Vysis) and purified after

adding 10 mg of COT-1 (Invitrogen, Carlsbad, CA). To check the

specificity of this probe, hybridizations were performed over

metaphases of peripheral blood cells from healthy donors. FISH

procedure was performed as previously described, on 2-mm-thick

sections [21]. A volume of 10 ml of the diluted probes was applied

to the slides. The slide was covered with a glass coverslip and

sealed with rubber cement. Using a Hybrite machine (Vysis),

denaturation was 75uC for 5 min and hybridization was at 37uC
for at least 16 h. After removing the coverslips posthybridization

washing was done at 46uC in 26SSC, 50%formamide for 5 min

and stained with DAPI (6-diamidino-2-phenylindole) and mount-

ed with Vectashield H-1000 medium (Vector). Digital images were

obtained using a Zeiss Axioplan2 epifluorescence microscope (Carl

Zeiss Oberkochen, Germany) equipped with a digital camera

(ORCA-ER-1394, Hamamatsu Photonics KK, Hamamatsu,

Japan). In all cases, 100 nuclei were counted. TC71 cell line was

used as a positive control of EWSR1-FLI 1 rearrangement.

Differentiation Assays
A minimum of 56104 MSC were cultured on glass slides for two

days in cell culture medium. Afterwards, cells were cultured for 21

additional days in the appropriate differentiation medium, as

described elsewhere [18]. For full description refer to supplemental

data.

Immunohistochemistry
Immunohistochemistry (IHC) was carried out on sections of

frozen tissue using the Envision method (Dako, CA, USA) and

primary antibodies for CD105 and CD90; CD45; CD34 and

CD99 (abcam). IHC staining was evaluated by two pathologists

RNA extraction and qRT-PCR
RNA was extracted using Qiagen RNA mini Kit according to

manufacter’s instructions. 1 ug of RNA was used to produce

cDNA and q-RT-PCR was performed as previously described

[24]. The following primers were used for housekeeping gene

GAPDH: Forward: GCTCCTCCT GTTCGACAGTCA;Re-

Figure 1. Characterization of MSC. (A) In vitro differentiation potential of MSC. In vitro adipogenic differentiation. Representative images show
the light microscopic view of lipid drop accumulation after 3 weeks of culture in control medium and in differentiation induction medium. In vitro
chondrogenic potential of MSC. Representative images show the light microscopic view of alkaline phosphatase activity (detected by a blue-dark
staining) and mineralization after culture in control medium and in differentiation induction medium (detected by red staining). (B) Growth rate
evaluation in MSC-HD and MSC-P. Cells were counted with trypan blue at each passage. Trypan blue selectively colors dead cell in blue whereas live
cells are observed shinning since this marker is unable to enter the cytoplasm when the cell membrane in intact. Both sets of samples presented
similar growth rates and were in continuous growth during these experiments. (C) Immunophenotypic characterization of MSC: positive expression
of CD105, CD90, CD73 and CD106 and negative expression of hematopoietic markers CD34, CD45, CD19 and HLA-DR (light gray represents control
and darker gray represents sample with antibody).
doi:10.1371/journal.pone.0085814.g001
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verse: AATCCGTTGACTCCGACCTTC; and EWS transcripts:

i) EWS-FLI-1 type-1 Forward: ATCCTACAGCCAAGCTC-

CAAGTCA ;EWS-FLI1-type-1 Reverse: ATAA-

GAAGGGTTCTGCTGCCCGTAG; ii) EWS-FLI-1-type-2 For-

ward: GATCCTACAGCCAAGCTCCAAGTCA; EWS-FLI-1-

type-2 Reverse: GATTGGTGGTGTGGGAGGTTGTAT; iii)

EWS-FLI-1-type -3 Forward:GAGAGCGAGGTGGCTTCAAT;

EWS-FLI-1-type-3 Reverse: CCCAAGCTCCTCTTCTGACTG

and iv) EWS-ERG Forward: CCTACAGCCAAGCTC-

CAAGTC; EWS-ERG Reverse: GGAAGGAGATGGTTGAG-

CAG.

Treatments with anti-CD99 MAbs to evaluate apoptosis-
induction

The anti-CD99 0662 MAb was kindly provided by G. Bernard,

INSERM 343, Hospital de l’Archet, Nice, France [22]. Here,

26106 MSC suspended in 200 ml were incubated IMDM 10%FBS

with or w/o 10 mg/ml of 0662MAb. After the indicated time-

points, control and treated samples were washed and evaluated for

Annexin-V–Propidium Iodide evaluation accordingly to the

manufacture’s instructions (Mebcyto Kit, MBL).

Data analysis
Hierarchical clustering analysis performed with MFC data was

carried out using MSC-P (n = 11), MSC-HD (n = 6), MSC-

Adipose derived (n = 1), MSC-Placenta derived (n = 1) and EWS

cell lines (n = 9) in which all markers of the previous panel had

been tested. Clustering was run using standard correlation

coefficients, for the cluster method, a similarity metric and

average linkages were used. The Median Fluorescence Intensity

(MFI) value obtained for each tested marker was stored into a

database and a ratio between the MFI obtained for each marker

and the mean MFI value obtained for that marker in all samples

tested was then calculated. A table with the percentage of cells

analysed for each cell surface marker is shown in Table S2 in File

S1. Clustering was performed after median centering and

normalizing the fluorescence ratios. A logarithmic (base 2)

transformation was applied to the values of this ratio for individual

data sets. The resulting normalized log2 ratios were used for

further statistical analyses with the J-Express Pro V2.1 software

(MolMine AS, Bergen, Norway).

Statistics
Statistical analysis was performed with PAWS (SPSS Inc,

Chicago, IL). U-Mann Whitney test was used to look for

Figure 2. MSC-P lack the presence of the EWSR1-FLI1 chromosomal translocation. (A) Study of the chromosomal translocation between
genes EWSR1 and FLI1 using a EWSR1-FLI 1 homemade-fusion probe(1–3). MSC-P showed two normal copies of both EWSR1 and FLI1 (1 and 2)
whereas in the TC71 cell line we observed not only two normal copies but also one EWSR1-FLI1 fusion, marked by a white arrow (3) Rearrangements
of the EWSR1 gene were studied using a EWSR1 break-apart probe. (4–6) Representative images of MSC-P, EWS-P-01 and EWS-P-02, (4 and 5) failed to
present a break in the EWSR1 gene, whereas the positive control here represented by the TC71 cell line (6), showed a distinctive rearrangement of
this gene, marked by white arrows. (B) Results were validated by q-RT-PCR using EWS cell lines as a positive control. MSC-P, here represented by
Patients 1;2;3;5;6 and 7 as well a healthy donor display a clear negative expression of all the transcripts.
doi:10.1371/journal.pone.0085814.g002

Mesenchymal Stem Cells in Ewing Sarcoma
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significant differences between groups (p values,0.05) and chi-

Square test was used to determine significance in the apoptosis

assay (significance p,0,05).

Results

Characterization of MSC
All samples were fully characterized according to the Interna-

tional Society for Cellular Therapy (ISCT) regarding i) differen-

tiation potential, ii) plastic adherence and iii) determination of

positive/negative surface antigens) [23]. After 21 days of treatment

with adipogenic differentiation medium, lipid droplets were

observed, confirming their potential to differentiate into adipo-

blasts (Figure 1A top panel). MSC were also able to differentiate

into osteoblasts which display alkaline phosphatase activity

together with calcium deposits (Figure 1A bottom panel). In

addition, MSC showed chondrogenic ability, as confirmed by

strong collagen type II positivity (Figure 1A upper-right
picture). All MSC presented plastic adherence. MSC-HD and

MSC-P had similar growth rate as observed in Figure 1B.

Moreover, the samples exhibited a positive expression for the

markers: CD105, CD90, CD73 as well as the adhesion molecule

CD166. Conversely, the hematopoietic lineage markers CD34,

CD45, CD19 and HLA-DR were not found (Figure 1C).

MSC derived from EWS Patients lack EWSR1 gene
rearrangements

We next explored the presence of the EWSR1-FLI1 gene fusion

in MSC-P in all cases. We observed that they lacked this chimeric

gene. (Figure 2A, pictures 1 and 2). Subsequently, we assessed

Figure 3. Immunophenotype of MSC-P versus EWS cells. (A) Comparative study between MSC-HD and MSC-P regarding EWS markers: CD271,
CD54 and CD117. The expression levels of the EWS markers CD271, CD54 and CD117 were evaluated by MFC and medium values of MFI are
represented by groups. (* represent p U-Mann Whitney ,0,05 for MSC-P versus MSC-HD and ** p U-Mann Whitney ,0,001 for MSC-P versus EWS cell
lines). All EWS cell lines present positive expression of CD271, when compared to the control. EWS cell lines show weak expression of CD54 when
compared to the control, with the exception of RDES and STAET1 cell lines with strong positive expression values. EWS cell lines present a
heterogeneous expression of CD117. (B) Table 1 represents CD99 expression in EWS cell lines. EWS cells presented a rather heterogeneous pattern;
nonetheless all cell lines studied here were positive for CD99 expression. Cell lines such as A673 and Cado-ES presented higher levels (score +++) of
CD99 expression, whereas RDES cell line presented the lowest levels (score +) of expression. This situation was analyzed with comparison to a control
which is the median of all tubes without antibody and intensity levels were calculated with ration between sample/control. (ratio,12 2; ration
around 1, 2 ; ratio = 1, +/2, ratio .2 +, ratio.10 ++, ratio.100 +++). (C) CD99 expression in MSC-P and EWS cell lines. CD99 expression is variable
within both groups and similar between the two groups of MSC samples, ranging from weak to moderate, and always lower that the EWS cell lines
tested here. (* p Mann-Whitney,0,05 EWS cell lines versus MSC and MSC-P versus EWS cell lines).
doi:10.1371/journal.pone.0085814.g003
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the presence of possible rearrangements of the EWSR1 gene. We

observed that MSC-P had no rearrangements of this gene

(Figure 2A, pictures 4 and 5). As expected, the EWS cell lines

showed a break on the EWSR1 gene and the fusion gene EWSR1-

FLI1 (Figure 2A, pictures 3 and 6, respectively), therefore

these were used as a control. In order to validate this result we also

performed qRT-PCR for the various EWS transcripts in BM-

hMSC samples. In Figure 2B, it may be observed that in

comparison to EWS cell lines bearing the different transcripts:

TC71 (EWS-FLI-1-type 1; Cado-ES (EWS-ERG); RDES (EWS-

FLI1-type 2) and A4573 (EWS-Fli-type 3), MSC-P did not show

these transcripts.

MSC derived from EWS Patients have a low expression of
EWS markers

The precise immunophenotypic profile of EWS cells has never

been fully established. Here, we analyzed the expression of

CD271, CD54 and CD117 in a panel of EWS cell lines

(Figure 3A).

CD271, the low affinity nerve growth factor receptor, displayed

a heterogeneous expression pattern among the different EWS cell

lines (Figure 3A). CD271 has also been reported to be expressed

in MSC. In this sense, here we observed a significantly higher

expression of CD271 in MSC-HD as compared to MSC-P

(p = 0.01) (Figure 3A). However, it is worth noting that both

MSC-HD and MSC-P presented significantly lower levels of this

marker than EWS cell lines (p,0.05) (Figure 3A).

CD54 (ICAM-1), an adhesion molecule involved in cell-matrix-

cell interactions, was found weakly expressed by all EWS cell lines,

with the exception of RDES and STAET 1 (Figure 3A).

Similarly, CD54 was weakly expressed in MSC, however it was

slightly more expressed in MSC-HD compared to MSC-P

(Figure 3A).

CD117 (C-KIT) has been extensively described as a tyrosine-

kinase receptor overexpressed in EWS cell lines and EWS tumor

samples [24,25,26]. Consistently, most of the EWS cell lines

studied here displayed high CD117 expression levels (Figure 3A).

C-KIT, showed a similar expression in MSC-HD and MSC-P, but

its expression was significantly lower than in the EWS cell lines

(p = 0.001) (Figure 3A).

The plasma membrane expression pattern of EWS cell
lines is globally different from that of MSC

After studying the presence of EWS markers in MSC, we

performed the opposite approach, in which we evaluated the

presence of an exhaustive panel of MSC markers in EWS cell lines

(n = 9). We performed a hierarchical unsupervised cluster analysis

to compare the expression of MSC-positive markers, MSC-

negative markers and EWS markers in all samples. We observed a

clear division into two clusters, one consisting of all the EWS cell

lines and another consisting of all MSC samples (n = 19), which

Figure 4. Comparative study between MSC, EWS cell lines and EWS samples. (A) Hierarchical unsupervised cluster analysis showed two
different clusters, one consisting of all EWS cell lines and the other of all MSC samples. Control was performed using Fluorescence minus one. The
following markers: CD105, CD34, CD45 and CD90 were used in every tube in order to diminish the auto-fluorescence presented by MSC, therefore
these were not contemplated in this analysis, and were validated in frozen tissue from EWS samples. (B) IHC studies in frozen tissue from EWs
samples. Upper panel represents EWS typical morphology as well as CD99 strong expression. Middle panel shows that a strong expression of CD90
and positivity for CD105. Finally, lower panel shows that EWS present negative expression of both CD45 and CD34.
doi:10.1371/journal.pone.0085814.g004

Mesenchymal Stem Cells in Ewing Sarcoma
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included HD, EWS-P and a set of controls, Adipose and Placenta

derived MSC (Figure 4A). Additionally, we evaluated the

expression of the base markers CD90, CD105, CD45 and CD34

one by one in a set of EWS samples (n = 9) by IHC. The EWS

samples presented the typical small round cell morphology and

strong CD99 expression as observed on Figure 4B top panel.

CD90 (Thy-1) was strongly expressed in all EWS samples.CD105

(endoglin) was positively expressed in tumor cells and strongly

expressed in the cells surrounding the tumor vessels (Figure 4B

middle panel). Regarding hematopoietic markers CD34 and

CD45, all EWS samples showed negative expression in the tumor

cells (Figure 4B lower panel). Results were homogeneously

observed in all EWS samples analyzed. Expression of CD90,

CD105, CD34 and CD45 in EWS cell lines, in comparison with

MSC-HD and MSC-P is detailed on Figure S1.

MSC derived from EWS patients presented lower levels of
CD99 expression than that of EWS cells

CD99 transmembrane glycoprotein overexpression is routinely

used as a diagnostic marker of EWS. Herein, we observed that

MSC-P presented low to moderate levels of CD99 expression,

similarly to MSC-HD and significantly lower than EWS cell lines

(p = 0,001) (Figure 3C). As depicted in Table 1, MSC-P

presented comparable intensity levels of CD99 expression between

them. Interestingly, both patients MSC-P-05 and MSC-P-11

presented the primary tumor in the same bone from which MSC

were collected (iliac bone). Despite being closer to the primary

tumor, this MSC presented comparable levels of CD99 intensity to

the other patients. MSC-P presented CD99 levels of expression

lower than EWS cell lines, with the exception of the RDES cell

line, which presented the lowest CD99 intensity. (Figure 3B)

CD99 is heterogeneously expressed in MSC from
different tissue sources

We extended our study on CD99 expression to MSC derived

from different sources of healthy tissues (BM, iliac crest, amnios,

chorion, dental pulp, adipose tissue, and placenta). In this new set

of BM-MSC samples, we observed that CD99 expression was also

quite variable, ranging from negative to overtly positive (Table 2).

Regarding MSC from other healthy tissues, all samples with the

exception of 2 amnios and 2 adipose derived samples, presented

positive CD99 expression (Table 2). Overall, weak to highly

positive expression of CD99 was found in 17 out of 23 (71%) MSC

samples. Of these, at least 11 MSC (scored as ++ and +++)

showing expression levels similar to those found in EWS cell lines.

CD99 engagement does not elicit impairment of MSC
survival

We evaluated whether engagement of CD99 with 0662 MAb

was able to induce apoptosis as previously shown in EWS cells and

MSC (Figure 5A) [27,28]. Cell cultures from different BM-MSC

(n = 5) positive for CD99 at similar levels, were exposed to anti-

CD99 MAb and RDES was used as a control (Figure 5B). We

observed that a mere 15 minute-treatment was enough to induce a

27% of apoptotic cells in RDES (p,0.05), whereas the same

treatment regimen only triggered a 7% of apoptotic population in

MSC (Figure 5C). Furthermore, 4 hours of treatment lead to an

almost complete apoptotic RDES culture (73% annexin-V positive

cells) (p,0.05) but failed to increase significantly the initial

percentage of apoptosis in MSC (Figure 5D).

Discussion

Previous evidence suggesting that MSC would be the most

plausible cell of origin of EWS have stressed the need for deeper

studies of BM-MSC derived from EWS patients. Clinically, the

diagnosis of EWS is based on morphology, by the presence of the

EWSR1-ETS fusions, and the cell surface over expression of

CD99 [1]. The primary aim of our study was to determine early

events in MSC-P, such as the presence of EWSR1-ETS fusions

and differential phenotypic patterns, as a way to unveil cellular

predispositions that could be exploited in therapy. Specifically; we

observed that MSC-P lacked the presence of the EWSR1-FLI 1

fusion gene and further EWSR1 rearrangements. These results

were validated at the DNA and mRNA level. This might not be

surprising, but it is important given that previous studies

performed in Leukemia described that fusion of the MLL

(HRX, ALL-1) gene with its partners, initially arises in prenatal

myeloid cells, which are pre-malignant, which after stages of

progression during development result in fully malignant leuke-

mic-cells in the adult [29].

Subsequently we analyzed the presence of EWS surface

markers. Our goal was to determine events occurring prior to

the translocation that could enable a permissive environment for

cell transformation and perhaps help solve the causal dilemma of

what came first, the EWSR1 fusion or secondary alterations: the

Table 2. CD99 expression in MSC derived from healthy
tissues.

Sample CD99 MFI1 PN2 Localization

BM-DN-TD ++ P4 Iliac crest

BM-DN-HB ++ P5 Iliac crest

BM-DN-001 +++ P6 Iliac crest

BM-DN-005 +++ P6 Iliac crest

BM-DN-HU-1 + P4 Iliac crest

BM-DN-HU-2 + P4 Iliac crest

BM-DN-TD2 ++ P4 Iliac crest

DP-CM ++ P5 Dental Pulp

DP-15 ++ P6 Dental Pulp

DP-49 ++ P6 Dental Pulp

COR-3442 + P5 Chorion

COR-3386 + P5 Chorion

COR-3412 + P6 Chorion

AM-3481 2 P6 Amnios

AM-3386 +/2 P6 Amnios

AM-3396 2 P5 Amnios

PLD-2 ++ P4 Placenta

PLD-3 ++ P4 Placenta

PLD + P5 Placenta

AD-HADAS +/2 P4 Adipose Tissue

AD-HADAS-1 2 P3 Adipose Tissue

AD-ADIPO3412 2 P5 Adipose Tissue

AD-002 ++ P4 Adipose Tissue

CD99 expression levels in MSC derived from normal tissue, including BM; dental
pulp; adipose tissue; chorion; amnios and placenta. Again, intensity levels for
CD99 expression were variable with 11/19 samples presenting moderate/high
expression (scores +++ and ++); 8/19 presenting low levels of expression and 4/
19 with negative CD99 expression. Samples were studied between passages 4
and 6.
1MFI stands for Median Fluorescence Intensity,
2PN stands for Passage Number.
doi:10.1371/journal.pone.0085814.t002
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chicken or the egg? [30]. Our results, however, suggest that the

immunophenotypic profiles of MSC-P and MSC-HD, are similar

regarding EWS surface markers CD99, CD271, CD54 and

CD117. Notwithstanding, our study also revealed that both

EWS cell lines and EWS samples display MSC features such as the

expression of CD90 and CD105 and the lack of the hematopoietic

markers. The absence of CD34 expression in EWS cell lines and

samples, is in fact very interesting, given that autologous stem cell

transplantation has already been considered in clinical trials for

EWS [31]. Our results rule out the possibility of contamination of

the CD34+ niche with tumor cells in auto transplantation.

In line of the above, we cannot discard the possibility of a

cellular hierarchy between MSC expressing CD99; cellular pre-

malignant stages presenting EWSR1 gene rearrangements and

gene deregulation, gradually losing MSC phenotype and; finally a

fully malignant EWS cell bearing the EWSR1 fusion, overex-

pressing CD99 and maintaining some MSC phenotypical charac-

teristics such as CD90 and CD105.

Since MSC also express CD99, and taking into account that

CD99 is a promising target for innovative therapies in EWS, we

felt the need to study possible cytotoxic effects of anti-CD99

therapies on MSC. CD99 is, in fact, overexpressed in over 99% of

EWS cells and has been considered as a key causative of EWS

malignancy and a potential therapeutic target [1,3]. Contradictory

data suggest that on the one hand, induced expression of EWSR1-

FLI1 upregulates CD99. On the other hand, however, when

EWSR1-FLI1 was knocked down in EWS no changes in CD99

expression were reported [6,11,32].These observations may

actually be reconclied by our finding that MSC show variable

baseline expression levels of CD99. The physiological functionality

of CD99 remains unknown, but CD99 knockdown in EWS cells

induced their neural differentiation and reduced cell malignancy

[33]. Altogether, our previous data confirmed that both EWSR1-

FLI1 and CD99 are absolutely critical for EWS oncogenic

phenotype maintenance [33]. Additionally, in EWS, the engage-

ment of CD99 with antibodies resulted in apoptosis of EWS cells

[34–36]. Here, we observed that MSC displaying similar CD99

expression levels to EWS cells were unable to undergo apoptosis

when exposed to 0662. This finding is of particular interest in

terms of future clinical application of CD99 targeted therapies,

since it sustains the limited toxicity to MSC and potentially high

specificity of this therapeutic approach in EWS patients. However,

toxicity towards other cell types expressing CD99, should also be

tested.

In conclusion, i) MSC-P behave like MSC-HD and are

phenotypically different from EWS cells; ii) CD99 is variably

expressed among MSC derived from normal tissues, and finally iii)

anti-CD99 therapies induce massive cell death in EWS cells while

Figure 5. Cytofluorimetric analysis of CD99 expression on RD-ES cell line and BM-MSC. A) Dotted line represents cells stained with
secondary antibody alone; solid profile represents cells stained with anti-CD99 antibody. In each panel, the ordinate represents the number of cells.
All the 5 MSC used for functional assays presented similar levels of CD99 expression. (B) Time-course analysis of apoptosis after exposure to anti-CD99
0662 MAb. RD-ES is used as positive control. Cell death was determined by examining annexin V-FLUOS binding with flow cytometry. Early-apoptotic
cells were annexin V-positive and PI -negative (Lower-Right region). Late apoptotic/necrotic cells were annexin V- and PI-positive (Upper-Right
region). Results shown here are representative of all the 5 CD99-highly positive MSC. (C) Percentage of living, apoptotic and necrotic cells observed in
cells (two representative cultures of BM-MSC and RD-ES EWS cell line) treated with anti-CD99 MAb for 15 min or (* represents statistical significance in
comparison to control p,0,05)(D) 4 hrs. The assay was performed on detached cells. The EWS cell line shows an increment in the percentage of
apoptotic and necrotic cells after CD99 engagement, whereas the BM-MSC show similar percentages of alive and dying cells in treated or untreated
conditions. (* represents statistical significance in comparison to control p,0,05).
doi:10.1371/journal.pone.0085814.g005
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maintaining viability and integrity of MSC with similar CD99

expression.
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