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Abstract

Ionic liquids (ILs) are room-temperature molten salts that have applications in both physical sciences and more
recently in the purification of proteins and lipids, gene transfection and sample preparation for electron microscopy
(EM) studies. Transfection of genes into cells requires membrane fusion between the cell membrane and the
transfection reagent, thus, ILs may be induce a membrane fusion event. To clarify the behavior of ILs with cell
membranes the effect of ILs on model membranes, i.e., liposomes, were investigated. We used two standard ILs, 1-
ethyl-3-methylimidazolium lactate ([EMI][Lac]) and choline lactate ([Ch][Lac]), and focused on whether these ILs can
induce lipid vesicle fusion. Fluorescence resonance energy transfer and dynamic light scattering were employed to
determine whether the ILs induced vesicle fusion. Vesicle solutions at low IL concentrations showed negligible fusion
when compared with the controls in the absence of ILs. At concentrations of 30% (v/v), both types of ILs induced
vesicle fusion up to 1.3 and 1.6 times the fluorescence intensity of the control in the presence of [Ch][Lac] and [EMI]
[Lac], respectively. This is the first demonstration that [EMI][Lac] and [Ch][Lac] induce vesicle fusion at high IL
concentrations and this observation should have a significant influence on basic biophysical studies. Conversely, the
ability to avoid vesicle fusion at low IL concentrations is clearly advantageous for EM studies of lipid samples and
cells. This new information describing IL-lipid membrane interactions should impact EM observations examining cell
morphology.
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Introduction

Ionic liquids (ILs), molten salts with low melting temperatures
(<100 °C), are a complex of anionic and cationic ions. ILs have
unique characteristics, including high ionic conductivity, a wide
range of viscosities and are nonvolatile. These features make
ILs suitable for many applications such as surface finishing,
electrochemical deposition, electroplating and formation of
carbon nanotubes. Recently, ILs have been used in analytical
biochemistry examining proteins and lipids by replacing
conventionally used organic solvents such as methanol/
chloroform and acetonitrile. For example, ILs provide matrices
for matrix-assisted laser desorption and ionization (MALDI) of
biomolecules in mass spectroscopy [1] and they improve the

homogeneity of ionized molecules and ion yield [2,3]. ILs have
also been used to enhance the separation of proteins [4] in
sodium dodecyl sulfate polyacrylamide gel electrophoresis
(SDS-PAGE), chromatography techniques including high
performance liquid chromatography (HPLC) [5], hydrophobic
interaction chromatograph [6], gas chromatography [7,8].
Furthermore, if suitable preparation conditions can be found
that ensure regular, high quality crystals then various soluble
and transmembrane proteins can be examined, thus promoting
protein structure-function studies. However, preparing high
quality protein crystals with good diffraction properties for better
3D structure estimation is often a difficult task. In this point, ILs
also can provide better conditions for protein crystallization [9].
In addition, ILs have been studied as gene transfection
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reagents [10]. This application suggests that ILs may also aid
membrane fusion.

Polyethylene glycols (PEGs) show features that are similar to
the interactions that ILs make with biomolecules. PEGs are
polymers of ethylene glycol and have average molecular
weights of 180−3,500,000. PEG has been a common reagent
used for protein precipitation and purification of proteins by
liquid chromatography-mass spectrometry, because of their
ability to induce liquid biphases [4]. PEG improves the protein
crystallization process by eliminating water between protein
molecules and the inner structures of proteins. PEGs are also
useful for purification of antibodies [11], DNA precipitation [12]
and are also used as carriers for DNA transfection of cells [13],
initiators of membrane fusion between cells [14,15] and lipid
vesicle-vesicle fusion [16].

Since PEGs and ILs share similarities in influencing
intermolecular interactions, ILs may induce membrane fusion,
the possibility can be predicted based on the observed
properties to improve ILs-lipid molecules interactions. In this
study, we have used fluorescence resonance energy transfer
(FRET) and dynamic light scattering (DLS) to study the
interaction of ILs with model liposome membranes. The ILs we
used were part of the lactate ([Lac])-series ILs, namely the
commonly used 1-ethyl-3-methylimidazolium lactate ([EMI]
[Lac]) and choline lactate ([Ch][Lac]). Our data demonstrated
that ILs can induce lipid vesicle fusion under high IL
concentrations without lipid vesicle aggregation.

Materials and Methods

Materials
1-Ethyl-3-methylimidazolium lactate ([EMI]

[CH3(OH)CHCOO]) and choline lactate ([Ch]
[CH3(OH)CHCOO]) were synthesized and purified as reported
previously [17]. 1,2-Dioleoyl-sn-glycero-3-phosphocholine
(DOPC), cholesterol (chol), 1,2-dipalmitoyl-sn-glycero-3-
phosphoethanolamine-N-(Lissamine Rhodamine B Sulfonyl)
(N-Rh-PE) were purchased from Avanti Polar Lipids (Alabaster,
AL). Sphingomyelin (SM; chicken egg) were purchased from
Avanti Polar Lipids and Sigma (Saint Louis, MO). N-(7-
Nitrobenz-2-Oxa-1,3-Diazol-4-yl)-1,2-dihexadecanoyl-sn-
glycero-3-phosphoethanolamine, triethylammonium salt (N-
NBD-PE) was purchased from Invitrogen (Eugene, OR).
Reagent grade chloroform and methanol were purchased from
Wako (Osaka, Japan).

Lipid vesicle preparation
Large unilamellar vesicles were prepared according to

established methods [18]. To 1:1 (mol/mol %) DOPC/SM in a
3:1 chloroform/methanol solution was added 30 mol% chol of
DOPC+SM and 0.5 mol % of N-NBD-PE and N-Rh-PE. After
the solvent was removed by a stream of N2 gas, the lipids were
dried overnight in a vacuum and then hydrated in a phosphate
buffer (pH 7.4) at 50−55 °C for 1 h and converted to
multilamellar vesicles by rigorous mixing. Large unilamellar
vesicles were prepared from this solution by 21 extrusion
cycles at 55 °C with an Avanti Polar Lipid extruder equipped

with a 100-nm pore size polycarbonate membrane (Whatman,
Florham Park, NJ). The final lipid concentration was 0.52 mM.

Fluorescence resonance energy transfer (FRET)
analysis

FRET signals were detected by a Hitachi F4500
fluorescence spectrophotometer (Hitachi High-Technologies
Corporation, Tokyo, Japan), and measurements were carried
out as described previously [18–20]. Each sample consisted of
two types of DOPC-SM-chol unilamellar vesicles. One of the
vesicles contained two fluorescent probes (0.5 mol% of N-
NBD-PE and N-Rh-PE), whereas the other vesicles contained
no FRET probes. The FRET donor NBD-PE was excited at 473
nm and the emission intensity of the Rho-PE as the acceptor
were monitored at 580 nm. All FRET measurements were
carried out at room temperature (25–26 °C), as controlled by a
recirculating chiller (Cool Ace CAE-1000A, Tokyo Rikakikai
Co., Ltd., Tokyo, Japan).

Dynamic light scattering (DLS) measurements
Lipid vesicle sizes were obtained by 633 nm light scattering

with a Malvern Zetasizer Nano series zen3600 (Malvern
Instruments Ltd., Worcestershire, UK) at room temperature.
We measured unilamellar vesicle sizes in the absence of ILs,
followed by measurements at various concentrations of ILs. We
averaged nine independent measurements of vesicle sizes,
where each measurement was a mean of 13−15 readings by
the instrument. All data were analyzed by the Zetasizer
software (Malvern Instruments Ltd.). To correct the DLS data
for changes in viscosity, we used a DV-II+ Pro viscometer
(Brookfield Engineering Laboratories, Boston, MA) and
measured the viscosity of the ILs at each concentration (10, 20
and 30%) and at room temperature. The torque conditions
were set at 60 and 100 rpm, and we confirmed there was no
difference between 60 and 100 rpm due to the IL viscosities.
Size distributions of liposomes were fitted with the Origin ver.
7.5J software (Origin Lab, Northampton, MA).

Results

ILs-induced vesicle fusion detected by FRET
Figure 1 depicts the anionic and cationic structures of the

[EMI][Lac] and [Ch][Lac] ILs used in this study and Figure 2
describes the FRET mechanism which is presented in the
Materials and Methods section.

Normally, we cannot detect Rho-PE light emission because
of quenching caused by the close proximity of the NBD-PEs
and Rho-PEs within the same vesicle membrane (Figure 2A).
However, if vesicle fusion occurs between the labeled and
unlabeled vesicles, the distance between the NBD-PE and
Rho-PE is increased by the expansion of the vesicle surface
area and the NBD-PE energized Rho-PE emission is no longer
quenched. Thus, we observe an increase in Rho-PE emission
due to IL-induced vesicle fusion (Figure 2B). We investigated
lipid membrane (vesicle) fusion by FRET at IL concentrations
(volume/volume) of 10% (Figure 3A), 20% (Figure 3B) and
30% (Figure 3C). At 10% (v/v) of [EMI][Lac] (black line), no
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significant difference in the FRET signal was observed.
However, for the 20% and 30% IL concentrations (Figure 3B,
C), we observed that [EMI][Lac] showed higher fluorescence
intensities than [Ch][Lac]. Figure 3D plots the maximum
fluorescence intensity values (plateaus) at each concentration
of the ILs. These data demonstrate that both [EMI][Lac] and
[Ch][Lac] induce vesicle fusion, and that [EMI][Lac] is more
effective than [Ch][Lac]. The FRET intensity remained constant

when the maximum levels were reached, with only small
fluctuations (data not shown). The time delay for the increase
in fluorescence intensity following the addition of ILs to the
vesicle solutions varied owing to the vesicle fusion process.
Thus, the fluorescence intensity without ILs was measured first
as a control and then the intensities in the presence of ILs were
measured. The fluorescence intensities were averaged and
normalized with the control intensities.

Figure 1.  Structure of ionic liquids (ILs).  Schematic of the ion groups [EMI], [Ch] and [Lac]. [EMI][Lac] and [Ch][Lac] have
different cationic groups.
doi: 10.1371/journal.pone.0085467.g001
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The effect of ILs on vesicle sizes by DLS
measurements

Increased FRET was observed because of the expanded
surface area of the fused vesicles and the distance of NBD-PE
and Rho-PE are applicable for fluorescence energy transfer. To
eliminate the possibility that FRET occurred because of a
possible phase transition induced by ILs added to the vesicle
solution, we used DLS to determine the average vesicle size
before and after the addition of the ILs. The viscosities of [EMI]
[Lac] were 1.49, 2.08 and 3.02, and those of [Ch][Lac] were
1.40, 1.73 and 2.28 at 10, 20 and 30% (v/v), respectively.

In Figure 4, the circles indicate the vesicle diameter
distribution before the addition of the ILs; the peak of the

distribution is 122.4 nm (Figures 4A, B). In the presence of
30%- [Ch][Lac] and [EMI][Lac], the peaks of the distributions
increase to 220.5 nm (Figure 4A, black square) and 255 nm
(Figure 4B, black square)), respectively. When the
concentrations of both ILs were increased from 10 to 30%, the
vesicle diameters increased (supporting data). This is depicted
in Figure 5, which shows the relative increase in peak size of
the vesicles as a function of IL concentrations. Viscosities of
ILs used in this experiment are very low, thus changes in
vesicle sizes were primarily due to the addition of ILs. The DLS
data support the expansion of the vesicles sizes by ILs, as
observed in the FRET experiments.

Figure 2.  Schematic of the FRET mechanism with respect to vesicle fusion.  (A) When the fluorescent probes NBD-PE and
Rho-PE are in a single vesicle, the distance between them is very short, causing fluorescence quenching and no energy transfer.
(B) When a probe-labeled vesicle fuses with a non-labeled vesicle, the membrane surface area increases significantly. Thus, the
larger distance between NBD-PE and Rho-PE is optimal for fluorescence energy transfer and emission from Rho-PE is observed.
Note that the fusion of non-labeled vesicles is not undetected. Furthermore, if labeled lipid vesicles fuse, emission depends on the
distances between the NBD-PE and Rho-PE probes.
doi: 10.1371/journal.pone.0085467.g002
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Discussion

We have demonstrated that at high concentrations two
different ILs induced lipid membrane fusion. IL-water and PEG-
water hydrogen bonding are key factors in understanding the
vesicle fusion mechanisms. PEGs, [EMI][Lac] and [Ch][Lac] not
only exhibit similar effects on protein crystallization, but they
also have similar Kamlet-Taft parameters (α, β and π*) [21]
(see Table 1). The α, β and π* define the hydrogen bond
acidity, hydrogen bond basicity and dipolarity/polarizability
effects, respectively, in solvents. The Kamlet-Taft parameters
for the ILs are given in Table 1 and are estimated by reference
to literature. Detailed information describing these parameters
are found in some literatures [22–24]. PEGs induce lipid
membrane fusion via water interactions and when the β value

of ILs is >0.7 the ILs show properties that are similar to each
other. Thus, [EMI][Lac] and [Ch][Lac] probably interact with
water via hydrogen bonding in a manner similar to PEGs.
Generally, the molecular structure of an anion group has an
effect on hydrogen bond donor ability [25]. In this study, we
have used ILs with the same anion groups, so this feature is
probably the reason that both ILs induced membrane fusion.
However, [EMI][Lac] was found to show much greater ability to
induce vesicle fusion than [Ch][Lac]. This observation may be
due to the different cationic groups, which have different
hydrogen bonding acceptor abilities (β values).

Since lipid vesicles exist in water, the interaction of vesicles
with PEGs and ILs probably involves similar bonding
interactions and may be the basis in which ILs induce vesicle
fusion. PEGs absorb and remove water from the surface of

Figure 3.  Effect of ILs on the FRET ratio for DOPC-SM-Chol bilayer vesicles.  [EMI][Lac] and [Ch][Lac] were used at 10% (A),
20% (B) and 30% (v/v) (C). For the 20% and 30% concentrations, [EMI][Lac] (black line) shows a higher ability to induce membrane
fusion than [Ch][Lac] (red line). However, there were no distinct differences between [EMI][Lac] and [Ch][Lac] at a concentration of
10% (v/v) (A). (D) Shows the maximum FRET fluorescence intensity changes (normalized) as a function of [EMI][Lac] and [Ch][Lac]
concentrations. At 30%-[EMI][Lac] (black square), the ratio of membrane fusion ability was ≈1.4 times higher than that of [Ch][Lac]
(red square) at the same concentration.
doi: 10.1371/journal.pone.0085467.g003
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Figure 4.  Comparison of vesicle diameters with and without 30% [Ch][Lac] and [EMI][Lac].  30%-[Ch][Lac] (A) and 30%-[EMI]
[Lac] (B), as detected by DLS. The circles indicate the vesicle diameter distribution before the addition of the ILs. For [Ch][Lac], the
peak diameter increased from 122.4 to 220.5 nm, and for [EMI][Lac], the peak increased to 255 nm. Furthermore, the population of
vesicle diameters larger than 400 nm was greater for [EMI][Lac] than for [Ch][Lac].
doi: 10.1371/journal.pone.0085467.g004
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vesicles. Consequently, the polar head groups of the outer
lipids bond to each other. The inner lipids of the bilayer then
fuse, followed by total membrane fusion [26]. If this mechanism
is applicable to ILs, they must be in close proximity of the lipid
polar head group-water interface. Evans et al. reported that the
ILs induce the formation of a cholesterol-water interface in 1-
butyl-3-methylimidazolium chloride ([BMI]Cl) and 1-butyl-3-
methylimidazolium bis (trifluoromethylsulfonyl)imide ([BMI]
[Tf2N]) in a cholesterol bilayer solution [27]. This occurs even
though the ILs have a different affinity owing to the anionic
structures. Despite the fact that [BMI]Cl has a high β value and
[BMI] [Tf2N] has a low β value [28], both ILs form a cholesterol-
water interface. These observations suggest that [EMI][Lac]
and [Ch][Lac] will also localize around the lipid-water interface
in a vesicle solution. Furthermore, another study reported that
[EMI] ethyl sulfate in excess water interacts with water via the
hydrogen atoms on the [EMI] imidazolium ring [29]. Taken

Figure 5.  Comparison of the vesicle diameters at various
concentration of [Ch][Lac] and [EMI][Lac].  Comparison of
the vesicle sizes between control vesicles and the presence of
30%-[EMI][Lac] or [Ch][Lac] (see Supporting Data). For both
ILs, peak sizes became larger with increasing IL concentration.
doi: 10.1371/journal.pone.0085467.g005

Table 1. Comparison of the physico-chemical properties
between PEG and ILs.

 α β π* ET
N

PEG-600 0.32 0.66 0.84 0.522
[Ch][Lac] 0.59 0.80 1.12 0.68
[EMI][Lac] 0.50 0.95 1.08 0.62

Comparison of Kamlet-Taft parameters for PEG, [EMI][Lac] and [Ch][Lac]. Values
of α and β were very similar in all three materials, which implies that PEG, [EMI]
[Lac] and [Ch][Lac] exhibit similar hydrogen bonding forces. The π* values are also
similar, which indicates that the charge distributions are similar. From those
properties, PEG, [EMI][Lac] and [Ch][Lac] should have similar water affinities.
doi: 10.1371/journal.pone.0085467.t001

together, [EMI][Lac] and [Ch][Lac] probably localize at the lipid
bilayer-water interface, and by hydrogen-bonding, remove
water from the surface of the vesicle. This then causes the
polar portions of the lipid vesicles to bond, as discussed above.

The FRET data indicated that [EMI][Lac] has a greater ability
to induce membrane fusion than [Ch][Lac] under high IL
concentrations. In contrast, Figure 3 and Figure 4 revealed
negligible vesicle fusion at low (10% v/v) concentrations for
both ILs. Thus, the hydrogen bonding interaction between the
C-H groups of [EMI] and water are weaker if there is excess
water [29], and low concentrations of ILs will not absorb water
surrounding the vesicles in sufficient quantities. Consequently,
the probability of adhesion and fusion of the vesicles will be
markedly reduced. Therefore, the ILs-water, ILs-lipid and lipid-
water interactions depend on how much water is present. The
subtle fluctuations in fluorescence intensities (data not shown)
observed in the plateau region following the emission maxima
may be due to perturbations of the lipid membrane caused by
subtle changes in the hydrogen bonding forces in the ILs-
water-vesicle interaction.

Since PEGs have been used as a regent to induce cells/
membranes fusion, we measured how vesicle sizes changed
by PEG (1.1mg/ml, [16]), [EMI][Lac], or [Ch][Lac] using DLS.
However, in the presence of 3% (v/v) PEG in a liposome
solution, the polydispersity index (PDI) showed over 0.4−1.0.
This shows that PEGs transformed homogeneous lipid vesicle
solutions to heterolytic and polydisperse systems, and this
sample system is not suitable for DLS measurements. On the
other hand, when [EMI][Lac] or [Ch][Lac] were mixed with lipid
vesicle solutions, the PDI values were under 0.4 (primarily
between 0.15−0.33) and we could carry out the DLS
measurements successfully. This comparison also indicated
PEGs cause significant aggregation with vesicles in their
cluster. In contrast, both ILs used in this study do not induce
aggregation like PEGs, even both ILs enlarged the size of the
liposomes. These phenomena of PEG support the previous
observation that PEGs cause aggregation of vesicles as an
early process of phospholipid vesicle fusion [30] .

Recently, ILs have been used for preparing samples for
electron microscopy (EM). ILs can prevent the electrization of
samples by an electrification phenomenon known as “charge-
up” on the surface of biological samples. This problem can be
remedied by a simple procedure that introduces ILs to
biomaterials to the sample, which allows significantly shorter
preparation times. In addition, time-consuming metal coating
procedures with Pt and/or C are no longer required when ILs
are used. These benefits expand applications and increase the
efficiency of sample preparations. Figure 6 shows TEM images
using [EMI][Lac]- and [Ch][Lac]-liposome. Liposomes were
extruded through a 100 nm pore membrane. Since the TEM
environment is under a vacuum, it was not possible to directly
compare the FRET, DLS and TEM imaging data under
equivalent conditions. We found both ILs enlarged liposome
sizes in TEM imaging, and the vesicle morphology was kept
under vacuum conditions. From these additional results, the ILs
that we used in this study should be available for liposome
imaging by TEM.
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Conclusions

This study is the first to report that high concentrations of ILs
induce lipid membrane fusion without aggregation, as detected

Figure 6.  TEM imaging of liposomes with ILs and
PEG.  After the addition of each [Ch][Lac] and [EMI][Lac] to
liposome solutions, and lipids composition and ratio of
liposomes were same with FRET and DLS measurements.
Samples were put on mesh for EM, and the removal of excess
water/sample was carried out. Samples were then set into the
TEM. In the case of [Ch][Lac]-liposomes (A), there are various
sizes of liposomes between 340−780 nm. In the case of [EMI]
[Lac]-liposomes (B), liposomes became larger than [Ch][Lac]-
liposomes, and the sizes were approximately 1−1.7 μm. Both
of the IL-liposomes shapes remained circular.
doi: 10.1371/journal.pone.0085467.g006

by both FRET and DLS. We found both ILs also enlarged
liposome size by TEM. However, low concentrations of ILs
hardly affected the vesicles and should represent suitable
conditions for artifact-free preparation of EM samples [17]. EM
is becoming a powerful tool for cell biology by imaging surface
and intracellular structures at high resolution. Since ILs have
high electrical conductivity [31], they behave like metal coatings
for the imaging of cells. Furthermore, ILs emit secondary
electrons more readily than metals, thus enabling secondary
electron images without sample charging. Biological sample
preparations are challenging, so it is anticipated that ILs will
improve these technical issues associated with EM. Wider
applications of ILs with a better understanding of their
interactions with biomolecules could open new areas in the
field of biological sciences. Therefore, future studies will
investigate the relationship between ILs and biomaterials or
biomolecules in order to expand the potential of EM.

Supporting Information

Figure S1.  Size distributions of vesicles under various
concentrations of ILs. The IL concentrations were 10, 20 and
30% (v/v) in the vesicle solution. For both ILs, the maximum
size of the vesicles increased with increasing IL concentration.
In addition, the width of the size distribution became broader
under increasing IL concentrations.
(TIF)
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