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Introduction

Thermodynamics-based ab initio RNA secondary structure

algorithms are used to detect microRNAs [1], targets of

microRNAs [2], non-coding RNA genes [3], temperature-

dependent riboregulators [4], selenoproteins [5], ribosomal

frameshift locations [6], RNA-protein binding sites [7], etc. The

importance and ubiquity of RNA thermodynamics-based algo-

rithms cannot be overemphasized – there are even applications in

RNA design for novel cancer therapies and in synthetic biology.

Indeed, in [8] Vashishta et al. used the RNA minimum free energy

(MFE) structure prediction algorithm mfold [9] to design seven

anti-pCD ribozymes, four of which were cloned, stably transfected

in the highly metastatic human breast cancer cell line, MDA-MB-

231, and shown to have a therapeutic potential by knocking down

the expression of pCD. (Procathepsin D (pCD) is correlated with

highly invasive malignancies, such as breast cancer. Ribozymes,

first discovered by the Nobel laureats, T. Cech and S. Altman, are

RNA enzymes that can cleave a molecule or catalyze a reaction.)

Following pioneering work of the Tinoco Lab and Freier et al.

[10], a number of increasingly sophisticated nearest neighbor models

have been defined: INN [11,12], INN-HB, also called Turner99

[13], Turner2004 [14,15], as well as models that incorporate

knowledge-based parameters [16,17]. These free energy param-

eters of the nearest neighbor (NN) model form the foundation for

essentially all current thermodynamics-based RNA algorithms:

minimum free energy (MFE) secondary structure [9,18], Boltz-

mann partition function [19], maximum expected accuracy

secondary structure [20], MFE secondary structure with pseudo-

knots [21], sampling suboptimal structures [22], RNA sequence-

structure alignments [23], etc.

Benchmarking studies have shown that, on average, the

minimum free energy structure includes 73% of base pairs in X-

ray structures when domains of fewer than 700 nucleotides (nt) are

folded [24]; i.e. prediction sensitivity of the MFE structure is 73%,

although accuracy drops as sequence length increases. There is

increasing evidence that by improving the free energy parameters,

structure prediction accuracy can be improved. Andronescu et al.

[16] used combinatorial optimization to determine optimal

weights a,b for which energy parameters are determined by a-

weighted contribution from Turner’s free energies together with b-

weighted contribution from knowledge-based potentials, the latter

obtained from the negative logarithm of frequencies in existent

structure databases. Free energy parameters in the Turner model

are determined by a least-squares fit of UV absorption data based

on the assumption that change in heat capacity, DCP, is zero. This

assumption is erroneous, as pointed out by Mikulecky and Feig

[25], who observed that the hammerhead ribozyme does not fold

in 2-state transition, but rather has 3 states: cold denatured, folded

and hot denatured. In [17] M. Bon improved MFE structure

prediction by defining new parameters for the nearest neighbor

model that account for linear dependence of change DCP of heat

capacity on sequence length and by incorporating knowledge-

based potentials from a hand-curated selection of Sprinzl’s transfer

RNA database [26].

Subsection 1.1: Motivation from protein helix-coil
transition

Consider a coarse-grain classification of amino acids, where a

polypeptide chain is given by an n-mer, or length n sequence

a1, . . . ,an of amino acids, where each residue ai is either in an H

(a-helix) or C (coil) conformation. Assume that the energy of an a-

helical residue is E(H)~E0v0, while that of a coil residue is

E(C)~0. A protein with many residues in an a-helical confor-

mation at room temperature, such as hemoglobin, will unfold into

a random coil at a higher temperature, where all previous H

residues have been transformed into C residues. In particular, if
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a1, . . . ,an is an a-helix, then at low temperature, all residues are H,

while at high temperature all residues are C. The partition

function Z of a1, . . . ,an is defined by Z~
P

s exp({E(s)=RT),

where the sum is taken over all 2n many sequences s of H’s and

C’s. Using the (temperature-dependent) partition function, we can

compute the expected number SHT of a-helical residues for the n-

mer a1, . . . ,an at absolute temperature T , defined by

SHT~
L ln Z

L ln s
ð1Þ

where s~exp({E0=RT) – see [27]. Subsequently, it is possible to

plot the expected helical fraction
SHT

n
as a function of temperature.

Non-cooperative energy models show an approximately linear

relation, where the expected helical fraction slowly decreases as

temperature increases. In contrast, the plot of expected helical

fraction versus temperature for cooperative energy models displays a

sigmoidal shape, where there is an abrupt helix-coil transition from

high to low values for the helical fraction that occurs at a critical

temperature TM .

Polymer theory provides several mathematical models to

explain the temperature-dependent helix-coil transition for proteins.

The simplest polymer model for the helix-coil transition of an a-

helix is the non-cooperative model, where the probability that the

each residue is H is independent of the conformation of every

other residue. The cooperative, nearest-neighbor model for helix-

coil transition, introduced by Zimm and Bragg [28], includes

nucleation free energy dw0 that is applied for each a-helical

segment of contiguous H residues. Finally, the Ising model was

introduced by E. Ising in 1925 [29] to explain ferromagnetism, but

has subsequently been used to model protein temperature-

dependent helix-coil transitions – see, for instance [30]. Progress-

ing from the independent model to the Zimm-Bragg model to the

Ising model, each model is increasingly cooperative, thus

providing a better fit to the experimental data. See Dill and

Bromberg [27] for a more detailed discussion.

In the Nussinov energy model [31] for RNA secondary

structure, the free energy of a secondary structure S is defined

to be {1 times the number DSD of base pairs of S; i.e. in the

Nussinov model, each base pair contributes an energy of {1, and

there is no energy term for entropic considerations. The Turner

energy model [13,32] for RNA secondary structure contains

negative free energies for base stacks, which depend on the

nucleotides involved, such as the base stacking free energy of

{2:24 kcal/mol at 370C for
5’{AC{3’

3’{UG{5’
and of {3:26 kcal/

mol for
5’{CC{3’

3’{GG{5’:
. Additionally the Turner energy model

contains free energies for various loops (hairpin, bulge, internal

loop, multiloop) that include entropic considerations. Clearly, the

Turner energy model for RNA secondary structure is analogous to

the cooperative, nearest-neighbor model for helix-coil transitions

introduced by Zimm and Bragg. Figure 1 contrasts the temper-

ature-dependent cooperativity of the Turner energy model with

the temperature-independent non-cooperativity of the Nussinov

energy model. The motivation for this paper is to solve the

equation:
?

Turner
~

Ising

Zimm{Bragg
. Though we do not determine

Figure 1. Graph of the expected number of base pairs as a function of temperature for signal recognition particle with Rfam [56]
accession number X12643. Temperature in degrees Celsius is given on the x-axis, while the expected number of base pairs Sbase pairs=nT,
normalized by sequence length n, is given on the y-axis. Note the linear dependence on temperature for the non-cooperative Nussinov energy
model, in contrast to the sigmoidal dependence on temperature for the cooperative Turner energy model. Data and figure taken from our paper [57].
doi:10.1371/journal.pone.0085412.g001
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the analogue of the Ising model for RNA secondary structure

formation, we do introduce an extended nearest-neighbor model, also

called triplet or next-nearest-neighbor model, which displays somewhat

more cooperativity, as displayed in the sharpness of the transition

from folded to unfolded state in a figure shown later in the paper.

Subsection 1.2: Triplet model
As previously mentioned, the nearest-neighbor energy model

[13,32] assigns free energies for base stacks of the form

5’{AB{3’

3’{DC{5’
for the formation of a stacked base pair between

5’{AB{3’ with 5’{CD{3’. In contrast, the extended-nearest-

neighbor triplet model assigns free energies for triplexes of the

form
5’{ABC{3’

3’{FED{5’
where a stacked triple (two contiguous base

stacks) between 5’{ABC{3’ and 5’{DEF{3’. In this case, we

expect that the triplet free energy of
5’{ABC{3’

3’{FED{5’
can be

approximated by the average of the base stacking free energies for

5’{AB{3’

3’{FE{5’
and

5’{BC{3’

3’{ED{5’
; however, we expect the triplet

energies to more accurately model the formation of secondary

RNA structure.

The extended-nearest-neighbor triplet model for hybridized

DNA duplexes and DNA-RNA hybrids was considered in

experimental work of D.M. Gray, who in Table 1 of [12]

determined the theoretical number of independent hybridized

sequences that must be considered in UV absorbance experiments,

in order to obtain triplet stacking free energies by least-squares

fitting of data. In [33] Gray et al. experimentally determined in vivo

inhibition parameters for next-nearest-neighbor triplets in the case

of antisense DNA – RNA hybridization to inhibit protein

expression. In [34], Najafabadi et al. applied a neural network

to predict the thermodynamic parameters for the next-nearest-

neighbor triplet model, using existent UV absorbance data from

the thermodynamic database for nucleic acids, NTDB version 2.0

[35].

Though at present there are no experimentally determined free

energies for triplet stacking, Binder et al. [36] did show a strong

correlation between microarray fluorescence intensities and DNA-

RNA base stacking free energies of Sugimoto et al. [37]. More

precisely, Binder et al. showed that linear combinations of triple-

averaged probe sensitivities provide nearest-neighbor sensitivity

terms, that rank in similar order as the base stacking free energy

parameters for DNA-RNA in solution [37]. It is our hope that

future improvements in RNAseq, microarray or other technologies

will ultimately furnish experimentally determined triplet and even

k-tuple stacking free energies. New triplet free energies could

immediately be incorporated into our algorithms, and it is tedious,

but clear how one can modify our algorithms to handle k-tuple

free energies.

Subsection 1.3: Plan of the paper
In this paper, we describe the first algorithms to compute the

partition function and minimum free energy structure for single-

stranded RNA, with respect to the full next-nearest-neighbor triplet

energy model for RNA. In the Introduction, we gave the motivation

for this work, coming from the Zimm-Bragg and Ising models in

biopolymer theory. The plan for the remainder of the paper is as

follows. In the Results section, Section 2.1 gives the notation and

Table 1. Values of sensitivity and positive predictive value (ppv) for RNAfold and RNAenn with respect to various RNA families.

RNAfold -d 06 RNAenn (Turner99) RNAenn (Turner04)

RNA family sens ppv sens ppv sens ppv

16s 0.3940 0.3326 0.3779 0.3153 0.3099 0.2674

23sd 0.5974 0.5311 0.5527 0.4813 0.4409 0.4003

23s 0.4685 0.3972 0.4453 0.3738 0.3516 0.3061

5s 0.7575 0.6606 0.7319 0.6366 0.5713 0.5093

ec 0.5869 0.5314 0.6184 0.5519 0.5338 0.4982

grp1 0.6625 0.5832 0.5047 0.4650 0.4837 0.4589

grplii 0.6616 0.6409 0.6084 0.5976 0.4555 0.4334

rnap1 0.4051 0.3813 0.3514 0.3221 0.3154 0.3000

rnap2 0.4241 0.4046 0.4935 0.4648 0.3285 0.3187

short 0.4048 0.3400 0.3690 0.3298 0.3155 0.2760

srp 0.7228 0.5632 0.6286 0.4897 0.5677 0.4544

telomerase 0.4285 0.3074 0.3417 0.2404 0.3605 0.2662

tmRNA 0.2248 0.1958 0.1911 0.1622 0.1526 0.1326

trna2 0.4960 0.4697 0.5344 0.5005 0.3962 0.3828

avg 0.5213 0.4575 0.4866 0.4279 0.4020 0.3678

Sensitivity is the ratio of number of correctly predicted base pairs divided by the number of base pairs in the native structure; positive predictive value is the ratio of the
number of correctly predicted base pairs divided by the number of base pairs in the predicted structure. Since RNAenn currently does not include energy contributions
for dangles (single stranded, stacked nucleotides), RNAfold was used without dangles (version 1.8.5 with -d 06 flag). To our knowledge, there has not been a careful
benchmarking of structure prediction accuracy between the Turner 1999 energy model and the newer Turner 2004 energy model, though it is interesting to note that
RNAenn has better structure prediction when using Turner 1999 for base stacking. Overall, it is clear that RNAfold outperforms RNAenn (Turner99), although a few cases,
such as ec and rnap2 RNAenn have better sensitivity. Nevertheless, we expect much better performance in the future when our triplet and base stacking energy terms
have been refined by using knowledge-base potentials. The database of RNA structures in this benchmarking set comes from a data collection of D.H. Mathews
(personal communication), which derives from published databases [26,54], etc. See [55] for a citation of original data sources.
doi:10.1371/journal.pone.0085412.t001
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definitions needed for the sequel, while Section 2.2 presents the

extended nearest neighbor model and method used to obtain

energy parameters. In the Discussion, we give secondary structure

benchmarking results for the nearest neighbor (NN) and extended

nearest neighbor (ENN) energy models. Additionally, the co-

operativity of folding is compared with both energy models. In the

Methods section, Section 3.1 [resp. Section 3.2] presents recursions

for the partition function [resp. minimum free energy structure]

computation. In addition to the software RNAnn and RNAenn

developed for this paper, we use Vienna RNA Package RNAfold

[18], RNAstructure [38], and mfold [9]. As illustration for the

cooperativity of folding, we compare melting curves for two small

nucleolar RNAs (snoRNA), with respect to the NN and ENN

energy models; additional melting curves are available on the web

server http://bioinformatics.bc.edu/clotelab/RNAenn/. These

results suggest that the the extended nearest-neighbor energy

model may lead to more cooperative folding than does the nearest-

neighbor model, which was our motivation to study the ENN

energy model.

The goal of this paper is to describe the non-trivial RNAenn

algorithms, which are implemented in C/C++. Our work points

toward a future potential improvement in RNA secondary

structure prediction, either by incorporating triplet knowledge-

based potentials or experimentally inferred extended nearest-

neighbor free energy parameters.

Results: Extended nearest neighbor model
algorithms

Assume that a1, . . . ,an is a given RNA sequence. In this section,

we describe pseudocode for the partition function and minimum

free energy computation for an extended nearest neighbor model.

Although our software, RNAenn, does depend on the exact values

of the extended nearest-neighbor energy parameters, the descrip-

tion of the algorithms does not.

Subsection 2.1: Notation and definitions
Let a~a1, . . . ,an be an arbitrary RNA sequence, and let a½i,j�

denote the subsequence ai, . . . ,aj . A secondary structure S for a given

RNA sequence a~a1, . . . ,an is a set of base pairs (i,j), 1ƒivjƒn,

such that (1) ai,aj forms a Watson Crick AU, UA, GC, CG or

wobble GU, UG pair; (2) each base is paired to at most one other

base, i.e. (i,j),(i,k)[S implies that j~k, and (i,j),(k,j)[S implies

that i~k; (3) there are no pseudoknots in S, where a pseudoknot

consists of base pairs (i,j),(k,‘) where ivkvjv‘; (4) each hairpin

loop has at least h unpaired bases; i.e. (i,j)[S implies that

j{i§hz1.

In software such as mfold [9], Unafold [39], RNAfold [40], and

RNAstructure [38], the parameter h, denoting the minimum

number of unpaired bases in a hairpin loop, is taken to be equal to

3, due to steric constraints of RNA molecules.

The nearest-neighbor and extended nearest-neighbor triplet

models are additive energy models that entail free energy values

for loops, as explained in [41]. A hairpin in a secondary structure S

is defined by the base pair (i,j), where iz1, . . . ,j{1 are unpaired.

A left bulge in S is defined by the two base pairs (i,j),(k,j{1)[S,

where iz1vk and iz1, . . . ,k{1 are unpaired. A right bulge in S

is defined by the two base pairs (i,j),(iz1,k)[S, where kvj{1
and kz1, . . . ,j{1 are unpaired. An internal loop in S is defined by

the two base pairs (i,j),(k,‘)[S, where iz1vk and ‘vj{1 and

iz1, . . . ,k{1 and ‘z1, . . . ,j{1 are unpaired. Finally, a k-way

junction, or multiloop with k{1 components, is defined by the

closing base pair (i,j) and k{1 inner base pairs

(x1,y1), . . . ,(xk{1,yk{1), where ivx1vy1vx2vy2v � � �vxk{1

vyk{1vj, and the nucleotides in intervals ½iz1,x1{1�,
½y1z1,x2{1�, . . . ,½yk{1z1,j{1� are all unpaired. See Figure 2

for an illustration.

Given the RNA nucleotide sequence a1, . . . ,an, we use the

notation H to denote the free energy of a hairpin, E(S) to denote

the free energy of a stacked base pair, E(I) to denote the free

energy of an internal loop, E(B) to denote the free energy of a

bulge, while the free energy E(M) for a multiloop containing Nb

base pairs and Nu unpaired bases is given by the affine

approximation azbNbzcNu. The free energy E(M1) of a

multiloop having exactly one component is then given by

azbzcNu.

For RNA sequence a1, . . . ,an, for all 1ƒiƒjƒn, the partition

function Zi,j is defined by
P

S e{E(S)=RT , where the sum is taken

over all secondary structures S of a½i,j�, E(S) is the free energy of

secondary structure S, R is the universal gas constant with value

R~0:001987 kcal/mol21 K21, and T is absolute temperature. In

the Zuker [9,18,38] and McCaskill [19] algorithms, E(S) is the

Turner nearest neighbor energy model; in contrast, when

discussing the extended nearest-neighbor energy model, we use

E(S) to denote the triplet energy model.

Given an RNA sequence a1, . . . ,an, in order to compute the

partition function Z1,n [resp. minimum free energy E1,n] for

a1, . . . ,an, we need inductively to determine the partition function

Zi,j [resp. minimum free energy Ei,j] for all smaller subsequences

ai, . . . ,aj . In so doing, we need to know which structures involve a

triple stack (i,j),(iz1,j{1),(iz2,j{2), which structures involve

only a stacked pair (i,j),(iz1,j{1), and which structures involve a

base pair (i,j) which closes a loop region. This is accomplished by

terms ZBBi,j [resp. EBBi,j]. Moreover, the Turner energy model

stipulates that a base pair (i,j), which closes a left bulge of size 1, as

in (i,j),(iz2,j{1), or a right bulge of size 1, as in (i,j),(iz1,j{2),
is considered to stack on the subsequent base pair. This

consideration requires the introduction of special terms ZBBLi,j ,

Figure 2. Depiction of elements of RNA secondary structure for
which experimentally determined free energy parameters are
available. In this 61 nt RNA, the hairpin loop closed by base pair
between nucleotides at position 43 and 48 is known as a tetraloop, or
hairpin loop of size 4. Similarly, the hairpin loop of size 7 is closed by a
base pair between nucleotides at positions 17 and 25. Free energy
parameters for bulges and internal loops (two-sided bulges, not shown
in the figure) are available, while an affine approximation is used for the
free energy of a multiloop or junction.
doi:10.1371/journal.pone.0085412.g002
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ZBBRi,j [resp. EBBLi,j , EBBRi,j]. With that, we have the

following definition.

Definition 1 (Energies and partition function for triplet
loop model)

N Ei,iz1;j{1,j denotes the base stacking free energy from the NN model,

while Ei,iz1,iz2;j{2,j{1,j denotes the triplet stacking free energy from the

ENN model.

N Zi,j : partition function over all secondary structures of a½i,j�.
N ZBi,j : partition function over all secondary structures of a½i,j�, which

contain the base pair (i,j).

N ZBBi,j : partition function over all secondary structures of a½i,j�, which

contain the base pairs (i,j),(iz1,j{1).

N ZBBLi,j : partition function over all secondary structures of a½i,j�, which

contain the base pairs (i,j),(iz2,j{1).

N ZBBRi,j : partition function over all secondary structures of a½i,j�, which

contain the base pairs (i,j),(iz1,j{2).

N ZMi,j : partition function over all secondary structures of a½i,j�, subject to

the constraint that a½i,j� is part of a multiloop and has at least one

component.

N ZM1i,j : partition function over all secondary structures of a½i,j�, subject

to the constraint that a½i,j� is part of a multiloop and has at exactly one

component. Moreover, it is required that i base-pair in the interval ½i,j�;
i.e. (i,r) is a base pair, for some ivrƒj.

N Ei,j : minimum free energy over all secondary structures of a½i,j�.
N EBi,j : minimum free energy over all secondary structures of a½i,j�, which

contain the base pair (i,j).

N EBBi,j : minimum free energy over all secondary structures of a½i,j�, which

contain the base pairs (i,j),(iz1,j{1).

N EBBLi,j : minimum free energy over all secondary structures of a½i,j�,
which contain the base pairs (i,j),(iz2,j{1).

N EBBRi,j : minimum free energy over all secondary structures of a½i,j�,
which contain the base pairs (i,j),(iz1,j{2).

N EMi,j : minimum free energy over all secondary structures of a½i,j�, subject

to the constraint that a½i,j� is part of a multiloop and has at least one

component.

N EM1i,j : minimum free energy over all secondary structures of a½i,j�,
subject to the constraint that a½i,j� is part of a multiloop and has at

exactly one component. Moreover, it is required that i base-pair in the

interval ½i,j�; i.e. (i,r) is a base pair, for some ivrƒj.

Details for the recursions necessary to compute the ENN

minimum free energy secondary structure and ENN partition

function are given in the Methods section.

Subsection 2.2: Extended nearest-neighbor energy
model ENN-13

Here we describe details for the extended nearest-neighbor

energy model parameters, which we denote by ENN-13, since our

code RNAenn was completed in 2013.

Though some related experimental work has been done,

especially by D.M. Gray and co-workers [11,12,33], there are

no available experimentally determined parameters for triplet

stacking. Rather than using the triplet stacking free energy

parameters INN-48 [34], which are incomplete since GU-wobble

pairs were not included, we instead infer RNA triplet stacking free

energies by a novel use of Brown’s algorithm [42], which computes

the maximum entropy joint probability distribution that is consistent

with given user-specified marginal probabilities. Though Brown’s

algorithm has been used by C. Burge to predict intron-exon splice

sites in the human gene finder, GenScan [43], this appears to be the

first use of Brown’s algorithm to infer free energy parameters.

Brown’s algorithm for maximum entropy joint

distribution. In [42], D.T. Brown described an efficient

algorithm to compute the maximum entropy joint probability

distribution given certain marginal probabilities, where we recall

that the entropy of a joint probability distribution p : Vn?½0,1� is

defined by H(p)~{
P

x1,...,xn[V p(x1, . . . ,xn): ln p(x1, . . . ,xn). Al-

though the algorithm was correct, there was an error in Brown’s

Figure 3. Pseudocode for Brown’s algorithm.
doi:10.1371/journal.pone.0085412.g003
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proof of correctness, which was subsequently repaired by Ireland

and Kullback [44], who additionally showed that the maximum

entropy distribution is not the maximum likelihood distribution.

Suppose that p(x1, . . . ,xn) is a given joint probability distribu-

tion on Vn, where V is the alphabet fA,C,G,Ug of RNA

nucleotides. Recall that a marginal probability distribution

pai1
,...,aim

: Vn{m?½0,1� is defined by the projection

X
(x1,...,xn)[Vn,xi1

~ai1
,...,xim ~aim

p(x1, . . . ,xn)

Given an integer n§2, a value Ew0, and a set of arbitrary

marginal probabilities pai1
,...,aim

the idea is to initialize p to the

uniform distribution, then repeatedly update p so that it has the

correct currently considered marginal.

Algorithm 1 (Brown’s algorithm [42]) INPUT: Finite sample

space V, integer n§2, Ew0, set of arbitrary (target) marginal probabilities

pai1
,...,aim

. OUPUT: Maximum entropy joint probability distribution

p : Vn?½0,1� having given marginals (i.e. within E of target marginals).

IDEA:

initialize p to the uniform distribution

repeat

for each target marginal M ’
compute current marginal M of p

p~p:M ’
M

until p has all the desired marginals

See Figure 3 for more detailed pseudocode of Brown’s

algorithm.

Conversion between free energies and probabilities. To

compute triplet stacking free energies, base stacking free energies

from Turner 1999 [or alternatively Turner 2004] energy model

are converted to marginal probabilities in the following manner.

Given a triplet stack

5’{X1X2X3{3’

3’{Y1Y2Y3{5’

where the outermost base pair occurs at (i,j), let a denote the

outermost base pair (i,j) with nucleotides X1,Y1, let b denote the

middle base pair (iz1,j{1) with nucleotides X2,Y2, and let c
denote the innermost base pair (iz2,j{2) with nucleotides

X3,Y3. It is a well-known principle, first proved by Jaynes [45] and

subsequently exploited in protein threading algorithms [46,47],

that a representative database of biomolecular sequences and

structures has the property that motif occurrences are Boltzmann

distributed – i.e. motif frequencies are of the form
exp({E(motif)=RT)

Q
,

where the partition function Q is the sum of Boltzmann factors of

all motifs. For this reason, we define the left, middle and right marginal

probabilities of stacked base pairs by:

leftMargProb(b,c)~

P
d stack(d,b)zstack(b,c)

Q

midMargProb(a,c)~

P
d stack(a,d)zstack(d,c)

Q

rightMargProb(a,b)~

P
d stack(a,b)zstack(b,d)

Q
:

where d ranges over the six base pairs GC, CG, AU, UA, GU,

UG, stack(a,b) denotes base stacking free energies from the

Turner 1999 model [or alternatively Turner 2004 model], and the

partition function

Q~
X
a,b,c

stack(a,b)zstack(b,c):

In words, the left/middle/right marginal probability is defined

by the quotient of the sum over all six base pairs in the left/

middle/right position, while fixing the remaining two base pairs,

divided by the partition function. We then apply Brown’s

algorithm to compute the joint probability distribution P(a,b,d)
for all base pairs a,b,d, and thus obtain triplet stacking free

energies

E(a,b,c)~{RT ln(Q:P(a,b,c)): ð2Þ

An additional potential advantage of the extended nearest

neighbor energy model is that the MFE structure is perhaps less

likely to have isolated base pairs, than when using base stacking

free energies. In particular, Bompfunewerer et al. [48] described

an O(n3) algorithm to compute the MFE structure and partition

function over all canonical secondary structures; i.e. those having no

isolated base pairs, where an isolated base pair (i,j) has no adjacent

base pair (iz1,j{1) or (i{1,jz1). Bompfunewerer et al. stated

that preliminary studies indicated that canonical MFE structure

prediction is both faster and more accurate. In [49] we provided

theoretical reasons for the computational speed-up, by using

complex analysis to prove that the asymptotic number of canonical

secondary structures is 2:1614:n{3=2:1:96798n, compared to the

much larger number 1:104366:n{3=2:2:618034n of all secondary

structures, a result obtained in [50] by a different method.

Apart from the triplet stacking energy, ENN-13 contains free

energies for base stacks (used only at stem ends), hairpins, bulges,

internal loops and multiloops from the Turner NN model – here,

the user may choose between the Turner 1999 parameters and the

Turner 2004 parameters, the former taken from Vienna RNA

Package 1.8.5 and the latter taken from the Nearest Neighbor

Figure 4. Secondary structure of the XPT guanine riboswitch from Bacillus subtilis, with experimentally determined 148 nt sequence
CACUCAUAUA AUCGCGUGGA UAUGGCACGC AAGUUUCUAC CGGGCACCGU AAAUGUCCGA CUAUGGGUGA GCAAUGGAAC
CGCACGUGUA CGGUUUUUUG UGAUAUCAGC AUUGCUUGCU CUUUAUUUGA GCGGGCAAUG CUUUUUUU taken from Wakeman
et al. [58]. (Left) Gene off structure, determined by in-line probing – see [59] for X-ray structure of aptamer, which is consistent with the secondary
structure. (Center) Minimum free energy (MFE) structure, determined by RNAnn, our implementation of the nearest-neighbor energy model. This
structure is identical to the MFE structures computed by Vienna RNA Package RNAfold [18], RNAstructure [38], and mfold [9]. (Right) Minimum free
energy (MFE) structure, determined by RNAenn, our implementation of the extended nearest-neighbor energy model. The only difference with the
nearest-neighbor MFE structure lies in two missing GU base pairs (116,134), (117,133) indicated by a circle.
doi:10.1371/journal.pone.0085412.g004
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Figure 5. Melting curves for two small nucleolar RNAs (snoRNA) from family RF00158 from Rfam version 9.0 [56]. For each RNA
sequence, over a range of temperatures, temperature-dependent base pair probabilities were computed using four different software packages:
RNAenn, RNAnn, version 1.8.5 of RNAfold [40] and RNAstructure [38]. The software RNAenn (RNA extended nearest-neighbor) is our implementation
of the algorithms described in this paper, while the software RNAnn (RNA nearest-neighbor) is our implementation of the following algorithms:
Zuker’s minimum free energy structure algorithm [51], McCaskill’s partition function algorithm [19], and the Ding-Lawrence sampling algorithm [22].
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Data Base (NNDB) http://rna.urmc.rochester.edu/NNDB/ [15].

For readers interested in the exact nature of the NN energy

parameters, we recommend the excellent overview by Zuker et al.

[58].

Discussion

There are some deviations between the MFE structure

computed for the ENN model, compared with the nearest-

neighbor (NN) model. In particular, Figure 4 shows the secondary

structure for the XPT riboswitch from Bacillus subtilis, obtained by

experimental in-line probing (left panel), minimum free energy

structure computation for the NN model (middle panel) and

minimum free energy structure computation for the ENN model

(right panel). The MFE structure for the NN model was identical,

using four different software packages: mfold [9], RNAfold [40],

RNAstructure [38] and our own program RNAnn for the nearest-

neighbor model. Our software RNAenn for the ENN model differs

from the NN minimum free energy structure, only by missing two

GU-wobble base pairs at positions (116,134), (117,133). Adjacent

wobble pairs are energetically weak, so we do not view this as a

failure of our software, but rather the need for additional scrutiny

of the ENN energy parameters. Specifically, in the future, we

intend to include a dependence on the heat capacity DCP as

proposed by M. Bon [17], and knowledge-based potentials

[16,17]. By such energy re-parametrization, we expect to improve

the sensitivity values reported in Table 1.

Our next-nearest-neighbor triplet energy model appears to lead

to somewhat more cooperative folding than does the nearest

neighbor energy model, as indicated by sharper sigmoidal

transition in the melting curves obtained by RNAenn, compared

to melting curves obtained by RNAfold and RNAstructure – see

Figure 5. Here, melting curves were computed in the following

manner. For each RNA sequence, over a range of temperatures,

temperature-dependent base pair probabilities were computed. At

each temperature T , for each algorithm, the expected number

SBPT of base pairs was computed by SBPT~
P

1ƒivjƒn pi,j . For

Each algorithm was run without dangle or coaxial free energies. At each temperature T , for each algorithm, the expected number SBPT of base pairs
was computed as SBPT~

P
1ƒivjƒn pi,j ; for each algorithm, the collection of such (T ,SBPT) points generates a melting profile obtained by that

algorithm. (Left) Melting curves for the 72 nt small nucleolar RNA (snoRNA) from Ornithorhynchus anatinus (platypus) with GenBank accession code
AAPN01359272.1/4977–5048 and sequence given by AGCACAAAUG AUGAGCCUAA AGGGACUUAA UACUGAAACC UGAUGUAACU AAAUAAUAUA
UGCUGAUCGU GC (Right) Melting curves for the 69 nt small nucleolar RNA (snoRNA) from Otolemur garnetti (small-eared galago) with GenBank
accession code AQR01179445.1/1047–1115 and sequence given by GGCACAAAUG AUGAAUGACA AGGGACUUAA UACUGAAACC UGAUGUUACA
UUACAAUGUG CUGAUGUGC.
doi:10.1371/journal.pone.0085412.g005

Figure 6. Feynman diagram to pictorially describe recursions described in this proposal for partition function with respect to
extended nearest neighbor model. For simplicity, this diagram depicts ZBB, but not ZBBL,ZBBR, which correspond to a special treatment for
particular left/right bulges of size 1, that are treated as stacked base pairs.
doi:10.1371/journal.pone.0085412.g006
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each algorithm, the collection of all points with (x,y) coordinates

given by (T ,SBPT) generates a melting profile.

Methods

The top level recursion in the computation of the partition

function [resp. minimum free energy structure] is identical to that

of McCaskill’s algorithm [19] [resp. Zuker’s algorithm [51]]. The

technical difficulty lies in a kind of ‘‘2-look-ahead’’ strategy, to

determine if a base pair (i,j) not only stacks onto the adjacent base

pair (iz1,j{1), but the latter also stacks onto the base pair

(iz2,j{2). This leads to technical issues, including a special

treatment for bulges of size 1, since these are considered to stack

on the following base pair.

Subsection 3.1: Partition function algorithm
This section presents the recursions to compute the partition

function in the extended nearest-neighbor energy model. Figure 6

depicts the recursions as a Feynman diagram. (For simplicity, the

Feynman diagram in Figure 6 depicts ZBB, but not

ZBBL,ZBBR, which correspond to a special treatment for

particular left/right bulges of size 1, that are treated similarly to

stacked base pairs.) The unconstrained partition function Zi,j for

ai, . . . ,aj is defined below. Note that the recursions for Zi,j(I)

entail a maximum internal loop of size 30, which follows the

Vienna convention to reduce run time of the algorithm to O(n3);
however, our implementation actually uses the more complicated

treatment of Lyngsø et al. [52], which ensures a cubic run time

while not arbitrarily bounding the maximum size of internal loops.

A similar remark applies to the treatment of internal loops and

bulges of size 1 in Section 3.2.

Zi,j~

1 if j{iƒh

Zi,j{1zZBi,jz
Pj{h{1

k~iz1

Zi,k{1
:ZBk,j else

8><
>:

We now in turn describe the partition functions ZM1i,j for a

multiloop having a single component, ZMi,j for a multiloop

having one or more components, ZBi,j where (i,j) pair together,

and for ZBBi,j where (i,j) and (iz1,j{1) pair together.

ZM1i,j~

0 if j{iƒhPj

k~izhz1

exp { c:(j{k)
RT

� �
:ZBi,k else

8><
>:

ZMi,j~

0 if iƒj and j{iƒh

Pj{h{1

k~i

exp({ bzc
:(k{i)

RT
)ZM1k,j

z
Pj{h{2

k~i

exp { b
RT

� �:ZMi,k
:ZM1kz1,j

else

8>>>>>>><
>>>>>>>:

ZBi,j~
0 if j{iƒh

Zi,j(S)zZi,j(H)zZi,j(B)zZi,j(I)zZi,j(M) else

�

where

Zi,j(S)~ZBBi,j

Zi,j(H)~exp {
H(j{i{1,T)

RT

� �

Zi,j(LB)~exp {
B(1,T)

RT

� �
:ZBBLi,jz

Xj{h{2

k~iz3

exp {
B(k{i{1,T)

RT

� �
:ZBk,j{1

Zi,j(RB)~exp {
B(1,T)

RT

� �
:ZBBRi,jz

Xj{3

k~izhz2

exp {
B(j{k{1,T)

RT

� �
:ZBiz1,k

Zi,j(I)~
Xj{h{3

‘{i{2ƒ2

Xj{2

j{r{1z‘{i{2ƒ30

exp {
I((‘{i{1)z(j{r{1))

RT

� �
:ZB‘,r

Zi,j(M)~exp {
az2bzTMM(i,j,iz1,j{1)

RT

� �
:

Xj{h{2

k~izhz3

ZMiz1,k{1
:ZM1k,j{1

ZBBi,j~

0 if j{iƒhz2

Qi,j(S)zQi,j(H)zQi,j(B)zQi,j(I)zQi,j(M) else

(

where

Qi,j(S)~exp {
E(i,iz1,iz2; j{2,j{1,j)

RT

� �
:ZBBiz1,j{1

Qi,j(H)~exp {
E(i,iz1; j{1,j)zH(j{i{3,T)

RT

� �

Qi,j(LB)~exp {
E(i,iz1,iz3; j{2,j{1,j)zB(1,T)

RT

� �
:

ZBBLiz1,j{1z

Xj{h{3

k~iz4

exp {
E(i,iz1; j{1,j)zB(k{i{2,T)

RT

� �
:

ZBk,j{2
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Qi,j(RB)~exp {
E(i,iz1,iz2; j{3,j{1,j)zB(1,T)

RT

� �
:

ZBBRiz1,j{1z

Xj{3

k~izhz3

exp {
E(i,iz1; j{1,j)zB(j{k{2,T)

RT

� �
:

ZBiz2,k

Qi,j(I)~

Xj{h{4

‘~iz3

Xj{3

r~‘zhz1

exp {
E(i,iz1; j{1,j)zI((‘{i{2)z(j{r{2))

RT

� �
:

ZB‘,r

Qi,j(M)~exp {
E(i,iz1; j{1,j)zaz2b

RT

� �
:

Xj{h{3

k~izhz4

ZMiz2,k{1
:ZM1k,j{2

ZBBLi,j~

0 if j{iƒhz3

QLi,j(S)zQLi,j(H)zQLi,j(B)zQLi,j(I)zQLi,j(M) else

(

where

QLi,j(S)~exp {
E(i,iz2,iz3; j{2,j{1,j)

RT

� �
:ZBBiz2,j{1

QLi,j(H)~exp {
E(i,iz2; j{1,j)zH(j{i{4,T)

RT

� �

QLi,j(LB)~exp {
E(i,iz2,iz4; j{2,j{1,j)zB(1,T)

RT

� �
:

ZBBLiz2,j{1z

Xj{h{3

k~iz5

exp {
E(i,iz2; j{1,j)zB(k{i{3,T)

RT

� �
:

ZBk,j{2

QLi,j(RB)~exp {
E(i,iz2,iz3; j{3,j{1,j)zB(1,T)

RT

� �
:

ZBBRiz2,j{1z

Xj{4

k~izhz4

exp {
E(i,iz2; j{1,j)zB(j{k{2,T)

RT

� �
:

ZBiz3,k

QLi,j(I)~

Xj{h{4

‘~iz4

Xj{3

r~‘zhz1

exp {
E(i,iz2; j{1,j)zI((‘{i{3)z(j{r{2))

RT

� �
:

ZB‘,r

QLi,j(M)~exp {
E(i,iz2; j{1,j)zaz2b

RT

� �
:

Xj{h{3

k~izhz5

ZMiz3,k{1
:ZM1k,j{2

ZBBRi,j~

0 if j{iƒhz3

QRi,j(S)zQRi,j(H)zQRi,j(B)zQRi,j(I)zQRi,j(M) else

(

where

QRi,j(S)~exp {
E(i,iz1,iz2; j{3,j{2,j)

RT

� �
:ZBBiz1,j{2

QRi,j(H)~exp {
E(i,iz1; j{2,j)zH(j{i{4,T)

RT

� �

QRi,j(LB)~exp {
E(i,iz1,iz3; j{3,j{2,j)zB(1,T)

RT

� �
:

ZBBLiz1,j{2z

Xj{h{4

k~iz4

exp {
E(i,iz1; j{2,j)zB(k{i{2,T)

RT

� �
:

ZBk,j{3

QRi,j(RB)~exp {
E(i,iz1,iz2; j{4,j{2,j)zB(1,T)

RT

� �
:

ZBBRiz1,j{2z

Xj{5

k~izhz3

exp {
E(i,iz1; j{2,j)zB(j{k{3,T)

RT

� �
:

ZBiz2,k

QRi,j(I)~

Xj{h{5

‘~iz3

Xj{4

r~‘zhz1

exp {
E(i,iz1; j{2,j)zI((‘{i{2)z(j{r{3))

RT

� �
:

ZB‘,r
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QRi,j(M)~exp {
E(i,iz1; j{2,j)zaz2b

RT

� �
:

Xj{h{4

k~izhz4

ZMiz2,k{1
:ZM1k,j{3

Subsection 3.2: Minimum free energy algorithm
Assume that a1, . . . ,an is a given RNA sequence. Throughout

this section, we let Ei,j denote the minimum free energy of

ai, . . . ,aj , which is computed and stored in arrays by a dynamic

programming algorithm corresponding to the following recursions.

Once E1,n is computed, then the minimum free energy structure

can be computed by tracebacks. The following recursions are

obtained from those in the previous section, by systematically

replacing sum by minimum, product by sum and Boltzmann

factor by energy.

Ei,j~

0 if j{iƒh

min Ei,j{1,EBi,j , min
j{h{1

k~iz1
Ei,k{1zEBk,j

� 	
else

8<
:

1i,j~

z? if j{iƒh

min
j

k~izhz1
(c:(j{k))zEBi,k else

8<
:

EMi,j~

z? if iƒj and j{iƒh

min min
j{h{1

k~i
EM1k,jzbzc:(k{i), min

j{h{2

k~i
bzEMi,kzEM1kz1,j

� 	
else

8><
>:

EBi,j~
z? if j{iƒh

min Ei,j(S),Ei,j(H),Ei,j(B),Ei,j(I),Ei,j(M)

 �

else

(

where

Ei,j(S)~EBBi,j

Ei,j(H)~H(j{i{1,T)

Ei,j(LB)~

min min
j{h{2

k~iz3
B(k{i{1,T)zEBk,j{1,B(1,T)zEBBLi,j

� 	

Ei,j(RB)~

min min
j{3

k~izhz2
B(j{k{1,T)zEBiz1,k,B(1,T)zEBBRi,j

� 	

Ei,j(I)~ min
j{h{3

‘~iz2
min
j{2

r~‘zhz1
I((‘{i{1)z(j{r{1))zEB‘,r

Ei,j(M)~az2bz min
j{h{2

k~iz3
EMiz1,k{1zEM1k,j{1

� �

EBBi,j~

z? if j{iƒhz2

min Gi,j(S)zGi,j(H)zGi,j(B)zGi,j(I)zGi,j(M)

 �

else

(

where

Gi,j(S)~E(i,iz1,iz2; j{2,j{1,j)zEBBiz1,j{1

Gi,j(H)~E(i,iz1; j{1,j)zH(j{i{3,T)

Gi,j(LB)~min f min
j{h{3

k~iz4
E(i,iz1; j{1,j)zB(k{i{2,T)zEBk,j{2,

E(i,iz1,iz3; j{2,j{1,j)zB(1,T)zEBBLiz1,j{1g

Gi,j(RB)~minf min
j{4

k~izhz3
E(i,iz1; j{1,j)z

B(j{k{2,T)zEBiz2,k,

E(i,iz1,iz2; j{3,j{1,j)zB(1,T)zEBBRiz1,j{1g

Gi,j(I)~ min
j{h{4

‘~iz3
min
j{3

r~‘zhz1
E(i,iz1; j{1,j)z

I((‘{i{2)z(j{r{2))zEB‘,r

Gi,j(M)~E(i,iz1; j{1,j)zaz2bz

min
j{h{3

k~iz4
EMiz2,k{1zEM1k,j{2

� �

EBBLi,j~

z? if j{iƒhz3

min GLi,j(S)zGLi,j(H)zGLi,j(B)zGLi,j(I)zGLi,j(M)

 �

else

(

where

GLi,j(S)~E(i,iz2,iz3; j{2,j{1,j)zEBBiz2,j{1

GLi,j(H)~E(i,iz2; j{1,j)zH(j{i{4,T)
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GLi,j(LB)~minf min
j{h{3

k~iz5
E(i,iz2; j{1,j)z

B(k{i{3,T)zEBk,j{2,

E(i,iz2,iz4;j{2,j{1,j)zB(1,T)zEBBLiz2,j{1g

GLi,j(RB)~minf min
j{4

k~izhz4
E(i,iz2; j{1,j)z

B(j{k{2,T)zEBiz3,k,

E(i,iz2,iz3; j{3,j{1,j)zB(1,T)zEBBRiz2,j{1g

GLi,j(I)~ min
j{h{4

‘~iz4
min
j{3

r~‘zhz1
E(i,iz2; j{1,j)z

I((‘{i{3)z(j{r{2))zEB‘,r

GLi,j(M)~E(i,iz2; j{1,j)zaz2bz

min
j{h{3

k~iz5
EMiz3,k{1zEM1k,j{2

� �

EBBRi,j~

z? if j{iƒhz3

min GRi,j(S)zGRi,j(H)zGRi,j(B)zGRi,j(I)zGRi,j(M)

 �

else

(

where

GRi,j(S)~E(i,iz1,iz2; j{3,j{2,j)zEBBiz1,j{2

GRi,j(H)~E(i,iz1; j{2,j)zH(j{i{4,T)

GRi,j(LB)~minf min
j{h{4

k~iz4
E(i,iz1; j{2,j)z

B(k{i{2,T)zEBk,j{3,

E(i,iz1,iz3; j{3,j{1,j)zB(1,T)zEBBLiz1,j{2g

GRi,j(RB)~minf min
j{4

k~izhz3
E(i,iz1; j{2,j)z

B(j{k{3,T)zEBiz2,k,

E(i,iz1,iz2;j{4,j{2,j)zB(1,T)zEBBRiz1,j{2g

GRi,j(I)~ min
j{h{5

‘~iz3
min
j{4

r~‘zhz1
E(i,iz1; j{2,j)z

I((‘{i{2)z(j{r{3))zEB‘,r

GRi,j(M)~E(i,iz1; j{2,j)zaz2bz

min
j{h{4

k~iz4
EMiz2,k{1zEM1k,j{3

� �

Conclusion

In this paper, we have introduced a new energy model ENN for

RNA secondary structure prediction and implemented it in a tool

called RNAenn along with new energy parameters for triplet

stacking inferred using Brown’s algorithm. RNAenn is imple-

mented in C/C++, without any function calls or dependence on

other programs, such as mfold [9], RNAfold [18], and RNAs-

tructure [38]. Recursions from the partition function have been

cross-checked by setting free energy parameters to zero, in which

case the program returns the number of secondary structures,

which can be determined by independent simpler methods.

It is known from experimental work of Silverman and Cech on

Tetrahymena group I intron P4–P6 domain [53] that RNA folds

cooperatively. The melting curves in Figure 5 demonstrate that

our ENN model leads to somewhat more cooperative folding than

does the nearest neighbor energy model, in the same manner that

the melting curves of Figure 1 demonstrate that the nearest

neighbor energy model leads to more cooperative folding than the

simple Nussinov energy model. For this reason, we feel that

RNAenn supports a mathematical model that better reflects the

experimental data concerning cooperativity of RNA folding.

From the benchmarking comparison in Table 1, it is clear that

triplet stacking free energy parameters need further refinement to

produce better agreement with RNA secondary structures, as

determined by comparative sequence alignment or X-ray struc-

ture. This situation is not unlike the situation with nearest

neighbor software mfold, RNAfold, which over the years

underwent a series of refinements, with the introduction of

additional energy parameters (energy parameters for particular

triloops, tetraloops, bulges of size one, etc.). At the present time,

software such as Unafold, RNAfold, RNAstructure remain state-

of-the-art for RNA secondary structure prediction. However, in

future work, we plan to optimize the triplet stacking energy

parameters, by using knowledge-base potential as in the work

[16,17] for the nearest neighbor model.
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