
AHaH Computing–From Metastable Switches to
Attractors to Machine Learning
Michael Alexander Nugent1,2,3*, Timothy Wesley Molter1,2,3

1 M. Alexander Nugent Consulting, Santa Fe, New Mexico, United States of America, 2 KnowmTech LLC, Albuquerque, New Mexico, United States of America, 3 Xeiam LLC,

Santa Fe, New Mexico, United States of America

Abstract

Modern computing architecture based on the separation of memory and processing leads to a well known problem called
the von Neumann bottleneck, a restrictive limit on the data bandwidth between CPU and RAM. This paper introduces a new
approach to computing we call AHaH computing where memory and processing are combined. The idea is based on the
attractor dynamics of volatile dissipative electronics inspired by biological systems, presenting an attractive alternative
architecture that is able to adapt, self-repair, and learn from interactions with the environment. We envision that both von
Neumann and AHaH computing architectures will operate together on the same machine, but that the AHaH computing
processor may reduce the power consumption and processing time for certain adaptive learning tasks by orders of
magnitude. The paper begins by drawing a connection between the properties of volatility, thermodynamics, and Anti-
Hebbian and Hebbian (AHaH) plasticity. We show how AHaH synaptic plasticity leads to attractor states that extract the
independent components of applied data streams and how they form a computationally complete set of logic functions.
After introducing a general memristive device model based on collections of metastable switches, we show how adaptive
synaptic weights can be formed from differential pairs of incremental memristors. We also disclose how arrays of synaptic
weights can be used to build a neural node circuit operating AHaH plasticity. By configuring the attractor states of the AHaH
node in different ways, high level machine learning functions are demonstrated. This includes unsupervised clustering,
supervised and unsupervised classification, complex signal prediction, unsupervised robotic actuation and combinatorial
optimization of procedures–all key capabilities of biological nervous systems and modern machine learning algorithms with
real world application.

Citation: Nugent MA, Molter TW (2014) AHaH Computing–From Metastable Switches to Attractors to Machine Learning. PLoS ONE 9(2): e85175. doi:10.1371/
journal.pone.0085175

Editor: Derek Abbott, University of Adelaide, Australia

Received May 7, 2013; Accepted November 23, 2013; Published February 10, 2014

Copyright: � 2014 Nugent, Molter. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work has been supported in part by the Air Force Research Labs (AFRL) and Navy Research Labs (NRL) under the SBIR/STTR programs AF10-BT31,
AF121-049 and N12A-T013 (http://www.sbir.gov/about/about-sttr; http://www.sbir.gov/#). The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Competing Interests: The authors of this paper have a financial interest in the technology derived from the work presented in this paper. Patents include the
following: US6889216, Physical neural network design incorporating nanotechnology; US6995649, Variable resistor apparatus formed utilizing nanotechnology;
US7028017, Temporal summation device utilizing nanotechnology; US7107252, Pattern recognition utilizing a nanotechnology-based neural network;
US7398259, Training of a physical neural network; US7392230, Physical neural network liquid state machine utilizing nanotechnology; US7409375, Plasticity-
induced self organizing nanotechnology for the extraction of independent components from a data stream; US7412428, Application of hebbian and anti-hebbian
learning to nanotechnology-based physical neural networks; US7420396, Universal logic gate utilizing nanotechnology; US7426501, Nanotechnology neural
network methods and systems; US7502769, Fractal memory and computational methods and systems based on nanotechnology; US7599895, Methodology for
the configuration and repair of unreliable switching elements; US7752151, Multilayer training in a physical neural network formed utilizing nanotechnology;
US7827131, High density synapse chip using nanoparticles; US7930257, Hierarchical temporal memory utilizing nanotechnology; US8041653, Method and system
for a hierarchical temporal memory utilizing a router hierarchy and hebbian and anti-hebbian learning; US8156057, Adaptive neural network utilizing
nanotechnology-based components. Additional patents are pending. Authors of the paper are owners of the commercial companies performing this work.
Companies include the following: Cover Letter; KnowmTech LLC, Intellectual Property Holding Company: Author Alex Nugent is a Co-owner; M. Alexander Nugent
Consulting, Research and Development: Author Alex Nugent is owner and Tim Molter employee; Xeiam LLC, Technical Architecture: Authors Tim Molter and Alex
Nugent are co-owners. Products resulting from the technology described in this paper are currently being developed. This does not alter the authors’ adherence
to all the PLOS ONE policies on sharing data and materials. The authors agree to make freely available any materials and data described in this publication that
may be reasonably requested for the purpose of academic, non-commercial research. As part of this, the authors have open-sourced all code and data used to
generated the results of this paper under a ‘‘M. Alexander Nugent Consulting Research License’’.

* E-mail: i@alexnugent.name

Introduction

How does nature compute? Attempting to answer this question

naturally leads one to consider biological nervous systems,

although examples of computation abound in other manifestations

of life. Some examples include plants [1–5], bacteria [6],

protozoan [7], and swarms [8], to name a few. Most attempts to

understand biological nervous systems fall along a spectrum. One

end of the spectrum attempts to mimic the observed physical

properties of nervous systems. These models necessarily contain

parameters that must be tuned to match the biophysical and

architectural properties of the natural model. Examples of this

approach include Boahen’s neuromorphic circuit at Stanford

University and their Neurogrid processor [9], the mathematical

spiking neuron model of Izhikevich [10] as well as the large scale

modeling of Eliasmith [11]. The other end of the spectrum

abandons biological mimicry in an attempt to algorithmically solve

the problems associated with brains such as perception, planning

and control. This is generally referred to as machine learning.

Algorithmic examples include support vector maximization [12],

PLOS ONE | www.plosone.org 1 February 2014 | Volume 9 | Issue 2 | e85175

k-means clustering [13] and random forests [14]. Many approach-

es fall somewhere along the spectrum between mimicry and

machine learning, such as the CAVIAR [15] and Cognimem [16]

neuromorphic processors as well as IBM’s neurosynaptic core [17]. In

this paper we consider an alternative approach outside of the

typical spectrum by asking ourselves a simple but important

question: How can a brain compute given that it is built of volatile

components?

A brain, like all living systems, is a far-from-equilibrium energy

dissipating structure that constantly builds and repairs itself. We

can shift the standard question from ‘‘how do brains compute?’’ or

‘‘what is the algorithm of the brain?’’ to a more fundamental

question of ‘‘how do brains build and repair themselves as

dissipative attractor-based structures?’’ Just as a ball will roll into a

depression, an attractor-based system will fall into its attractor

states. Perturbations (damage) will be fixed as the system

reconverges to its attractor state. As an example, if we cut

ourselves we heal. To bestow this property on our computing

technology we must find a way to represent our computing

structures as attractors. In this paper we detail how the attractor

points of a plasticity rule we call Anti-Hebbian and Hebbian

(AHaH) plasticity are computationally complete logic functions as

well as building blocks for machine learning functions. We further

show that AHaH plasticity can be attained from simple memristive

circuitry attempting to maximize circuit power dissipation in

accordance with ideas in nonequilibrium thermodynamics.

Our goal is to lay a foundation for a new type of practical

computing based on the configuration and repair of volatile

switching elements. We traverse the large gap from volatile

memristive devices to demonstrations of computational universal-

ity and machine learning. The reader should keep in mind that the

subject matter in this paper is necessarily diverse, but is essentially

an elaboration of these three points:

1. AHaH plasticity emerges from the interaction of volatile

competing energy dissipating pathways.

2. AHaH plasticity leads to attractor states that can be used for

universal computation and advanced machine learning

3. Neural nodes operating AHaH plasticity can be constructed

from simple memristive circuits.

The Adaptive Power Problem
Through constant dissipation of free energy, living systems

continuously repair their seemingly fragile state. A byproduct of

Figure 1. AHaH process. A) A first replenished pressurized container P0 is allowed to diffuse into two non-pressurized empty containers P1 and P2

though a region of matter M. B) The gradient DP2 reduces faster than the gradient DP1 due to the conductance differential. C) This causes Ga to
grow more than Gb, reducing the conductance differential and leading to anti-Hebbian learning. D) The first detectable signal (work) is available at P2

owing to the differential that favors it. As a response to this signal, events may transpire in the environment that open up new pathways to particle
dissipation. The initial conductance differential is reinforced leading to Hebbian learning.
doi:10.1371/journal.pone.0085175.g001

Figure 2. Attractor states of a two-input AHaH node. The AHaH
rule naturally forms decision boundaries that maximize the margin
between data distributions (black blobs). This is easily visualized in two
dimensions, but it is equally valid for any number of inputs. Attractor
states are represented by decision boundaries A, B, C (green dotted
lines) and D (red dashed line). Each state has a corresponding anti-state:

y~{y
0
. State A is the null state and its occupation is inhibited by the

bias. State D has not yet been reliably achieved in circuit simulations.
doi:10.1371/journal.pone.0085175.g002

AHaH Computing

PLOS ONE | www.plosone.org 2 February 2014 | Volume 9 | Issue 2 | e85175

this condition is that living systems are intrinsically adaptive at all

scales, from cells to ecosystems. This presents a difficult challenge

when we attempt to simulate such large scale adaptive networks

with modern von Neumann computing architectures. Each

adaptation event must necessarily reduce to memory–processor

communication as the state variables are modified. The energy

consumed in shuttling information back and forth grows in line

with the number of state variables that must be continuously

modified. For large scale adaptive systems like the brain, the

inefficiencies become so large as to make simulations impractical.

As an example, consider that IBM’s recent cat-scale cortical

simulation of 1 billion neurons and 10 trillion synapses [18]

required 147,456 CPUs, 144 TB of memory, running at 1=83 real-

time. At a power consumption of 20 W per CPU, this is 2.9 MW.

Under perfect scaling, a real-time simulation of a human-scale

cortex would dissipate over 7 GW of power. The number of

adaptive variables under constant modification in the IBM

simulation is orders of magnitude less than the biological

counterpart and yet its power dissipation is orders of magnitude

larger. Another example from Google to train neural networks on

YouTube data roughly doubled the accuracy from previous

attempts [19]. The effort took an array of 16,000 CPU cores

working at full capacity for 3 days. The model contained 1 billion

connections, which although impressive pales in comparison to

biology. The average human neocortex contains 150,000 billion

connections [20] and the number of synapses in the neocortex is a

fraction of the total number of connections in the brain. At 20 W

per core, Google’s simulation consumed about 320 kW. Under

perfect scaling, a human-scale simulation would dissipate 48 GW

of power.

At the core of the adaptive power problem is the energy wasted

during memory–processor communication. The ultimate solution

to the problem entails finding ways to let memory configure itself,

and AHaH computing is one such method.

The Adaptive Power Solution
Consider two switches, one non-volatile and the other volatile.

Furthermore, consider what it takes to change the state of each of

these switches, which is the most fundamental act of adaptation or

reconfiguration. Abstractly, a switch can be represented as a

potential energy well with two or more minima.

In the non-volatile case, sufficient energy must be applied to

overcome the barrier potential. Energy must be dissipated in

proportion to the barrier height once a switching event takes place.

Rather than just the switch, it is also the electrode leading to the

switch that must be raised to the switch barrier energy. As the

number of adaptive variables increases, the power required to

sustain the switching events scales as the total distance needed to

communicate the switching events and the square of the voltage.

A volatile switch on the other hand cannot be read without

damaging its state. Each read operation lowers the switch barriers

and increases the probability of random state transitions.

Accumulated damage to the state must be actively repaired. In

the absence of repair, the act of reading the state is alone sufficient

to induce state transitions. The distance that must be traversed

between memory and processing of an adaptation event goes to

zero as the system becomes intrinsically adaptive. The act of

accessing the memory becomes the act of configuring the memory.

In the non-volatile case some process external to the switch (i.e.

an algorithm on a CPU) must provide the energy needed to effect

the state transition. In the volatile case an external process must

stop providing the energy needed for state repair. These two

Figure 3. Universal reconfigurable logic. By connecting the output
of AHaH nodes (circles) to the input of static NAND gates, one may
create a universal reconfigurable logic gate by configuring the AHaH
node attractor states (yi). The structure of the data stream on binary
encoded channels X0 and X1 support AHaH attractor states
yi~fA,B,C,Dg (Figure 2). Through configuration of node attractor
states the logic function of the circuit can be configured and all logic
functions are possible. If inputs are represented as a spike encoding
over four channels then AHaH node attractor states can attain all logic
functions without the use of NAND gates.
doi:10.1371/journal.pone.0085175.g003

Table 1. Spike logic patterns.

Logic Pattern Spike Logic Pattern

(0, 0) (1, z, 1, z)

(0, 1) (1, z, z, 1)

(1, 0) (z, 1, 1, z)

(1, 1) (z, 1, z, 1)

Digital logic states ‘0’ and ‘1’ across two input lines are converted to a spike
encoding across four input lines. A spike encoding consists of either spikes (1)
or no spikes (z). This encoding insures that the number of spikes at any given
time is constant.
doi:10.1371/journal.pone.0085175.t001

Figure 4. A differential pair of memristors forms a synapse. A
differential pair of memristors is used to form a synaptic weight,
allowing for both a sign and magnitude. The bar on the memristor is
used to indicate polarity and corresponds to the lower potential end
when driving the memristor into a higher conductance state. Ma and
Mb form a voltage divider causing the voltage at node y to be some
value between V and {V . When driven correctly in the absence of
Hebbian feedback a synapse will evolve to a symmetric state where
Vy~0 V, alleviating issues arising from device inhomogeneities.
doi:10.1371/journal.pone.0085175.g004

AHaH Computing

PLOS ONE | www.plosone.org 3 February 2014 | Volume 9 | Issue 2 | e85175

antisymmetric conditions can be summarized as: ‘‘Stability for

free, adaptation for a price’’ and ‘‘adaptation for free, stability for

a price’’, respectively.

Not only does it make physical sense to build large scale

adaptive systems from volatile components but furthermore there

is no supporting evidence to suggest it is possible to do the

contrary. A brain is a volatile dissipative out-of-equilibrium

structure. It is therefore reasonable that a volatile solution to

machine learning at low power and high densities exists. The goal

of AHaH computing is to find and exploit this solution.

Historical Background
In 1936, Turing, best known for his pioneering work in

computation and his seminal paper ‘On computable numbers’

[21], provided a formal proof that a machine could be constructed

to be capable of performing any conceivable mathematical

computation if it were representable as an algorithm. This work

rapidly evolved to become the computing industry of today. Few

people are aware that, in addition to the work leading to the digital

computer, Turing anticipated connectionism and neuron-like

computing. In his paper ‘Intelligent machinery’ [22], which he

wrote in 1948 but was not published until well after his death in

1968, Turing described a machine that consists of artificial

neurons connected in any pattern with modifier devices. Modifier

devices could be configured to pass or destroy a signal, and the

neurons were composed of NAND gates that Turing chose

because any other logic function can be created from them.

In 1944, physicist Schrödinger published the book What is Life?

based on a series of public lectures delivered at Trinity College in

Dublin. Schrödinger asked the question: ‘‘How can the events in

space and time which take place within the spatial boundary of a

living organism be accounted for by physics and chemistry?’’ He

described an aperiodic crystal that predicted the nature of DNA,

yet to be discovered, as well as the concept of negentropy being the

entropy of a living system that it exports to keep its own entropy

low [23].

In 1949, only one year after Turing wrote ‘Intelligent

machinery’, synaptic plasticity was proposed as a mechanism for

learning and memory by Hebb [24]. Ten years later in 1958

Rosenblatt defined the theoretical basis of connectionism and

simulated the perceptron, leading to some initial excitement in the

field [25].

In 1953, Barlow discovered neurons in the frog brain fired in

response to specific visual stimuli [26]. This was a precursor to the

experiments of Hubel and Wiesel who showed in 1959 the

existence of neurons in the primary visual cortex of the cat that

selectively responds to edges at specific orientations [27]. This led

Figure 5. AHaH 2-1 two-phase circuit diagram. The circuit produces an analog voltage signal on the output at node y given a spike pattern on
its inputs labeled S0 , S1 � � �, Sn . The bias inputs B0 , B1 � � �, Bm are equivalent to the spike pattern inputs except that they are always active when the
spike pattern inputs are active. F is a voltage source used to implement supervised and unsupervised learning via the AHaH rule. The polarity of the
memristors for the bias synapse(s) is inverted relative to the input memristors. The output voltage, Vy , contains both state (positive/negative) and
confidence (magnitude) information.
doi:10.1371/journal.pone.0085175.g005

Figure 6. Circuit voltages across memristors during the read
and write phases. A) Voltages during read phase across spike input
memristors. B) Voltages during write phase across spike input
memristors. C) Voltages during read phase across bias memristors. D)
Voltages during write phase across bias memristors.
doi:10.1371/journal.pone.0085175.g006

AHaH Computing

PLOS ONE | www.plosone.org 4 February 2014 | Volume 9 | Issue 2 | e85175

to the theory of receptive fields where cells at one level of

organization are formed from inputs from cells in a lower level of

organization.

In 1960, Widrow and Hoff developed ADALINE, a physical

device that used electrochemical plating of carbon rods to emulate

the synaptic elements that they called memistors [28]. Unlike

memristors, memistors are three terminal devices, and their

conductance between two of the terminals is controlled by the time

integral of the current in the third. This work represents the first

integration of memristive-like elements with electronic feedback to

emulate a learning system.

In 1969, the initial excitement with perceptrons was tampered

by the work of Minsky and Papert, who analyzed some of the

properties of perceptrons and illustrated how they could not

compute the XOR function using only local neurons [29]. The

reaction to Minsky and Papert diverted attention away from

connection networks until the emergence of a number of new

ideas, including Hopfield networks (1982) [30], back propagation

of error (1986) [31], adaptive resonance theory (1987) [32], and

many other permutations. The wave of excitement in neural

networks began to fade as the key problem of generalization versus

memorization became better appreciated and the computing

revolution took off.

In 1971, Chua postulated on the basis of symmetry arguments

the existence of a missing fourth two terminal circuit element

called a memristor (memory resistor), where the resistance of the

memristor depends on the integral of the input applied to the

terminals [33,34].

VLSI pioneer Mead published with Conway the landmark text

Introduction to VLSI Systems in 1980 [35]. Mead teamed with John

Hopfield and Feynman to study how animal brains compute. This

work helped to catalyze the fields of Neural Networks (Hopfield),

Neuromorphic Engineering (Mead) and Physics of Computation

(Feynman). Mead created the world’s first neural-inspired chips

including an artificial retina and cochlea, which was documented

in his book Analog VLSI Implementation of Neural Systems published in

1989 [36].

Beinenstock, Cooper and Munro published a theory of synaptic

modification in 1982 [37]. Now known as the BCM plasticity rule,

this theory attempts to account for experiments measuring the

selectivity of neurons in primary sensory cortex and its dependency

on neuronal input. When presented with data from natural

images, the BCM rule converges to selective oriented receptive

fields. This provides compelling evidence that the same mecha-

nisms are at work in cortex, as validated by the experiments of

Hubel and Wiesel. In 1989 Barlow reasoned that such selective

response should emerge from an unsupervised learning algorithm

that attempts to find a factorial code of independent features [38].

Bell and Sejnowski extended this work in 1997 to show that the

independent components of natural scenes are edge filters [39].

This provided a concrete mathematical statement on neural

plasticity: Neurons modify their synaptic weight to extract

independent components. Building a mathematical foundation of

neural plasticity, Oja and collaborators derived a number of

plasticity rules by specifying statistical properties of the neuron’s

output distribution as objective functions. This lead to the

principle of independent component analysis (ICA) [40,41].

At roughly the same time, the theory of support vector

maximization emerged from earlier work on statistical learning

theory from Vapnik and Chervonenkis and has become a

generally accepted solution to the generalization versus memori-

zation problem in classifiers [12,42].

In 2004, Nugent et al. showed how the AHAH plasticity rule is

derived via the minimization of a kurtosis objective function and

used as the basis of self-organized fault tolerance in support vector

Table 2. Memristor conductance updates during the read and write cycle.

Input Memristors Bias Memristors

Read Write Read Write

Dt~b Dt~a Dt~b Dt~a

Accumulate Decay Decay Accumulate

DGa bl V{V read
y

� �
{al VzVsgn(V read

y)
� �

bl V read
y {V

� �
al Vsgn(V read

y)zV
� �

DGb bl VzV read
y

� �
al Vsgn(V read

y){V
� �

{bl VzV read
y

� �
al V{Vsgn(V read

y)
� �

Both input and bias memristors are updated during one read/write cycle. During the read phase the active input memristors increase in conductance (accumulate)
while the bias memristors decrease in conductance (decay). During the write phase the active input memristors decrease in conductance while the bias memristors
increase in conductance. The changes in memristor conductances, DGa and DGb , for the memristor pairs are listed for all four cases.
doi:10.1371/journal.pone.0085175.t002

Figure 7. Generalized Metastable Switch (MSS). An MSS is an
idealized two-state element that switches probabilistically between its
two states as a function of applied voltage bias and temperature. The
probability that the MSS will transition from the B state to the A state is
given by PA, while the probability that the MSS will transition from the
A state to the B state is given by PB. We model a memristor as a
collection of N MSSs evolving over discrete time steps.
doi:10.1371/journal.pone.0085175.g007

AHaH Computing

PLOS ONE | www.plosone.org 5 February 2014 | Volume 9 | Issue 2 | e85175

machine network classifiers. Thus, the connection that margin

maximization coincides with independent component analysis and

neural plasticity was demonstrated [43,44]. In 2006, Nugent first

detailed how to implement the AHaH plasticity rule in memristive

circuitry and demonstrated that the AHaH attractor states can be

used to configure a universal reconfigurable logic gate [45–47].

In 2008, HP Laboratories announced the production of Chua’s

postulated electronic device, the memristor [48] and explored their

use as synapses in neuromorphic circuits [49]. Several memristive

devices were previously reported by this time, predating HP

Laboratories [50–54], but they were not described as memristors.

In the same year, Hylton and Nugent launched the Systems of

Neuromorphic Adaptive Plastic Scalable Electronics (SyNAPSE)

program with the goal of demonstrating large scale adaptive

learning in integrated memristive electronics at biological scale

and power. Since 2008 there has been an explosion of worldwide

interest in memristive devices [55–59] device models [60–65],

their connection to biological synapses [66–72], and use in

alternative computing architectures [73–84].

Theory

On the Origins of Algorithms and the 4th Law of
Thermodynamics

Turing spent the last two years of his life working on

mathematical biology and published a paper titled ‘The chemical

basis of morphogenesis’ in 1952 [85]. Turing was likely struggling

with the concept that algorithms represent structure, brains and

life in general are clearly capable of creating such structure, and

brains are ultimately a biological chemical process that emerge

from chemical homogeneity. How does complex spatial-temporal

structure such as an algorithm emerge from the interaction of a

homogeneous collection of units?

Answering this question in a physical sense leads one straight

into the controversial 4th law of thermodynamics. The 4th law is is

attempting to answer a simple question with profound conse-

quences if a solution is found: If the 2nd law says everything tends

towards disorder, why does essentially everything we see in the

Universe contradict this? At almost every scale of the Universe we

see self-organized structures, from black holes to stars, planets and

suns to our own earth, the life that abounds on it and in particular

the brain. Non-biological systems such as Benard convection cells

[86], tornadoes, lightning and rivers, to name just a few, show us

that matter does not tend toward disorder in practice but rather

does quite the opposite. In another example, metallic spheres in a

non-conducting liquid medium exposed to an electric field will

self-organize into fractal dendritic trees [87].

One line of argument is that ordered structures create entropy

faster than disordered structures do and self-organizing dissipative

systems are the result of out of equilibrium thermodynamics. In other

words, there may not actually be a distinct 4th law, and all

observed order may actually result from dynamics yet to be

unraveled mathematically from the 2nd law. Unfortunately this

argument does not leave us with an understanding sufficient to

allow us to exploit the phenomena in our technology. In this light,

our work with AHaH attractor states may provide a clue as to the

nature of the 4th law in so much as it lets us construct useful self-

organizing and adaptive computing systems.

One particularly clear and falsifiable formulation of the 4th law

comes from Swenson in 1989:

‘‘A system will select the path or assembly of paths out of

available paths that minimizes the potential or maximizes the

entropy at the fastest rate given the constraints [88].’’

Others have converged on similar thoughts. For example, Bejan

postulated in 1996 that:

‘‘For a finite-size system to persist in time (to live), it must evolve

in such a way that it provides easier access to the imposed currents

that flow through it [89].’’

Bejan’s formulation seems intuitively correct when one looks at

nature, although it has faced criticism that it is too vague since it

does not say what particle is flowing. We observe that in many

cases the particle is either directly a carrier of free energy

dissipation or else it gates access, like a key to a lock, to free energy

dissipation of the units in the collective. These particles are not

hard to spot. Examples include water in plants, ATP in cells, blood

in bodies, neurotrophins in brains, and money in economies.

More recently, Jorgensen and Svirezhev have put forward the

maximum power principle [90] and Schneider and Sagan have

elaborated on the simple idea that ‘‘nature abhors a gradient’’

[91]. Others have put forward similar notions much earlier.

Morowitz claimed in 1968 that the flow of energy from a source to

a sink will cause at least one cycle in the system [91] and Lotka

postulated the principle of maximum energy flux in 1922 [92].

The Container Adapts
Hatsopoulos and Keenan’s law of stable equilibrium [93] states

that:

‘‘When an isolated system performs a process, after the removal

of a series of internal constraints, it will always reach a unique state

of equilibrium; this state of equilibrium is independent of the order

in which the constraints are removed.’’

The idea is that a system erases any knowledge about how it

arrived in equilibrium. Schneider and Sagan state this observation

in their book Into the Cool: Energy Flow, Thermodynamics, and Life [91]

by claiming: ‘‘These principles of erasure of the path, or past, as

work is produced on the way to equilibrium hold for a broad class

of thermodynamic systems.’’ This principle has been illustrated by

connected rooms, where doors between the rooms are opened

according to a particular sequence, and only one room is

pressurized at the start. The end state is the same regardless of

Table 3. General memristive device model parameters fit to various devices.

Device tc [ms] GA [mS] GB [mS] VA [V] VB [V] w af bf ar br

Ag-chalc 0.32 8.7 0.91 0.17 0.22 1 – – – –

AIST 0.15 40 10 .23 .25 1 – – – –

GST 0.42 .12 1.2 .9 0.6 0.7 561023 3.0 561023 3.0

WOx 0.80 .025 0.004 0.8 1.0 .55 161029 8.5 2261029 6.2

The devices used to test our general memristive device model include the Ag-chalcogenide, AIST, GST, and WOx devices. The parameters in this table were determined
by comparing the model response to a simulated sinusoidal or triangle-wave voltage to real I–V data of physical devices.
doi:10.1371/journal.pone.0085175.t003

AHaH Computing

PLOS ONE | www.plosone.org 6 February 2014 | Volume 9 | Issue 2 | e85175

the path taken to get there. The problem with this analysis is that it

relies on an external agent: the door opener.

We may reformulate this idea in the light of an adaptive

container, as shown in Figure 1. A first replenished pressurized

container P0 is allowed to diffuse into two non-pressurized empty

containers P1 and P2 though a region of matter M. Let us

presume that the initial fluid conductance Ga between P0 and P1 is

less than Gb. Competition for limited resources within the matter

(conservation of matter) enforces the condition that the sum of

conductances is constant:

GazGb~k: ð1Þ

Now we ask how the container adapts as the system attempts to

come to equilibrium. If it is the gradient that is driving the change in

Figure 8. Generalized memristive device model simulations. A) Solid line represents the model simulated at 100 Hz and dots represent the
measurements from a physical Ag-chalcogenide device from Boise State University. Physical and predicted device current resulted from driving a
sinusoidal voltage of 0.25 V amplitude at 100 Hz across the device. B) Simulation of two series-connected arbitrary devices with differing model
parameter values. C) Simulated response to pulse trains of {10 ms, 0.2 V, 20.5 V}, {10 ms, 0.8 V, 22.0 V}, and {5 ms, 0.8 V, 22.0 V} showing the
incremental change in resistance in response to small voltage pulses. D) Simulated time response of model from driving a sinusoidal voltage of 0.25 V
amplitude at 100 Hz, 150 Hz, and 200 Hz. E) Simulated response to a triangle wave of 0.1 V amplitude at 100 Hz showing the expected incremental
behavior of the model. F) Simulated and scaled hysteresis curves for the AIST, GST, and WOx devices (not to scale).
doi:10.1371/journal.pone.0085175.g008

AHaH Computing

PLOS ONE | www.plosone.org 7 February 2014 | Volume 9 | Issue 2 | e85175

the conductance, then it becomes immediately clear that the

container will adapt in such a way as to erase any initial differential

conductance:

DG~lDPDt: ð2Þ

The gradient DP2 will reduce faster than the gradient DP1 and

Ga will grow more than Gb. When the system comes to

equilibrium we will find that the conductance differential, Ga{Gb

has been reduced.

The sudden pressurization of P2 may have an effect on the

environment. In the moments right after the flow sets up, the first

detectable signal (work) will be available at P2 owing to the

differential that favors it. As a response to this signal, any number

of events could transpire in the environment that open up new

pathways to particle dissipation. The initial conductance differen-

tial will be reinforced as the system rushes to equalize the gradient

in this newly discovered space. Due to conservation of adaptive

resources (Equation 1), an increase in Gb will require a drop in Ga,

and vice versa. The result is that as DP1?0, Ga?0, Gb?k and

the system selects one pathway over another. The process

illustrated in Figure 1 creates structure so long as new sinks are

constantly found and a constant particle source is available.

Figure 9. Unsupervised robotic arm challenge. The robotic arm
challenge involves a multi-jointed robotic arm that moves to capture a
target. Each joint on the arm has 360 degrees of rotation, and the base
joint is anchored to the floor. Using only a value signal relating the
distance from the head to the target and an AHaH motor controller
taking as input sensory stimuli in a closed-loop configuration, the
robotic arm autonomously learns to capture stationary and moving
targets. New targets are dropped within the arm’s reach radius after
each capture, and the number of discrete angular joint actuations
required for each catch is recorded to asses capture efficiency.
doi:10.1371/journal.pone.0085175.g009

Figure 10. The AHaH rule reconstructed from simulations. Each data point represents the change in a synaptic weight as a function of AHaH
node activation, y. Blue data points correspond to input synapses and red data points to bias inputs. There is good congruence between the A)
functional and B) circuit implementations of the AHaH rule.
doi:10.1371/journal.pone.0085175.g010

Figure 11. Justification of constant weight conjugate. Multiple
AHaH nodes receive spike patterns from the set f(1,z),(z,1)g while the
weight and weight conjugate is measured. Blue = weight conjugate
(Wz), Red = weight (W{). The quantity Wz has a much lower
variance than the quantity W{ over multiple trials, justifying the
assumption that Wz is a constant factor.
doi:10.1371/journal.pone.0085175.g011

AHaH Computing

PLOS ONE | www.plosone.org 8 February 2014 | Volume 9 | Issue 2 | e85175

We now map this thermodynamic process to anti-Hebbian and

Hebbian (AHaH) plasticity and show that the resulting attractor

states support universal algorithms and broad machine learning

functions. We furthermore show how AHaH plasticity can be

implemented via physically adaptive memristive circuitry.

Anti-Hebbian and Hebbian (AHaH) Plasticity
The thermodynamic process outlined above can be understood

more broadly as: (1) particles spread out along all available

pathways through the environment and in doing so erode any

differentials that favor one branch over the other, and (2) pathways

that lead to dissipation (the flow of the particles) are stabilized. Let

us first identify a synaptic weight, w, as the differential

conductance formed from two energy dissipating pathways:

w~Ga{Gb: ð3Þ

We can now see that the synaptic weight possess state

information. If GawGb the synapse is positive and if GavGb

then it is negative. With this in mind we can explicitly define

AHaH learning:

N Anti-Hebbian (erase the path): Any modification to the

synaptic weight that reduces the probability that the synaptic

state will remain the same upon subsequent measurement.

N Hebbian (select the path): Any modification to the synaptic

weight that increases the probability that the synaptic state will

remain the same upon subsequent measurement.

Our use of Hebbian learning follows a standard mathematical

generalization of Hebb’s famous postulate:

‘‘When an axon of cell A is near enough to excite B and

repeatedly or persistently takes part in firing it, some growth

process or metabolic change takes place in one or both cells such

that A’s efficiency, as one of the cells firing B, is increased [24].’’

Hebbian learning can be represented mathematically as

Dw!xy, where x and y are the activities of the pre- and post-

synaptic neurons and Dw is the change to the synaptic weight

between them. Anti-Hebbian learning is the negative of Hebbian:

Dw!{xy. Notice that intrinsic to this mathematical definition is

the notion of state. The pre- and post-synaptic activities as well as

the weight may be positive or negative. We achieve the notion of

state in our physical circuits via differential conductances

(Equation 3).

Linear Neuron Model
To begin our mapping of AHaH plasticity to computing and

machine learning systems we use a standard linear neuron model.

The choice of a linear neuron is motivated by the fact that they are

ubiquitous in machine learning and also because it is easy to

Figure 12. Attractor states of a two-input AHaH node under the three-pattern input. The AHaH rule naturally forms decision boundaries
that maximize the margin between data distributions. Weight space plots show the initial weight coordinate (green circle), the final weight
coordinate (red circle) and the path between (blue line). Evolution of weights from a random normal initialization to attractor basins can be clearly
seen for both the functional model (A) and circuit model (B).
doi:10.1371/journal.pone.0085175.g012

Table 4. Logic functions.

SPY, LF) 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

(z, 1, z, 1) 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

(z, 1, 1, z) 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

(1, z, z, 1) 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

(1, z, 1, z) 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

The table defines all 16 possible logic functions (LF) for the four spike encoded input patterns (SP).
doi:10.1371/journal.pone.0085175.t004

AHaH Computing

PLOS ONE | www.plosone.org 9 February 2014 | Volume 9 | Issue 2 | e85175

achieve the linear sum function in a physical circuit, since currents

naturally sum.

The inputs xi in a linear model are the outputs from other

neurons or spike encoders (to be discussed). The weights wi are the

strength of the inputs. The larger wi, the more xi affects the

neuron’s output. Each input xi is multiplied by a corresponding

weight wi and these values, combined with the bias b, are summed

together to form the output y:

y~bz
XN

i~0

xiwi: ð4Þ

The weights and bias change according to AHaH plasticity,

which we further detail in the sections that follow. The AHaH rule

acts to maximize the margin between positive and negative classes. In

what follows, AHaH nodes refer to linear neurons implementing the

AHaH plasticity rule.

AHaH Attractors Extract Independent Components
What we desire is a mechanism to extract the underlying

building blocks or independent components of a data stream,

irrespective of the number of discrete channels those components

are communicated over. One method to accomplish this task is

independent component analysis. The two broadest mathematical

definitions of independence as used in ICA are (1) minimization of

mutual information between competing nodes and (2) maximiza-

tion of non-Gaussianity of the output of a single node. The

non-Gaussian family of ICA algorithms uses negentropy and

kurtosis as mathematical objective functions from which to derive

a plasticity rule. To find a plasticity rule capable of ICA we can

minimize a kurtosis objective function over the node output

activation. The result is ideally the opposite of a peak: a bimodal

distribution. That is, we seek a hyperplane that separates the input

data into two classes resulting in two distinct positive and negative

distributions. Using a kurtosis objective function, it can be shown

that a plasticity rule of the following form emerges [43]:

Dwi~xi ay{by3
� �

, ð5Þ

where a and b are constants that control the relative contribution

of Hebbian and anti-Hebbian plasticity, respectively. Equation 5 is

one form of many that we call the AHaH rule. The important

functional characteristics that Equation 5 shares with all the other

forms is that as the magnitude of the post-synaptic activation

grows, the weight update transitions from Hebbian to anti-

Hebbian learning.

AHaH Attractors Make Optimal Decisions
An AHaH node is a hyperplane attempting to bisect its input

space so as to make a binary decision. There are many

hyperplanes to choose from and the question naturally arises as

to which one is best. The generally agreed answer to this question

is ‘‘the one that maximizes the separation (margin) of the two

classes.’’ The idea of maximizing the margin is central to support

vector machines, arguably one of the more successful machine

Figure 13. AHaH attractor states as logic functions. A) Logic state occupation frequency after 5000 time steps for both functional model and
circuit model. All logic functions can be attained directly from attractor states except for XOR functions, which can be attained via multi-stage circuits.
B) The logic functions are stable over time for both functional model and circuit model, indicating stable attractor dynamics.
doi:10.1371/journal.pone.0085175.g013

Table 5. AHaH clusterer sweep results.

Learning Rate
Number of
AHaH nodes

Number of
Noise Bits

Spike Pattern
Length

Number of
Spike Patterns

Default Value 0.0005 20 3 16 16

Range .0002–.0012 .7 , = 7 , = 36 , = 28

While sweeping each parameter of the AHaH clusterer and holding the others constant at their default values, the reported range is where the vergence remained
greater than 90%.
doi:10.1371/journal.pone.0085175.t005

AHaH Computing

PLOS ONE | www.plosone.org 10 February 2014 | Volume 9 | Issue 2 | e85175

learning algorithms. As demonstrated in [43,44], as well as the

results of this paper, the attractor states of the AHaH rule coincide

with the maximum-margin solution.

AHaH Attractors Support Universal Algorithms
Given a discrete set of inputs and a discrete set of outputs it is

possible to account for all possible transfer functions via a logic

function. Logic is usually taught as small two-input gates such as

NAND and OR. However, when one looks at a more complicated

algorithm such as a machine learning classifier, it is not so clear

that it is performing a logic function. As demonstrated in following

sections, AHaH attractor states are computationally complete

logic functions. For example, when robotic arm actuation or

prediction is demonstrated, self-configuring logic functions is also

being demonstrated.

In what follows we will be adopting a spike encoding. A spike

encoding consists of either a spike (1) or no spike (z). In digital

logic, the state ‘0’ is opposite or complimentary to the state ‘1’ and

it can be communicated. One cannot communicate a pulse of

nothing (z). For this reason, we refer to a spike as ‘1’ and no spike as

a ‘z’ or floating to avoid this confusion. Furthermore, the output of

an AHaH node can be positive or negative and hence possess a

state. We can identify these positive and negative output states as

logical outputs, for example the standard logical ‘1’ is positive and

‘0’ is negative.

Let us analyze the simplest possible AHaH node; one with only

two inputs. The three possible input patterns are:

(x0,x1)~(z,1),(1,z),(1,1): ð6Þ

Stable synaptic states will occur when the sum over all weight

updates is zero. We can plot the AHaH node’s stable decision

boundary on the same plot with the data that produced it. This

Figure 14. AHaH clusterer. Functional (A) and circuit (B) simulation results of an AHaH clusterer formed of twenty AHaH nodes. Spike patterns
were encoded over 16 active input lines from a total spike space of 256. The number of noise bits was swept from 1 (6.25%) to 10 (62.5%) while the
vergence was measured. The performance is a function of the total number of spike patterns. Blue = 16 (100% load), Orange = 20 (125% load),
Purple = 24 (150% load), Green = 32 (200% load), Red = 64 (400% load).
doi:10.1371/journal.pone.0085175.g014

Figure 15. Two-dimensional spatial clustering demonstrations. The AHaH clusterer performs well across a wide range of different 2D spatial
cluster types, all without predefining the number of clusters or the expected cluster types. A) Gaussian B) non-Gaussian C) random Gaussian size and
placement.
doi:10.1371/journal.pone.0085175.g015

AHaH Computing

PLOS ONE | www.plosone.org 11 February 2014 | Volume 9 | Issue 2 | e85175

can be seen in Figure 2, where decision boundaries A, B and C are

labeled. Although the D state is theoretically achievable, it has

been difficult to achieve in circuit simulations, and for this reason

we exclude it as an available state. Note that every state has a

corresponding anti-state. The AHaH plasticity is a local update

rule that is attempting to maximize the margin between opposing

positive and negative data distributions. As the positive distribution

pushes the decision boundary away (making the weights more

positive), the magnitude of the positive updates decreases while the

magnitude of the opposing negative updates increases. The net

result is that strong attractor states exist when the decision

boundary can cleanly separate a data distribution.

We refer to the A state as the null state. The null state occurs

when an AHaH node assigns the same weight value to each

synapse and outputs the same state for every pattern. The null

state is mostly useless computationally, and its occupation is

inhibited by bias weights. Through strong anti-Hebbian learning,

the bias weights force each neuron to split the output space

equally. As the neuron locks on to a stable bifurcation, the effect of

the bias weights is minimized and the decision margin is

maximized via AHaH learning on the input weights.

Recall Turing’s idea of a network of NAND gates connected by

modifier devices as mentioned in the Historical Background section.

The AHaH nodes extract independent component states, the

alphabet of the data stream. As illustrated in Figure 3, by providing

the sign of the output of AHaH nodes to static NAND gates, a

universal reconfigurable logic gate is possible. Configuring the

AHaH attractor states, yi, configures the logic function. We can

do even better than this however.

We can achieve all logic functions directly (without NAND

gates) if we define a spike logic code, where 0~(1,z) and 1~(z,1),
as shown in Table 1. As any algorithm or procedure can be

attained from combinations of logic functions, AHaH nodes are

building blocks from which any algorithm can be built. This

analysis of logic is necessary to prove that AHaH attractor states

can support any algorithm, not that AHaH computing is intended

to replace modern methods of high speed digital logic.

AHaH Attractors are Bits
Every AHaH attractor consists of a state/anti-state pair that can

be configured and therefore appears to represent a bit. In the limit

of only one synapse and one input line activation, the state of the

AHaH node is the state of the synapse just like a typical bit. As the

number of simultaneous inputs grows past one, the AHaH bit

becomes a collective over all interacting synapses. For every

AHaH attractor state that outputs a ‘1’, for example, there exists

an equal and opposite AHaH attractor state that will output a ‘2

1’. The state/anti-state property of the AHaH attractors follows

mathematically from ICA, since ICA is in general not able to

uniquely determine the sign of the source signals. The AHaH bits

open up the possibility of configuring populations to achieve

computational objectives. We take advantage of AHaH bits in the

AHaH clustering and AHaH motor controller examples presented

later in this paper. It is important to understand that AHaH

attractor states are a reflection of the underlying statistics of the

data stream and cannot be fully understood as just the collection of

synapses that compose it. Rather, it is both the collection of

synapses and also the structure of the information that is being

processed that result in an AHaH attractor state. If we equate the

data being processed as a sequence of measurements of the AHaH

bit’s state, we arrive at an interesting observation: the act of

measurement not only effects the state of the AHaH bit, it actually

defines it. Without the data structure imposed by the sequence of

measurements, the state would simply not exist. This bears some

similarity to ideas that emerge from quantum mechanics.

AHaH Memristor Circuit
Although we discuss a functional or mathematical representation of

the AHaH node, AHaH computing necessarily has its foundation

in a physical embodiment or circuit. The AHaH rule is achievable

if one provides for competing adaptive dissipating pathways. The

modern memristor provides us with just such an adaptive

pathway. Two memristors provide us with two competing

pathways. While some neuromorphic computing research has

focused on exploiting the synapse-like behavior of a single

memristor [68,83] or using two serially connected memristive

devices with different polarities [67], we implement synaptic

weights via a differential pair of memristors with the same

polarities (Figure 4) [45–47] acting as competing dissipation

pathways.

The circuits capable of achieving AHaH plasticity can be

broadly categorized by the electrode configuration that forms the

differential synapses as well as how the input activation (current) is

converted to a feedback voltage that drives unsupervised anti-

Hebbian learning [46,47]. Synaptic currents can be converted to a

feedback voltage statically (resistors or memristors), dynamically

(capacitors), or actively (operational amplifiers). Each configura-

tion requires unique circuitry to drive the electrodes so as to

achieve AHaH plasticity, and multiple driving methods exist. The

result is that a very large number of AHaH circuits exist, and it is

well beyond the scope of this paper to discuss all configurations.

Herein, a ‘2-1’ two-phase circuit configuration is introduced

because of its compactness and because it is amenable to

mathematical analysis.

The functional objective of the AHaH circuit shown in Figure 5

is to produce an analog output on electrode y, given an arbitrary

spike input of length N with k active inputs and N{k inactive

(floating) inputs. The circuit consists of one or more memristor

pairs (synapses) sharing a common electrode labeled y. Driving

voltage sources are indicated with circles and labeled with an S, B

Table 6. Benchmark classification results.

Breast Cancer Wisconsin (Original) Census Income MNIST Handwritten Digits Reuters-21578

AHaH .997 AHaH .853 AHaH .98–.99 AHaH .92

RS-SVM [115] 1.0 NBTree [116] .86 deep convex net [117] .992 SVM [118] .864

SVM [119] .972 naı̈ve-Bayes [116] .84 large conv. net [120] .991 C4.5 [118] .794

C4.5 [121] .9474 C4.5 [116] .858 polynomial SVM [42] .986 naı̈ve-Bayes [118] .72

AHaH classifier classification scores for the Breast Cancer, Census Income, MNIST Handwritten Digits and Reuters-21578 classification benchmark datasets. The AHaH
classifier results compare favorably with other methods. Higher scores on the MNIST dataset are possible by increasing the resolution of the spike encoding.
doi:10.1371/journal.pone.0085175.t006

AHaH Computing

PLOS ONE | www.plosone.org 12 February 2014 | Volume 9 | Issue 2 | e85175

Figure 16. Classification benchmarks results. A) Reuters-21578. Using the top ten most frequent labels associated with the news articles in the
Reuters-21578 data set, the AHaH classifier’s accuracy, precision, recall, and F1 score was determined as a function of its confidence threshold. As the

AHaH Computing

PLOS ONE | www.plosone.org 13 February 2014 | Volume 9 | Issue 2 | e85175

or F, referring to spike, bias, or feedback respectively. The

individual driving voltage sources for spike inputs of the AHaH

circuit are labeled S0, S1 � � �, Sn. The driving voltage sources for

bias inputs are labeled B0, B1 � � �, Bm. The driving voltage source

for supervised and unsupervised learning is labeled F. The

subscript values a and b indicate the positive and negative

dissipative pathways, respectively.

During the read phase, driving voltage sources Sa and Sb are set

to zV and {V respectively for all k active inputs. Inactive S

inputs are left floating. The number of bias inputs to drive, m, is

fixed or a function of k and driving voltage sources Ba and Bb are

set to zV and {V respectively for all bias pairs. The combined

conductance of the active inputs and biases produce an output

voltage on electrode y. This analog signal contains useful

confidence information and can be digitized via the sgn() function

to either a logical 1 or a 0, if desired.

During the write phase, driving voltage source F is set to either

Vwrite
y ~Vsgn Vy

read
� �

(unsupervised) or Vwrite
y ~Vsgn(s) (super-

vised), where s is an externally applied teaching signal. The

polarity of the driving voltage sources S and B are inverted to {V
and zV . The polarity switch causes all active memristors to be

driven to a less conductive state, counteracting the read phase. If

this dynamic counteraction did not take place, the memristors

would quickly saturate into their maximally conductive states,

rendering the synapses useless.

A more intuitive explanation of the above feedback cycle is that

‘‘the winning pathway is rewarded by not getting decayed.’’ Each

synapse can be thought of as two competing energy dissipating

pathways (positive or negative evaluations) that are building

structure (differential conductance). We may apply reinforcing

Hebbian feedback by (1) allowing the winning pathway to dissipate

more energy or (2) forcing the decay of the losing pathway. If we

chose method (1) then we must at some future time ensure that we

decay the conductance before device saturation is reached. If we

chose method (2) then we achieve both decay and reinforcement at

the same time.

AHaH Rule from Circuit Derivation
Without significant demonstrations of utility there is little

motivation to pursue a new form of computing. Our functional

model abstraction is necessary to reduce the computational

overhead associated with simulating circuits and enable large

scale simulations that tackle benchmark problems with real world

utility. In this section, we derive the AHaH plasticity rule again,

but instead of basing it on statistical independent components as in

the derivation of Equation 5, we derive it from simple circuit

physics.

During the read phase, simple circuit analysis shows that the

voltage on the electrode labeled y in the circuit shown in Figure 5

is:

V read
y ~V

P
i

Gi
a{Gi

b

� �
P

i

Gi
azGi

b

� � , ð7Þ

where Gi
a and Gi

b are the conductances of the ith memristors for

the positive and negative dissipative pathways, respectively. The

driving voltage sources Sa and Sb as well as Ba and Bb are set to

zV and {V for all i active inputs and bias pairs.

During the write phase the driving voltage source F is set

according to either a supervisory signal or in the unsupervised

case, the anti-signum of the previous read voltage:

confidence threshold increases, the precision increases while recall drops. An optimal confidence threshold can be chosen depending on the desired
results and can be dynamically changed. The peak F1 score is 0.92. B) Census Income. The peak F1 score is 0.853 C) Breast Cancer. The peak F1 score is
0.997. D) Breast Cancer repeated but using the circuit model rather than the functional model. The peak F1 score and the shape of the curves are
similar to functional model results. E) MNIST. The peak F1 score is 0.98–.99, depending on the resolution of the spike encoding. F) The individual F1
classification scores of the hand written digits.
doi:10.1371/journal.pone.0085175.g016

Figure 17. Semi-supervised operation of the AHaH classifier. For the first 30% of samples from the Reuters-21578 data set, the AHaH classifier
was operated in supervised mode followed by operation in unsupervised mode for the remaining samples. A confidence threshold of 1.0 was set for
unsupervised application of a learn signal. The F1 score for the top ten most frequently occurring labels in the Reuters-21578 data set were tracked.
These results show that the AHaH classifier is capable of continuously improving its performance without supervised feedback.
doi:10.1371/journal.pone.0085175.g017

AHaH Computing

PLOS ONE | www.plosone.org 14 February 2014 | Volume 9 | Issue 2 | e85175

Vwrite
y ~Vsgn(V read

y)~

zV : V read
y v0

0 : V read
y ~0

{V : V read
y w0

8>><
>>:

: ð8Þ

We may adapt Equation 2 by replacing pressure with voltage:

DG~lDVDt: ð9Þ

Using Equation 9, the change to memristor conductances over

the read and write phases is given in Table 2 and corresponds to

the circuits of Figure 6. There are a total of four possibilities

because of the two phases and the fact that the polarities of the bias

memristors are inverted relative to the spike input memristors.

Driving voltage source F is set to V~Vsgn(V read
y) during the

write phase for both spike and bias inputs. The terms in Table 2

can be combined to show the total update to the input memristors

over the read and write cycle:

DGa~blV{blV read
y {alV{alVsgn(V read

y)

DGb~blVzblV read
y zalVsgn(V read

y){alV

DG~DGa{DGb~{2blV read
y z2alVsgn(V read

y)

, ð10Þ

and likewise for the bias memristors:

DGa~{blVzblV read
y zalVzalVsgn(V read

y)

DGb~{blV{blV read
y {alVsgn(V read

y)zalV

DG~DGa{DGb~2blV read
y {2alVsgn(V read

y)

: ð11Þ

The quantity Wz, which we call the weight conjugate, remains

constant due to competition for limited feedback:

Wz~
X

i

Gi
azGi

b

� �
~k: ð12Þ

Figure 18. Complex signal prediction with the AHaH classifier. By posing prediction as a multi-label classification problem, the AHaH
classifier can learn complex temporal waveforms and make extended predictions via recursion. Here, the temporal signal (dots) is a summation of five
sinusoidal signals with randomly chosen amplitudes, periods, and phases. The classifier is trained for 10,000 time steps (last 100 steps shown, dotted
line) and then tested for 300 time steps (solid line).
doi:10.1371/journal.pone.0085175.g018

Figure 19. Unsupervised robotic arm challenge. The average
total joint actuation required for the robot arm to capture the target
remains constant as the number of arm joints increases for actuation
using the AHaH motor controller. For random actuation, the required
actuation grows exponentially.
doi:10.1371/journal.pone.0085175.g019

AHaH Computing

PLOS ONE | www.plosone.org 15 February 2014 | Volume 9 | Issue 2 | e85175

The output voltage during the read phase reduces to:

V read
y ~

1

k
VW{, ð13Þ

where we have used the substitution:

W{~
X

i

Gi
a{Gi

b

� �
: ð14Þ

We identify the quantity VW{ as the standard linear sum over the

active weights of the node (Equation 4). Furthermore, we identify

the change of the ith weight as:

Dwi~Dwi
a{Dwi

b~{2blV read
y z2alVsgn(V read

y): ð15Þ

By absorbing k, l and the two constant 2s into the a and b
constants we arrive at the functional form Model A of the AHaH

rule:

y~
P

i

wiz
PM
j~0

bj

Dwi~{byzasgn(y)zg{ 1{dð Þwi

Dbj~by{asgn(y)zg{ 1{dð Þbj

, ð16Þ

where wi is the ith spike input weight, bj is the jth bias weight, and

M is the total number of biases. To shorten the notation we make

the substitution V read
y ?y. Also note that the quantity

P
wi is

intended to denote the sum over the active (spiking) inputs. The

noise variable g (normal Gaussian) and the decay variable d
account for the underlying stochastic nature of the memristive

devices.

Model A is an approximation that is derived by making

simplifying assumptions that include linearization of the update

and non-saturation of the memristors. However, when a weight

reaches saturation, Dwa{wbD?max, it becomes resistant to

Hebbian modification since the weight differential can no longer

be increased, only decreased. This has the desirable effect of

inhibiting null state occupation. However, it also means that

Figure 20. 64-city traveling salesman experiment. By using single-input AHaH nodes as nodes in a routing tree to perform a strike search,
combinatorial optimization problems such as the traveling salesman problem can be solved. Adjusting the learning rate can control the speed and
quality of the solution. A) The distance between the 64 cities versus the convergences time for the AHaH-based and random-based strike search. B)
Lower learning rates lead to better solutions. C) Higher learning rates decrease convergence time.
doi:10.1371/journal.pone.0085175.g020

AHaH Computing

PLOS ONE | www.plosone.org 16 February 2014 | Volume 9 | Issue 2 | e85175

functional Model A is not sufficient to account for these anti-

Hebbian forces that grow increasingly stronger as weights near

saturation. The result is that Model A leads to strange attractor

dynamics and weights that can (but may not) grow without bound,

a condition that is clearly unacceptable for a functional model and

is not congruent with the circuit.

To account for the growing effect of anti-Hebbian forces we can

make a modification to the bias weight update, and we call the

resulting form functional Model B:

y~
P

i

wiz
PM
j~0

bj

Dwi~{byzasgn(y)zg{ 1{dð Þwi

Dbj~{byzg{ 1{dð Þbj

: ð17Þ

The purpose of a functional model is to capture equivalent

function with minimal computational overhead so that we may

pursue large scale application development on existing technology

without incurring the computational cost of circuit simulations.

We justify the use of Model B because simulations prove it is a

close functional match to the circuit, and it is computationally less

expensive than Model A. However, it can be expected that better

functional forms exist. Henceforth, any reference to the functional

model refers to Model B.

Finally, in cases where supervision is desired, the sign of the

Hebbian feedback may be modulated by an external supervisory

signal, s, rather than the evaluation state y:

Dwi~{byzasgn(s)zg{ 1{dð Þwi: ð18Þ

Compare Equation 17 to Equation 5. Both our functional

models as well as the form of Equation 5 converge to functionally

similar attractor states. The common characteristic between both

forms is a transition from Hebbian to anti-Hebbian learning, as

the magnitude of node activation, y, grows large. This transition

insures stable AHaH attractor states.

Generalized Memristive Device Model
Note that AHaH computing is not constrained to just one

particular memristive device; any memristive device can be used as

long as it meets the following criteria: (1) it is incremental and (2)

its state change is voltage dependent. In order to simulate the

proposed AHaH node circuit shown in Figure 5, a memristive

device model is therefore needed. An effective memristive device

model for our use should satisfy several requirements. It should

accurately model the device behavior, it should be computation-

ally efficient, and it should model as many different devices as

possible. Many memristive device models exist, but we felt

compelled to create another one which modeled a wider range

of devices and, in particular, shows a transition from stochastic

binary to incremental analog properties. Any device that can be

manufactured to have electronic behavioral characteristics fitting

to our model should be considered a viable component for

building AHaH computing devices.

In our proposed semi-empirical model, the total current

through the device comes from both a memory-dependent current

component, Im, and a Schottky diode current, Is in parallel:

I~wIm(V ,t)z(1{w)Is(V), ð19Þ

where w[½0,1�. A value of w~1 represents a device that contains

no Schottky diode effects.

The Schottky component, Is(V), follows from the fact that

many memristive devices contain a Schottky barrier formed at a

metal–semiconductor junction [48,63,68,94]. The Schottky com-

ponent is modeled by forward bias and reverse bias components as

follows:

Is~af e
bf V {are

{brV , ð20Þ

where af , bf , ar, and br are positive valued parameters setting the

exponential behavior of the forward and reverse biases exponential

current flow across the Schottky barrier.

The memory component of our model, Im, arises from the

notion that memristors can be represented as a collection of

conducting channels that switch between states of differing

resistance. The channels could be formed from molecular

switches, atoms, ions, nanoparticles or more complex composite

structures. Modification of device resistance is attained through

the application of an external voltage gradient that causes the

channels to transition between conducting and non-conducting

states. As the number of channels increases, the memristor will

become more incremental as it acquires the ability to access more

states. By modifying the number of channels we may cover a range

of devices from binary to incremental. We treat each channel as a

Table 7. Maximum power and corresponding synaptic
weights.

Condition Ga Gb Maximum Power

Path A Selected k 0 1
2

kV2

Path B Selected 0 k 1
2

kV2

No Feedback k=2 k=2 1
8

kV2

The maximum power dissipation of a differential synaptic weight changes
depending on whether feedback is present or not. In the absence of feedback,
the power is maximized when the conductance of each path is the same and
the output descends into randomness. When feedback is present the synapse
may converge to one of two possible configurations, and the power dissipation
increases by a factor of four.
doi:10.1371/journal.pone.0085175.t007

Table 8. Application spike sparsity and AHaH node count.

Application
Coactive
Spikes

Spike
Space Sparsity

AHaH Node
Count

Breast Cancer 31 70 0.44 2

Census Income 63 ,1800 ,0.035 2

MNIST ,1000 ,27,500 ,0.036 10

Reuters 21578 ,100 ,46,000 ,0.002 119

Robotic Arm 92 341 0.27 345

Comb. Opt. 1 1 n/a ,600,000

Clusterer 16 256 0.0625 20

Prediction 300 9600 0.031 32

The applications and benchmarks presented in this paper to demonstrate
various machine learning tasks using AHaH plasticity require different AHaH
node configurations depending on the type of data being processed and what
the desired result is. The sparsity is a function of the incoming data and is
defined as the number of coactive spikes divided by the total spike space.
doi:10.1371/journal.pone.0085175.t008

AHaH Computing

PLOS ONE | www.plosone.org 17 February 2014 | Volume 9 | Issue 2 | e85175

metastable switch (MSS) and the conductance of a collection of

metastable switches capture the memory effect of the memristor.

An MSS possesses two states, A and B, separated by a potential

energy barrier as shown in Figure 7. Let the barrier potential be

the reference potential V~0. The probability that the MSS will

transition from the B state to the A state is given by PA, while the

probability that the MSS will transition from the A state to the B

state is given by PB. The transition probabilities are modeled as:

PA~a
1

1ze{b V{VAð Þ~aC V ,VAð Þ ð21Þ

and

PB~a 1{C V ,{VBð Þð Þ, ð22Þ

where b~
q

kT
~(VT){1. Here, VT is the thermal voltage and is

equal to approximately 26 mV{1 at T~300 K, a~
Dt

tc
is the ratio

of the time step period Dt to the characteristic time scale of the

device, tc, and V is the voltage across the switch. The probability

PA is defined as the positive-going direction, so that a positive

applied voltage increases the chances of occupying the A state. An

MSS possesses utility in an electrical circuit as an adaptive element

so long as these conductances differ. Each state has an intrinsic

electrical conductance given by GA and GB. The convention is

that GBwGA. Note that the logistic function
1

1ze{x
is similar to

the hyperbolic-sign function used in other memristive device

models including the nonlinear ion-drift, the Simmons tunnel

barrier, the threshold adaptive models, and physics-based models

[64,95–98]. Our use of the logistic function follows simply from

the requirement that probabilities must be bounded between 0

and 1.

We model a memristor as a collection of N MSSs evolving in

discrete time steps, Dt. The total memristor conductance is given

by the sum over each MSS:

Gm~NAGAzNBGB~NB GB{GAð ÞzNGA, ð23Þ

where NA is the number of MSSs in the A state, NB is the number

of MSSs in the B state and N~NAzNB.

At each time step some subpopulation of the MSSs in the A

state will transition to the B state, while some subpopulation in the

B state will transition to the A state. The probability that k MSSs

will transition out of a population of n MSSs is given by the

binomial distribution:

P n,kð Þ~ n!

k! n{1ð Þ! pk 1{pð Þn{k, ð24Þ

where p is the probability a MSS will transition states. As n
becomes large we may approximate the binomial distribution with

a normal distribution:

N m,s2
� �

~
e
{ x{mð Þ2

2s2ffiffiffiffiffiffiffiffiffiffi
2ps2
p , ð25Þ

where m~np and s2~np 1{pð Þ.
We model the change in conductance of a memristor as a

probabilistic process where the number of switches that transition

between A and B states is picked from a normal distribution with a

center at np and variance np(1{p), and where the state transition

probabilities are given by Equations 21 and 22.

The update to the memristor conductance is given by the

contribution from two random variables picked from two normal

distributions:

DNB~

N NAPA,NAPA 1{PAð Þð Þ{N NBPB,NBPB 1{PBð Þð Þ:
ð26Þ

The final update to the conductance of the memristor is then

given by:

DGm~DNB GB{GAð Þ: ð27Þ

Reducing the number of MSSs in the model will reduce the

averaging effects and cause the memristor to behave in a more

stochastic way. As the number of MSSs becomes small, the normal

approximation to the binomial distribution breaks down. Howev-

er, our desired operating regime of many metastable switches, and

hence incremental behavior, is within the acceptable bounds of the

approximation.

Methods

All experiments are software based, and they involve the

simulation of AHaH nodes in various configurations to perform

various adaptive learning tasks. The source code for the

experiments is written in the Java programming language and

can be obtained from a Git repository linked to from Xeiam LLC’s

main web page at http://xeiam.com under the AHaH! project.

The code used for the experiments in this paper is tagged as

PLOS_AHAH on the master branch giving a pointer to the exact

code used for this paper. The specific programs for each

experiment are clearly identified at the end of each experiment

description in the methods section. Further details about the

programs and the relevant program parameters can be found in

the source code itself in the form of comments.

There are two distinct models used for the simulation

experiments: functional and circuit. The simulations based on

the functional model use functional Model B as described above.

The simulations based on the circuit model use ideal electrical

circuit components and the generalized model for memristive

devices. Nonideal behaviors such as parasitic impedances are not

included in the circuit simulation experiments. We want to

emphasize that at this stage we are attempting to cross the

considerable divide between memristive electronics and general

machine learning by defining a theoretical methodology for

computing with dissipative attractor states. By focusing on

nonideal circuit behavior at this stage we risk obfuscating what

is otherwise a theory with minimal complexity.

Generalized Memristive Device Model
By adjusting the free variables in the generalized memristive

device model and comparing the subsequent current-voltage

hysteresis loops to four real world memristive device I–V data,

matching model parameters were determined as shown in Table 3.

The devices include the Ag-chalcogenide [55], AIST [99], GST

[70], and WOx [63] devices, and they represent a wide spectrum

of incremental memristive devices found in recent publications

exhibiting diverse characteristics. All simulations in this paper

AHaH Computing

PLOS ONE | www.plosone.org 18 February 2014 | Volume 9 | Issue 2 | e85175

involving AHaH node circuitry use the memristor model

parameters of the Ag-chalcogenide device, unless otherwise noted.

The remaining three are presented in support of our general

model.

Figure 8A shows the hysteresis curve of the model and raw Ag-

chalcogenide device data driven at 100 Hz with a sinusoidal

voltage of 0.25 V amplitude. Additional 1000 Hz and 10 kHz

simulations are also shown. The predicted behavior of the model

shows a good fit to the physical Ag-chalcogenide device. In fact the

model is arguably better than other models (linear ion drift and

nonlinear ion drift) tested for a similar device in [61]. Figure 8B

shows the predicted response of two series-connected arbitrary

memristive devices with differing parameters driven by the

sinusoidal voltage as in 8A. The simulation of two devices in

series (Figure 4) as shown in Figure 8B also displayed expected

characteristics and agrees with results in [100] where the linear ion

drift model was used. Experiments have not yet been carried out

on physical devices to verify this. Figure 8C shows the incremental

pulsed resistance change of a single Ag-chalcogenide modeled

device for three different pulse train configurations. The three

different pulse trains were chosen to show that by changing both

the pulse width or the pulse voltage, the modeled behavior is

predicted as expected. Figure 8D shows the time response of the

Ag-chalcogenide modeled device at frequencies of 100 Hz,

150 Hz, and 200 Hz. Figure 8E shows the simulated response of

the Ag-chalcogenide modeled device to a triangle wave of both +
0.1 V and 20.1 V amplitude at 100 Hz designed to show the

expected incremental prediction of the model. Figure 8F shows

additional model fits to the AIST, GST, and WOx devices. As

demonstrated, our model can be applied to a wide range of

memristive devices from Chalcogenides to metal-oxides and more.

The source code for these simulations is in AgChalcogenideHyster-

esisPlotA.java, AgChalcogenideHysteresisPlotB.java, AgChalcogenidePulse-

TrainPlotC, AgChalcogenideTimePlotD, AgChalcogenideTrianglePlotE,

AgInSbTeHysteresisPlot.java, GSTHysteresisPlot.java, and PdWO3WHys-

teresisPlot.java.

When it comes time to manufacture AHaH node circuitry, an

ideal memristor will be chosen taking into consideration many

properties. It is likely that some types of memristors will be better

candidates, some will not be suitable at all, and that the best device

has yet to be fabricated. Based on our current understanding, the

ideal device would have low thresholds of adaptation (,0.2 V), on-

state resistance of ,100 kV or greater, high dynamic range,

durability, the capability of incremental operation with very short

pulse widths and long retention times of a week or more. However,

even devices that deviate considerably from these parameters will

be useful in more specific applications. As an example, short

retention times on the order of seconds are perfectly compatible

with combinatorial optimizers.

AHaH Circuit Simulation
Circuit simulations were carried out by solving for the voltage at

node y in each AHaH node (Figure 5) using Kirchhoff’s Current

law (KCL) during the read phase followed by updating all

memristor conductance values according to the generalized MSS

model given the voltage drop across each memristor and the read

period length. During the write phase, the memristor conductance

values were individually updated according to the generalized

MSS model given the voltage drop across each memristor and the

write period length. The source code for the circuit is available in

AHaH21Circuit.java. Parameters for operation of the circuit were

set as follows: Vdd = 0.5 V, Vss = 20.5 V, read period (a) = 1 ms,

and write period (b) = 1 ms. The number of input and bias

memristors differed depending on the simulation task, as noted in

each section below or in the source code.

Spike Encoding
All machine learning applications built from AHaH nodes have

one thing in common: the inputs to the AHaH nodes take as input

a spike pattern. A spike pattern is a set of integers that specify

which synapses in the AHaH node are coactive. In terms of a

circuit, this is a description of what physical input lines are being

driven by the driving voltage (V). All other inputs remain floating

(z). Any data source can be converted into a spike encoding with a

spike encoder. As an example, the eye converts electromagnetic

radiation into spikes, the ear converts sound waves into spikes, and

the skin converts pressure into spikes. Each of these may be

considered a spike encoder and each is optimized for a specific

data source.

A simple example makes spike encoding for an AHaH node

clear. Suppose a dataset is available where the colors of a person’s

clothes are associated with the sex of the person. The entire dataset

consists of several colors ? sex associations. For each person, the

colors are mapped to an integer and added to a vector of variable

length:

fred,blue,blackg ? f1,2,5g
fred,yellow,whiteg ? f1,3,4g
fwhite,blackg ? f4,5g

, ð28Þ

where red maps to 1, blue maps to 2, yellow maps to 3, etc. The

spike patterns for this dataset are then f1,2,5g, f1,3,4g, and f4,5g.
In order to accommodate the range of spikes, the AHaH nodes

would require at least five inputs or a spike space of five.

In the case of real-value numbers, a simple recursive method for

producing a spike encoding can also conveniently be realized

through strictly anti-Hebbian learning via a binary decision tree

with AHaH nodes at each tree node. Starting from the root node

and proceeding to the leaf node, the input x is summed with a bias

b, y~xzb. Depending on the sign of the result y, it is routed in

one direction or another toward the leaf nodes. The bias is

updated according to anti-Hebbian learning, the practical result

being a subtraction of an adaptive average:

Db~{by: ð29Þ

If we then assign a unique integer to each node in the decision

tree, the path that was taken from the root to the leaf becomes the

spike encoding. This process is an adaptive analog to digital

conversion. The source code used to generate this spike encoding

is in AHaHA2D.java. This adaptive binning procedure can be

extended to sparse-spike encoded patterns if.

y~
X

i

wizb, ð30Þ

where wi is sampled randomly from the set f{1,1g with equal

frequency.

Circuit and Functional Model Correspondence
We demonstrate that both the functional and circuit imple-

mentation of the AHaH node are equivalent and functioning

correctly in order to establish a link between our benchmark

results and the physical circuit. The source code for these

experiments can be found in AHaHRuleFunctionalApp.java and

AHaH Computing

PLOS ONE | www.plosone.org 19 February 2014 | Volume 9 | Issue 2 | e85175

AHaHRuleCircuitApp.java for both the functional and circuit form

respectively. In both applications a four-input AHaH node

receives the spike patterns from the set f(1,z),(z,1)g, and the

change in the synaptic weights is measured as a function of the

output activation, y. Recall that we must encode the nonlinearly

separable two-input channels into four-input linearly separable

spike logic channels so that we can achieve all logic functions (XOR)

directly with AHaH attractor states. For both the functional and

circuit form of the AHaH node, a bias synapse is included in

addition to the normal inputs.

In the derivation of the functional model, the assumption was

made that the quantity Wz was constant (Equation 12). This

enabled the treatment of the output voltage as a sum over the

input and bias weights. This condition of conservation of adaptive

resources is also required in the thermodynamic model (Equation

1). To demonstrate we have attained this conservation, the

quantities Wz and W{ (Equations 12 and 14) are plotted for five

different four-input AHaH nodes receiving the spike patterns from

the set f(1,z),(z,1)g for 1100 time steps. The source code for this

experiment is in DifferentialWeightApp.java.

AHaH Logic
A two input AHaH node will receive three possible spike

patterns f(1,z),(z,1),(1,1)g and converge to multiple attractor

states. Each decision boundary plotted in Figure 2 represents a

state and its anti-state (i.e. an AHaH bit), since two solutions exist

for each stable decision boundary. The 6 possible states are labeled

A, A’, B, B’, C, and C’. Fifty two-input AHaH nodes with Ag-

chalcogenide memristors were simulated. All AHaH nodes were

initialized with random weights picked from a Gaussian distribu-

tion with low weight saturation. That is, the memristors were

initialized close to their minimally conductive states. Each node

was given a stream of 500 inputs randomly picked with equal

probability from the set f(1,z),(z,1),(1,1)g. The source code for

this experiment is in a file called TwoInputAttractorsApp.java, and

there exists a functional form and a circuit form version to show

correspondence between the two.

As stated earlier, the attractor states A, B, and C can be viewed

as logic functions. It was earlier demonstrated how NAND gates

can be used to make these attractor states computationally

complete. It was also described how a spike encoding consisting

of two input lines per channel can be used to achieve completeness

directly with AHaH attractor states. To investigate this, 5000

AHaH nodes were initialized with random weights with zero

mean. Each AHaH node was driven with 1000 spikes randomly

selected from the set f(1,z),(z,1),(1,1)g. Finally, each AHaH

node’s logic function was tested, and the distribution of logic

functions was measured. The source code for this experiment is in

SpikeLogicStateOccupationFrequencyApp.java, and there exists functional

form and circuit form versions to show correspondence between

the two.

To demonstrate that the attractor states and hence logic

functions are stable over time, the above experiment can be

repeated. However, the number of time steps can be significantly

increased and the logic state of each AHaH node can be recorded

at each time step. For this experiment, 100 AHaH nodes were

randomly initialized, and their logic functions were tested over

50,000 time steps. The source code for this experiment is in

SpikeLogicFuntionVsTimeApp.java, and there exists functional form

and circuit form versions to show correspondence between the

two.

AHaH Clustering
Clustering is a method of knowledge discovery which automat-

ically tries to find hidden structure in data in an unsupervised

manner [101]. Centroid-based clustering methods like k-means

[102] require that the user define the number of cluster centers

ahead of time. Density-based methods can be used without

predefining cluster centers, but can fail if the clusters are of various

densities [103]. Methods such as OPTICS [104] address the

problem of variable cluster densities, but introduce the problem

that they expect some kind of density drop, which leads to

arbitrary cluster borders. On datasets consisting of a mixture of

known cluster distributions, density-based clustering algorithms

are outperformed by distribution-based methods such as expec-

tation maximization (EM) clustering [105]. However, EM

clustering assumes that the data is a mixture of a known

distribution and as such is not able to model density-based

clusters. It is furthermore prone to over-fitting.

An AHaH node converges to attractor states that cleanly

partition its input space by maximizing the margin between

opposing data distributions. The set of AHaH attractor states are

furthermore computationally complete. These two properties

enable a sufficiently large collective of AHaH nodes to assign

unique labels to unique input data distributions while maintaining

a high level of tolerance to noise. If a collective of AHaH nodes are

allowed to randomly fall into attractor states, the binary output

vector is a label for the input feature. For example, a four node

collective with outputs (0,0,0,1) would encode the output ‘0001’

and, if converted to base-10 integers, be assigned the cluster ID ‘1’.

The collective node output (1,1,1,1) would encode the output

‘1111’ and be assigned the cluster ID ‘15’. Such a collective is

called an AHaH clusterer.

The total number of possible output labels from the AHaH

collective is 2N , where N is the number of AHaH nodes in the

collective. The collective may output the same label for different

spike patterns if N is small and/or the number of patterns, F , is

high. However, as the number of AHaH nodes increases, the

probability of this occurring drops exponentially. Under the

assumption that all attractor states are equally likely, the

probability that any two unique spike patterns, F , will be assigned

the same binary label is:

P~
1

2N
z

2

2N
z � � �z F

2N
~

F2zF

2Nz1
: ð31Þ

For example, given 64 spike patterns and 16 AHaH nodes, the

probability of the collective assigning the same label is 3%. By

increasing N to 32, the probability falls to less than one in a

million.

We developed a quantitative metric to characterize the

performance of our AHaH clusterer. Given a unique spike pattern

P we would ideally like a unique label L (P?L). This is

complicated by the presence of noise, occlusion, and non-

stationary data or drift. Failure can occur in two ways. First, if

the same underlying pattern is given more than one label, we may

say that the AHaH clusterer is diverging. We measure the

divergence, D, as the inverse of the average labels per pattern.

Second, if two different patterns are given the same label, we may

say that it is converging. We measure convergence, C, as the inverse

of the average patterns per label.

Divergence and convergence may be combined to form a

composite measure we call vergence, V :

AHaH Computing

PLOS ONE | www.plosone.org 20 February 2014 | Volume 9 | Issue 2 | e85175

V~
DzC

2
: ð32Þ

Perfect clustering extraction will occur with a vergence value of

1. The code used to encapsulate the vergence measurement can be

found in VergenceEvaluator.java.

To investigate the AHaH clusterer’s performance as measured

by our vergence metric, we swept the following parameters

individually while holding the others constant: learning rate (a, b),

number of AHaH nodes, number of noise bits, spike pattern

length, and number of spike patterns. The applications used to

perform the sweeps can be found in the files SweepLearningRa-

teApp.java, SweepNumAhahNodesApp.java, SweepNumNoiseBitsVsSpikePat-

ternLengthApp.java, SweepSpikePatternLengthApp.java, and SweepNumSpi-

kePatternsApp.java, respectively.

The number of inputs to the AHaH nodes making up the

AHaH clusterer was 256. Synthetic spike patterns were created

with a random spike pattern generator. Given a spike pattern

length, the number of inputs available on the AHaH nodes and the

number of unique spike patterns, a set of spike patterns was

generated. Noise is generated by taking random input lines and

activating them, or, if the input line is already active, deactivating

it. The number of patterns that can be distinguished by the AHaH

clusterer before vergence falls is a function of the input pattern

sparsity, number of total patterns and the pattern noise. Both

functional-based and circuit-based AHaH clusterers were investi-

gated and showed good correspondence.

While the vergence experiments provide a quantitative measure

of the characteristics of the AHaH clusterer, we also designed a

program to qualitatively visualize the clustering capabilities. The

basic idea is to create several spatial clusters in two-dimensional

space and let the clusterer automatically determine the boundaries

between clusters in an unsupervised manner. We used a k-nearest

neighbor algorithm to translate the spatial location of cluster

points into a spike representation, although other spike encoding

methods are of course possible. The AHaH clusterer converges to

attractor states that map spike patterns to integer, which is in turn

mapped to a unique color. The visualizations give the observer a

sense of how tolerant the AHaH clusterer is to variations in cluster

type, size and temporal stability. The code for the clustering

visualization is in ClusteringApp.java. There are several different

visualizations including clusters of various sizes, arrangements, and

numbers, both stationary and non-stationary.

AHaH Classification
Linear classification is a useful tool used in the field of machine

learning to characterize and apply labels to samples from datasets.

State of the art approaches to classification include algorithms

such as decision trees, random forests, support vector machines

(SVM) and naı̈ve Bayes [106]. These approaches are used in real

world applications such as image recognition, data mining, spam

filtering, voice recognition, and fraud detection. Our AHaH-based

linear classifier is different from these techniques mainly in that it

is not just another algorithm; it can be realized as a physically

adaptive circuit. This presents several competitive advantages, the

main one being that such a circuit would increase the speed and

reduce power consumption dramatically while eliminating the

problems associated with disk I/O bottlenecks experienced in

large scale data mining applications [107].

The AHaH classifier consists of one or more AHaH nodes, each

node assigned to a classification label and each operating the

supervised form of the AHaH rule of Equation 17. In cases where

a supervisory signal is not available, the unsupervised form of the

rule (Equation 18) may be used. Larger magnitude AHaH node

output activations are interpreted as a higher confidence. There

are multiple ways to interpret the output of the classifier depending

on the situation. First, one can order all AHaH node outputs and

choose the most positive. This method is ideal when only one label

per pattern is needed and an output must always be generated.

Second, one can choose all AHaH node outputs that exceed a

confidence threshold. This method can be used when multiple

labels exist for each input pattern. Finally, only the most positive

AHaH node output is chosen if it exceeds a threshold, otherwise

nothing is returned. This method can be used when only one label

per pattern is needed, but rejection of a pattern is allowed.

To compare the AHaH classifier to other state of the art

classification algorithms, we chose four popular classifier bench-

mark data sets: the Breast Cancer Wisconsin (Original), Census

Income, MNIST Handwritten Digits, and the Reuters-21578 data

sets. The source code for these classification experiments is found

in BreastCancerFunctionalApp.java, CensusIncomeApp.java, MnistApp.java,

and Reuters21578App.java, respectively.

We scored the classifiers’ performance using standard classifi-

cation metrics: precision, recall, F1, and accuracy. Information on

these metrics and how they are used is widely available. The

standard training and test sets were used for learning and testing

respectively. More information about these benchmark datasets is

widely available, and a large amount of classification algorithms

have been benchmarked against them including SVM, naı̈ve

Bayes, and decision trees.

To further validate an AHaH classifier implemented with circuit

AHaH nodes against functional AHaH nodes, we use the Breast

Cancer Wisconsin (Original) benchmark dataset. This dataset is

relatively small allowing the circuit level simulations to complete

quickly. Each sample is either labeled benign or malignant. There

were a total of 683 samples. The first 500 were designated as the

training set and the last 183 as the test set. Our spike encoder for

this data set produced a total of 70 unique spikes requiring 70

inputs for this particular classifier. The source code for the circuit

form of the Breast Cancer Wisconsin experiment is in BreastCan-

cerCircuitApp.java.

Continuous valued inputs were converted using the adaptive

decision tree method of Equation 29. Text was converted to a bag-

of-words representation where each unique word was representa-

tive of a unique spike. MNIST image data was first thresholded to

produce a spike list of active pixels. The spike list in each 8|8
image patch was converted to a single spike via the method of

Equation 30. The image patch was convolved and pooled over an

8|8 pixel region. The result of this procedure is a list of spikes

with moderate translational invariance, which was fed to the

AHaH classifier. The source code for this procedure is available in

MnistSpikeEncoder.java.

The AHaH classifier is capable of unsupervised learning by

evoking Equation 17. If no supervised labels are given but the

classifier is able to output labels with high confidence, the output

can be assumed to be correct and used as the supervised signal.

The result is a continued convergence into the attractor state,

which represent a point of maximal margin. This has application

in any domain where large volumes of unlabeled data exist such as

image recognition. By allowing the classifier to process these

unlabeled examples, it can continue to improve its performance

(bootstrap) without supervised labels.

To demonstrate this unsupervised learning capability we used

the Reuters-21578 dataset. The entire training and test sets were

lumped together and the classifier was given the first 25% inputs in

a supervised manner. For the remaining 75% of the news articles,

AHaH Computing

PLOS ONE | www.plosone.org 21 February 2014 | Volume 9 | Issue 2 | e85175

the classifier was run in an unsupervised manner. Only when the

confidence was 1.0, which indicates high certainty of a correct

answer, did the classifier use its own classification as a supervised

training signal. The F1 score was recorded after each story for the

following most frequent labels: earn, acq, money-fx, grain, crude, trade,

interest, ship, wheat, and corn, a common label set used in many

benchmarking exercises using this dataset. The source code for this

experiment is in Reuters21578SemiSupervisedApp.java.

AHaH Signal Prediction
Complex signal prediction involves using the prior history of a

signal or group of signals to predict the future state of the signal.

Signal prediction, also known as signal forecasting, is used in

adaptive filters, resource planning and action selection. Some real

world examples include production estimating, retail inventory

planning, inflation prediction, insurance risk assessment, and

weather forecasting. Current prediction algorithms include prin-

ciple component analysis and regression and Kalman filtering

[108], artificial neural networks [109] and Bayesian model

averaging [110].

By posing signal prediction as a multi-label classification

problem, complex signals can be learned and predicted using

the AHaH classifier. As a simplified proof of concept exercise to

demonstrate this, a complex temporal signal prediction experi-

ment was designed. For each moment of time, the real-valued

signal F S(t)ð Þ is converted into a sparse feature representation

using the method of Equation 29. These features are buffered to

form a feature set:

fF S(t{N)ð Þ,F S(t{Nz1)ð Þ, � � � ,F S(t{1)ð Þg: ð33Þ

This feature set is then used to make predictions of the current

feature F S(t)ð Þ, and the spikes of the current feature are used as

supervised labels. After learning, the output prediction may be

used in lieu of the actual input and run forward recursively in time.

In this way, extended predictions about the future are possible.

The source code for the experiment is available in Complex-

SignalPredictionApp.java. The signal was generated from the

summation of five sinusoidal signals with randomly chosen

amplitudes, periods, and phases. The experiment ran for a total

of 10,000 time steps. During the last 300 time steps, recursive

prediction occurred.

AHaH Motor Control
Motor control is the process by which sensory information

about the world and the current state of the body is used to

execute actions to generate movement. Stabilizing Hebbian

feedback applied to an AHaH node can occur any time after

the Anti-Hebbian read, which opens the interesting possibility of

using AHaH nodes for reinforcement-based learning. Here we

show that a small collective of AHaH nodes, an AHaH motor

controller, can be used in autonomous robotic control. As a proof-

of-concept experiment we use an AHaH motor controller to guide

a multi-jointed robotic arm to a target based on a value signal or

cost function.

A virtual environment in which an AHaH motor controller

controls the angles of N connected fixed length rods in order to

make contact with a target was created as shown in Figure 9. The

arm rests on a plane with its base anchored at the center, and all

the joints have 360 degrees of freedom to rotate. New targets are

dropped randomly within the robotic arm’s reach radius after it

captures a target. The robotic arm virtual environment is part of

an open source project called Proprioceptron, also available at

http://xeiam.com. Proprioceptron builds upon a 3D gaming

library and offers virtual worlds and challenges for testing motor

control algorithms. The robotic arm challenge offers 5 levels of

difficulty starting with stationary targets, increasing target lateral

speed as the levels increase.

Sensors measure the relative joint angles of each segment of the

robot arm as well as the distance from the target ball to each of

two ‘‘eyes’’ located on the side of the arm’s ‘‘head’’. Sensor

measurements are converted into a sparse spiking representation

using the method of Equation 29. A value signal is computed as

the inverse distance of the head to the target:

V~
1

1zd
: ð34Þ

Opposing ‘‘muscles’’ actuate each joint. Each muscle is formed

of many ‘‘fibers’’ and a single AHaH node controls each fiber. The

number of discrete angular steps that move each joint, DJ , is given

by:

DJ~
XN

i~0

(H y0
i

� �
{H y1

i

� �
), ð35Þ

where N is the number of muscle fibers, y0
i is the post-synaptic

activation of the ith AHaH node controlling the ith muscle fiber of

the primary muscle, y1
i is the post-synaptic activation of the ith

AHaH node controlling the ith muscle fiber of the opposing

muscle, and H is the Heaviside step function. The number of

discrete angular steps moved in each joint at each time step is then

given by the difference in these two values.

Given a movement we can say if a fiber (AHaH node) acted for

or against it. We can further determine if the movement was good

or bad by observing the change in the value signal. If, at a later

time, the value increased after a movement, then each fiber

responsible for the movement receive rewarding Hebbian

feedback. Likewise, if the fiber acted in support of a movement

and later the value signal dropped, then the fiber is denied a

Hebbian update. As the duration of time between movement and

reward increases, so does the difficulty of the problem since many

movements can be taken during the interval. A reinforcement

scheme can be implemented in a number of ways over a number

of timescales and may even be combined. For example, we may

integrate over a number of time scales to determine if the value

increased or decreased.

Experimental observation led to constant values of a~0:1 and

b~0:5 for the AHaH rule, although generally good performance

was observed for a wide range of values. The choice of these

parameters is influenced by the complexity of the problem and the

need to learn complex compound sequences, as well as the

duration between action (anti-Hebbian) and reward (Hebbian).

We measured the robotic arm’s efficiency in catching targets by

summing the total number of discrete angular joint actuations

from the time the target was placed until capture. As a control, the

same challenge was carried out using a simple random actuator.

The challenge was carried out for both AHaH-controlled and

random-controlled robotic arm actuation for different robotic arm

lengths ranging from 3 to 21 joints in increments of three. The

total joint actuation is the average amount of discrete joint

actuation over the 100 captured targets. The source code for this

experiment is available in RoboticArmApp.java.

AHaH Computing

PLOS ONE | www.plosone.org 22 February 2014 | Volume 9 | Issue 2 | e85175

AHaH Combinatorial Optimization
An AHaH node will descend into a probabilistic output state if

the Hebbian feedback is withheld. As the magnitude of the

synaptic weight falls closer to zero, the chance that state transitions

will occur rises from 0% to 50%. This property can be exploited in

probabilistic search and optimization tasks. Consider a combina-

torial optimization task such as the traveling salesman problem

where the city-to-city path is encoded as a binary vector

P~(b0,b1, � � � ,bN). The space of all possible paths can be

visualized as the leaves of a binary tree of depth N. The act of

constructing a path can be seen as a routing procedure traversing

the tree from trunk to leaf. By allowing prior attempted solutions

to modify the routing probabilities, an initial uniform routing

distribution can collapse into a subspace of more optimal solutions.

This can be accomplished by utilizing an AHaH node with a

single input as a node within a virtual routing tree. As a route

progresses from the trunk to a leaf, each AHaH node is evaluated

for its state and receives the anti-Hebbian update. Should the

route result in a solution that is better than the average solution, all

nodes along the routing path receive a Hebbian update. By

repeating the procedure over and over again, a positive feedback

loop is created such that more optimal routes result in higher route

probabilities that, in turn, result in more optimal routes. The net

effect is a collapse of the route probabilities from the trunk to the

leaves as a path is locked in. The process is intuitively similar to the

formation of a lighting strike searching for a path to ground and as

such we call it a strike search.

To evaluate the AHaH combinatorial optimizer, we used the

functional model (Equation 17), setting a~b and making it a free

parameter we call the learning rate, L:

L~a~b: ð36Þ

The experiment consists of 200 strike searches, where L is set to

a value chosen randomly from between 0.00015 and 0.0035 at the

start of each trial. The noise variable, g, is picked from a random

Gaussian distribution with zero mean and 0.025 variance. After

every 10,000 solution attempts, branches with synaptic weight

magnitudes less than 0.01 are pruned. A 64-city network is created

where each city is directly connected to every other city, and the

city coordinates are picked from a random Gaussian distribution

with zero mean and a variance of one. The city path is encoded as

a bit sequence such that the first city is encoded with 6 bits, and

each successive city with only as many bits needed to resolve the

remaining cities such that the second-to-last city requires one bit.

The value of the solution is the path distance, which we are

attempting to minimize. The strike process is terminated when the

same solution is generated 5 successive times, indicating conver-

gence. A random search is used as a control, where each new

solution attempt is picked from a uniform random distribution.

The code for this experiment is in StrikeSearchApp.java.

Results and Discussion

AHaH Rule
The AHaH rule reconstructions for the functional and circuit

forms of the AHaH node are shown in Figures 10A and 10B

respectively. In both cases, the AHaH rule is clearly represented

and there is congruence between both forms. However, Figure 10B

hides complexity in the circuit that arises from the differential

aspect of the weights and their limited dynamic range. Because of

this, depending on the saturation state of a weight, the form of

weight update may change over time. The AHaH rule

reconstruction of Figure 10B is thus for a specific weight

initialization for a specific time interval.

As part of our functional model derivation (Equation 12) and

the connection to thermodynamics (Equation 1) we require that

the quantity Wz remains constant. As can be seen in Figure 11,

the quantity Wz does indeed asymptote and remains constant.

AHaH Logic
The 2-input AHaH node receiving 500 consecutive inputs

randomly chosen from the set f(1,z),(z,1),(1,1)g at 50 different

initial synaptic weights evolves into one of the six attractor basins

as shown in Figure 12. Labels A, A’, B, B’, C, and C’ indicate the

attractor basins in these weight-space plots and correspond to the

equivalent decision boundaries shown in Figure 2. The same

experiment was performed with the functional form and the circuit

form of the AHaH node (Figure 12A and 12B respectively) and

close correspondence can be seen.

After being initialized with random synaptic weights, the

occupation of logic states of AHaH nodes receiving the spike

logic patterns of Table 1 are shown in Figure 13 for both

functional and circuit models. Each logic function was assigned a

unique integer value as in Table 4. Experimental results show

congruence between the functional form and circuit form

simulations. All linear functions are represented by distinct AHaH

attractor states. Absent are the expected nonlinear XOR functions

6 and 9. These functions are possible through combinations of

other logic functions, meaning a multi-stage AHaH node network

is capable of achieving any logic function. Since any algorithm or

program can be reduced to successive utilizations of logic gates,

the attractor states of AHaH nodes support universal computation.

Logic functions remain stable over time, as indicated by

Figure 13B.

Logic functions 0 and 15 represent the null state and their

occupation is inhibited through the action of the bias. By

increasing the number of bias inputs from 1 to 3 we can collapse

the stable attractor logic states down to 3, 5, 10 and 12. These

functions represent the pure independent component states and

act to pass or invert each of the two input channels. Although these

states are not computationally complete, they can be made so via

the use of NAND gates as we discussed in the theory section. The

advantage of using states 3, 5, 10 and 12 is that they are very

stable. The disadvantage is that we must now rely on external

circuitry (i.e. NAND gates) to achieve computational universality.

AHaH Clustering
The AHaH clusterer parameter sweep experiment results are

summarized in Table 5. While setting the free parameters at their

default values and sweeping the parameter under investigation, the

range of that parameter that resulted in a vergence value greater

than 0.90 was determined. The performance of the AHaH

clusterer proved to be robust to input pattern noise. For example,

the clusterer can achieve perfect performance with up to 18%

noise under a 100% pattern load. A full pattern load occurs when

the number of patterns (16) multiplied by the pattern size (16) is

equal to the total number of input lines (256 in this case). The

clusterer can achieve greater than 90% vergence with up to 44%

noise, meaning 7 of the 16 spike input pattern’s bits are reassigned

random values.

The results shown in Figure 14 illustrate that the performance

as measured by vergence degrades as the number of spike patterns

increase. This result is explained by the fact that AHaH plasticity

is acting to maximize the margin between data distributions or

patterns. As the number of patterns increases, the margin must

decrease and hence becomes more susceptible to noise. For

AHaH Computing

PLOS ONE | www.plosone.org 23 February 2014 | Volume 9 | Issue 2 | e85175

example, under a 200% pattern load (32 patterns), vergence falls

below 90% after 12.5% noise (2 noise bits). Comparing Figure 14A

and 14B further demonstrates that circuit and functional models

produce similar results. Without noise, the clusterer has impressive

capacity and can reliably assign labels to spike patterns with load

factors that exceed 400%.

Figure 15 shows screen shots of three different two-dimensional

clustering visualizations. The AHaH clusterer performs well for

clusters of various sizes and numbers as well as non-Gaussian

clusters even though it does not need to know the number of

clusters ahead of time or the expected cluster forms. Videos of

similar clustering tasks shown in Figure 15 can be viewed in the

online Supporting Information section (Videos S1– S3). Video S4

shows a two-dimensional clustering visualization with moving

clusters.

The results show that the AHaH clusterer is able to handle a

spectrum of cluster types. We demonstrate the ability to detect

Gaussian and non-Gaussian clusters, clusters of non-equal size, as

well as non-stationary clusters. Whereas other methods have

intrinsic failure modes for certain types of clusters, our method can

apparently handle a wide range of cluster types. Although more

work must be done to fully compare our methods to existing

clustering methods, our results thus far indicate that our method

offers a genuinely new clustering mechanism with a number of

distinct advantages. The most significant advantage is that we can

implement the AHaH clusterer in physically adaptive AHaH

circuits. In other words, clustering can now become an adaptive

hardware resource.

AHaH Classification
Our AHaH classifier benchmark scores for the Breast Cancer

Wisconsin (Original), Census Income, MNIST Handwritten

Digits, and the Reuters-21578 data sets are shown in Table 6

along with results from other published studies using their

respective classification methods. Our results compare well to

published benchmarks and consistently match or exceed SVM

performance. This is surprising given the simplicity of the

approach, which amounts to simple sparse spike encoding followed

by classification with independent AHaH nodes.

In comparing our MNIST results with other methods, it is

important to account for data preprocessing and artificial inflation

of the training data set through transformations of training

samples. We do not inflate the training set; our results are

achievable with only one online training epoch. Both the training

and test are completed on a standard desktop computer processor

in a few minutes to less than an hour, depending on the resolution

of the spike encoding. The current state of the art achieves a

recognition rate of 99.65% and ‘‘took a few days’’ to train on a

desktop computer with GPU acceleration [111]. Another study

determined that human performance on this task is 97.27% [112].

The Reuters-21578, Census Income and Breast Cancer datasets

cover a range of data types from strings to integers to continuous

real-valued signals. The Census Income dataset furthermore

contains mixed data types as well as exemplars with missing

attributes. In all cases the AHaH classifier combined with the

simple spike encoder of Equation 29 matched or exceeded state of

the art classifiers. This is significant primarily for the reason that

both spike encoding and classification functions can be attained via

AHaH learning and support the idea that a generic adaptive

learning hardware resource is possible.

Figure 16 provides a more detailed look at the individual

classification experiments. Typical for all benchmark data sets, as

the confidence threshold of the AHaH classifier is increased, the

precision increases while recall drops (Figure 16A and 16B). In

other words, the classifier makes fewer mistakes at the expense of

not being able to answer some queries. The circuit-level simulation

using the Ag-chalcogenide device model yielded a classification

score as a function of confidence threshold similar to the functional

simulations as shown in Figures 16C and 16D respectively. Similar

circuit-level simulation results were obtained using the AIST and

WOx device models. The results of the MNIST experiment are

shown in Figures 16E and 16F. While Figure 16E shows the

average over all digits, Figure 16F shows the scores of the

individual digits.

Using the confidence threshold as a guide, the AHaH classifier

can also be used in a semi-supervised mode. Starting in supervised

mode and learning over a range of training data, the classifier can

then switch to unsupervised mode. In unsupervised mode we may

activate Hebbian learning if the confidence exceeds a value.

Results are shown in Figure 17, which shows continued improved

F1 score without supervision.

Results to date indicate that the AHaH classifier is an efficient

incremental optimal linear classifier. The AHaH classifier displays

a range of desirable classifier characteristics hinting that it may be

an ideal general classifier capable of handling a wide range of

classification applications. The classifier can learn online in a feed-

forward manner. This is important for large data sets and

applications that require constant adaptation such as prediction,

anomaly detection and motor control. The classifier can associate

an unlimited number of labels to a pattern, where the addition of a

label is simply the addition of another AHaH node. By allowing

the classifier to process unlabeled data it can improve over time.

This has practical implications in any situation where substantial

quantities of unlabeled data exist. Through the use of spike

encoders, the classifier can handle mixed data types such as

discrete or continuous numbers and strings. The classifier tolerates

missing values, noise, and irrelevant attributes and is computa-

tionally efficient. The most significant advantage, however, is that

the circuit can be mapped to physically adaptive hardware.

Optimal incremental classification can now become a hardware

resource.

AHaH Signal Prediction
The results of the temporal signal prediction experiment are

shown in Figure 18. The solid line drawn on top of the true signal

represents the predictor’s accurate prediction of the true complex

waveform after a period of supervised learning (mostly not shown).

One advantage of the recursive prediction is that the forward-

looking time window can be dynamically chosen. Although the

predictor was trained to predict only the next time step, the

recursive prediction can be carried forward to the desired point in

the future for which the prediction should be made, which was 300

time steps in this example. At some point forward the prediction

will degrade if the signal is not deterministic and cyclical. Not all

applications require the recursive prediction, and a simpler

statically set forward-looking time window could be set.

While this temporal signal prediction demonstration is not by

any means an exhaustive comparison of AHaH signal prediction

to other forecasting algorithms, it demonstrates the utility and

flexibility of the AHaH classifier and provides the first glimpse of

using AHaH nodes in the large application space of signal

forecasting. These results also shed light on how AHaH node

supervisory signals could be generated in a completely self-

organizing system with zero human intervention. Time is the

supervisor and prediction is the Hebbian reward. From the

practical perspective, prediction provides the ability to prepare or

optimize for the future. It also provides the ability to detect when a

AHaH Computing

PLOS ONE | www.plosone.org 24 February 2014 | Volume 9 | Issue 2 | e85175

system is changing. If a prediction fails to meet with reality, an

anomaly has occurred.

AHaH Motor Control
The results of the motorized robotic arm experiment are shown

in Figure 19. The performance of the AHaH-guided robotic arm is

compared with a random-guided robotic arm by measuring the

average total joint actuation needed to capture 100 moving

targets. The results demonstrate that the collective of AHaH nodes

are performing a gradient descent of the value function and can

rapidly guide the arm to its target, independent of the number of

joints. Videos of AHaH-controlled 3-, 6-, 9-, 12-, and 15-joint

robotic arms performing the capture challenge can be viewed in

the online Supporting Information section (Videos S5–S9).

Our results show that populations of independent AHaH nodes

can effectively control multiple degrees of freedom so as to ascend

(or descend) a value function. This process is spontaneous and

results from the emergent behavior of many AHaH nodes acting

as self configuring classifiers competing for Hebbian reward. Real

world applications of this effect could of course include actuation

of robotic appendages as well as autonomous controllers. Our

results are significant primarily because the controller can be

reduced to physically adaptive circuits and hence can be made to

consume very little power and space, an important consideration

in mobile platforms.

AHaH Combinatorial Optimization
The results of the traveling salesman problem experiment are

shown in Figure 20. Our experiment demonstrates that an AHaH

combinatorial optimizer performing a strike search can outper-

form a strike search backed by a random path chooser

(Figure 20A). This result shows that the strike is performing a

directed search as expected. Trials with higher convergence times

resulted from cases where the optimizer was given a relatively

lower learning rate. Recall, a lower learning rate allows for a finer-

grained search resulting in the longer convergence times.

Figure 20B shows the relationship between the learning rate and

the solution value (distance), while Figure 20C shows the

relationship between the learning rate and the convergence time.

Lowering the learning rate causes more evidence to be accumu-

lated before positive-feedback forces selection and the solution

proceeds from the trunk to leaf node, one bit at a time.

A strike evolves in time as bits are sequentially locked in via the

positive feedback selection mechanism after a period of evidence

accumulation. The lower the learning rate, the more evidence is

accumulated before a path is locked in. In this way, a strike search

appears to be a relatively generic method to accelerate the search

for a procedure. Using the traveling salesman problem as an

example, we could just as easily encode the strike path as a relative

procedure for re-ordering a list of cities rather than an absolute

ordering. For example, we could swap the cities at indices A and

B, then swap the cities at indices C and D, and so on.

Furthermore, we could utilize the strike procedure in a recursive

manner. In the case of the traveling salesman problem we could

assign lower-level strikes to find optimal sub-paths and higher-

order strikes to assemble larger paths from the sub-paths. Most

generally, if (1) a problem can be represented as a bit configuration

and (2) the configuration can be assigned a value in an efficient

manner, then a strike can be used as an adaptive learning

hardware resource for optimization tasks. The ability to change

the convergence times allows dynamic choices to be made in the

time available.

Synaptic Power Consumption
Both static and dynamic power consumption pathways must be

considered when calculating the energy dissipation of neuro-

morphic chips containing AHaH circuit architecture. The static

power component is dominated by the current flowing through the

AHaH node synapse arrays during the read and write phases. The

dynamic power component is dominated by the charging and

discharging of the capacitive components of the circuitry. This

capacitance includes parasitics from circuit elements and inter-

connect wires. Industry best practices can optimize dynamic power

consumption. Here we focus on an estimation of static power

consumption. Note that by not including the dynamic power

consumption in this estimation, these values represent only a lower

bounds on the synaptic power consumption of a neuromorphic

chip. Dynamic power consumption, which is heavily dependent on

chip design and architecture may have a significant power

contribution. Recall that one of the major motivations of AHaH

computing is the elimination of the von Neumann bottleneck for

machine learning applications. Considering static and dynamic

power consumption together with the elimination of this

bottleneck, the net gain in power efficiency compared to modern

digital electronics will most likely increase.

Static power dissipation of a single AHaH node is equal to

P~V2Geq, where V is the voltage drop across the memristor pairs

and Geq is the equivalent conductance of the combined active

input and bias memristor pairs in Figure 5. Since each synapse

only dissipates energy when it is active (it remains floating

otherwise), and since only a small number of synapses are active at

any given time (given the sparse spike encoding), the current

flowing through the AHaH node during the read and write phases

is very low. The total dissipative energy per synaptic event is.

E~ErzEw~DTV2 GaGb

GazGb

z(GaDGbD0)

� �
, ð37Þ

where Er and Ew are the energy of the read and write phases,

respectively, DT is the pulse width of the read and write phases

and (GaDGbD0) denotes the three possible outcomes Ga, Gb or 0.

That is, the synapse could select the A Path, the B Path or else

feedback is withheld. Utilizing Equation 1, it is straightforward to

show the conductance under maximum power dissipation for each

condition, as shown in Table 7.

From Equation 37 it is clear that lower operating voltages,

shorter pulse widths, and lower conductance memristors will

reduce static power consumption. Developing an ideal candidate

memristor for AHaH computing will play an important role in

static power reduction. Given an operating resistance of the Ag-

chalcogenide memristor of 250V, a pulse with of 10 ms and a

voltage of 1 V, the estimated per-synapse static energy consump-

tion is 40 nJ. Several synapse-like memristors achieving ultra-low

power pulsed synaptic updates have recently been reported

[68,70,113]. The energy consumption per synapse using roughly

average voltage, pulse width, and resistance values taken from the

pulse-driven memristive behavior plots in the three references

results in a calculated energy consumption per synapse per update

of ,12 pJ, ,67.5 pJ, and ,56 pJ respectively. Kuzum et al.

[113] claim that scaling trends project energy consumption for

electronic synapses down to 2 pJ. As an example, a 100 kV device

driven with 1 V, 100 ns pulse widths would consume 1.5 pJ of

static energy per synapse. Such devices will play a significant role

in reaching biological efficiency.

In all applications, the spike encoding plays an important role in

reducing the number of spikes and hence the power consumption.

AHaH Computing

PLOS ONE | www.plosone.org 25 February 2014 | Volume 9 | Issue 2 | e85175

Table 8 tabulates the coactive spikes, the spike space, and the

number of AHaH nodes used for most of the demonstration

applications and benchmarks in this paper. Different applications

require different configurations; some will have few AHaH nodes

and a large spike space while others may have many AHaH nodes

and few inputs.

Limitations of the Study, Open Questions, and
Future Work

We have attempted to connect a low-level general statistical

model of collections of metastable switches with dissipative

attractor-based computation and machine learning in a physically

realizable circuit. Our aim is to provide a road map for others to

follow so that we may all explore and exploit this interesting and

potentially useful form of computing. Our ultimate goal is to

provide a physical adaptive learning hardware resource (the

AHaH circuit) in much the same way as modern RAM memory

provides a memory resource to computing systems. However, only

when we have investigated the circuit and functional models and

have demonstrated real world utility is it necessary to move toward

simulation of nonideal circuits effects, such as parasitic impedanc-

es, signal delays, settling times and variations in memristor

properties. These details are certainly required for the eventual

construction of a neural processing unit (NPU) but to include them

in this paper would obfuscate our core message that ‘‘a new type of

computing is possible that appears to offer a solution of general

machine learning’’.

Our demonstrations of utility include results across the field of

machine learning, from clustering and classification to prediction,

control and combinatorial optimization. Given the intended broad

scope of this paper it was not possible to provide much elaboration

on some of our results, comparison with many other methods, nor

discuss the implications. For this reason we have open-sourced all

code used to generate the results of this paper. We encourage the

reader to investigate our methods carefully and come to their own

conclusions.

Although it was important to develop specific techniques to

address the broad capabilities we have demonstrated, we wish to

convey the idea that the AHaH node is a building block from

which many higher-order adaptive algorithms may be built

including many we have not yet conceived of. As an example

consider our results with the AHaH motor controller and AHaH

classifier. By using the classifier’s confidence estimation as the

value function for the AHaH motor controller, which in turn

controls the viewing position, angle and rotation of an ‘‘eye’’, it

should be possible to spontaneously control the gaze of a vision

system to find and center previously trained objects. Alternately,

by pairing the AHaH signal prediction with the AHaH

combinatorial optimizer, it should be possible learn to predict a

reward signal while simultaneously optimizing actions to attain

reward. We can infer from our results that other capabilities are

possible. Anomaly detection, for example, is the inverse of

prediction. If a prediction can be made about a temporally

dynamic signal, then an anomaly signal can be generated should

predictions fail to match with reality. Tracking of non-stationary

statistics is also a natural by-product of the attractor nature of the

AHaH rule, and was slightly touched upon in the 2D clustering

videos, Video S4 in particular. Attractor points of the AHaH rule

are created by the data structure. It follows logically that these

same states will shift as the structure of the information changes. It

also follows that a system built of components locked in attractor

states will spontaneously heal if damaged [43,44]. This property

could provide new developments in fault-tolerant electronics.

Conclusions

We have introduced the concept of AHaH computing. We have

shown how the simple process of particles dissipating into

containers through adaptive channels competing for conduction

resources leads to AHaH plasticity. We have shown that

memristive devices can arise from metastable switches, how

differential synaptic weights may be built of two or more

memristors, and how an AHaH node may be built of arrays of

synapses. A simple read and write cycle driving an AHaH circuit

results in physical devices implementing AHaH plasticity. We have

demonstrated that the attractor states of the AHaH rule can

configure computationally complete logic functions, and have

shown their use in supervised and unsupervised classification,

clustering, complex signal prediction, unsupervised robotic arm

actuation and combinatorial optimization. We have demonstrated

unsupervised clustering and supervised classification in circuit

simulations, and have further shown a correspondence between

our functional and circuit forms of the AHaH node.

The AHaH node may offer us a building block for a new type of

computing with likely application in the field of machine learning.

Indeed, we hope that our work demonstrates that functions needed

to enable perception (clustering, classification), planning (combi-

natorial optimization, prediction), control (robotic actuation) and

generic computation (universal logic) are possible with a simple

circuit that, technologically speaking, may be very close at hand.

Supporting Information

Video S1 AHaH clustering demonstration with three
Gaussian clusters.
(MP4)

Video S2 AHaH clustering demonstration with one
Gaussian cluster and one non-Gaussian cluster.
(MP4)

Video S3 AHaH clustering demonstration with many
Gaussian clusters of various sizes.
(MP4)

Video S4 AHaH clustering demonstration with non-
stationary clusters.
(MP4)

Video S5 AHaH motor control demonstration with 3-
joint robotic arm.
(MP4)

Video S6 AHaH motor control demonstration with 6-
joint robotic arm.
(MP4)

Video S7 AHaH motor control demonstration with 9-
joint robotic arm.
(MP4)

Video S8 AHaH motor control demonstration with 12-
joint robotic arm.
(MP4)

Video S9 AHaH motor control demonstration with 15-
joint robotic arm.
(MP4)

Acknowledgments

The Breast Cancer Wisconsin, Reuters-21578 Distribution 1.0, and Census

Income classification benchmark datasets were obtained from the UCI

Machine Learning Repository [114].

AHaH Computing

PLOS ONE | www.plosone.org 26 February 2014 | Volume 9 | Issue 2 | e85175

The authors would like to thank Kristy A. Campbell from Boise State

University for graciously providing us with memristor device data.

Special thanks to Air Force Research Laboratory’s (AFRL) Information

Directorate.

Alex Nugent would like to personally thank Hillary Riggs, Kermit

Lopez, Luis Ortiz, and Todd Hylton for their support over the years. This

work would definitely not have existed without them.

This manuscript has been approved for public release; distribution

unlimited. Case Number: 88ABW-2014-0103.

Author Contributions

Conceived and designed the experiments: MAN TWM. Performed the

experiments: MAN TWM. Analyzed the data: MAN TWM. Contributed

reagents/materials/analysis tools: MAN TWM. Wrote the paper: MAN

TWM.

References

1. Grime JP, Crick JC, Rincon JE (1985) The ecological significance of plasticity.

In: Proc. 1985 Symposia of the Society for Experimental Biology. volume 40,

5–29.

2. Desbiez MO, Kergosien Y, Champagnat P, Thellier M (1984) Memorization

and delayed expression of regulatory messages in plants. Planta 160: 392–399.

3. Aphalo PJ, Ballaré CL (1995) On the importance of information-acquiring

systems in plant–plant interactions. Functional Ecology 9: 5–14.

4. Falik O, Reides P, Gersani M, Novoplansky A (2003) Self/non-self

discrimination in roots. Journal of Ecology 91: 525–531.

5. Scialdone A, Mugford ST, Feike D, Skeffington A, Borrill P, et al. (2013)

Arabidopsis plants perform arithmetic division to prevent starvation at night.

eLife 2 doi: 10.7554/eLife.00669.

6. von Bodman SB, Bauer WD, Coplin DL (2003) Quorum sensing in plant-

pathogenic bacteria. Annual Review of Phytopathology 41: 455–482.

7. Nakagaki T, Yamada H, Tóth Á (2000) Intelligence: Maze-solving by an

amoeboid organism. Nature 407: 470–470.

8. Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm Intelligence: from Natural

to 1172 Artificial Systems, volume 4. Oxford University press New York.

9. Choudhary S, Sloan S, Fok S, Neckar A, Trautmann E, et al. (2012) Silicon

neurons that compute. In: Artificial Neural Networks and Machine Learning –

ICANN 2012, Springer Berlin Heidelberg, volume 7552 of Lecture Notes in

Computer Science. 121–128.

10. Izhikevich EM (2003) Simple model of spiking neurons. IEEE Transactions on

Neural Networks 14: 1569–1572.

11. Eliasmith C, Stewart TC, Choo X, Bekolay T, DeWolf T, et al. (2012) A large

scale model of the functioning brain. Science 338: 1202–1205.

12. Boser BE, Guyon IM, Vapnik VN (1992) A training algorithm for optimal

margin classifiers. In: Proc. 1992 ACM 5th Annual Workshop on Computa-

tional Learning Theory. 144–152.

13. MacQueen J (1967) Some methods for classification and analysis of

multivariate observations. In: Proc. 1967 5th Berkeley Symposium on

Mathematical Statistics and Probability. 281–297, p.14.

14. Breiman L (2001) Random forests. Machine Learning 45: 5–32.

15. Serrano-Gotarredona R, Oster M, Lichtsteiner P, Linares-Barranco A, Paz-

Vicente R, et al. (2009) CAVIAR: A 45k neuron, 5M synapse, 12G connects/s

AER hardware sensory–processing–learning–actuating system for high-speed

visual object recognition and tracking. IEEE Transactions on Neural Networks

20: 1417–1438.

16. Sardar S, Tewari G, Babu KA (2011) A hardware/software co-design model

for face recognition using cognimem neural network chip. In: Proc. 2011 IEEE

International Conference on Image Information Processing (ICIIP). 1–6.

17. Arthur JV, Merolla PA, Akopyan F, Alvarez R, Cassidy A, et al. (2012)

Building block of a programmable neuromorphic substrate: A digital

neurosynaptic core. In: Proc. 2012 IEEE International Joint Conference on

Neural Networks (IJCNN). 1–8.

18. Ananthanarayanan R, Esser SK, Simon HD, Modha DS (2009) The cat is out

of the bag: cortical simulations with 109 neurons, 1013 synapses. In: Proc. 2009

IEEE Conference on High Performance Computing Networking, Storage and

Analysis. 1–12.

19. Le QV, Ranzato M, Monga R, Devin M, Chen K, et al. (2011) Building high-

level features using large scale unsupervised learning. preprint arXiv cs.LG/

1112.6209.

20. Pakkenberg B, Pelvig D, Marner L, Bundgaard MJ, Gundersen HJG, et al.

(2003) Aging and the human neocortex. Experimental Gerontology 38: 95–99.

21. Turing AM (1936) On computable numbers, with an application to the

entscheidungsproblem. Proceedings of the London Mathematical Society 42:

230–265.

22. Turing A (1948) Intelligent machinery. Report, National Physical Laboratory.

23. Schrödinger E (1992) What is Life?: With Mind and Matter and

Autobiographical Sketches. Cambridge University Press.

24. Hebb DO (2002) The Organization of Behavior: A Neuropsychological

Theory. Psychology Press.

25. Rosenblatt F (1958) The perceptron: a probabilistic model for information

storage and organization in the brain. Psychological Review 65: 386.

26. Barlow HB (1953) Summation and inhibition in the frog’s retina. The Journal

of Physiology 119: 69–88.

27. Hubel DH, Wiesel TN (1959) Receptive fields of single neurones in the cat’s

striate cortex. The Journal of Physiology 148: 574–591.

28. Widrow B (1987) The original adaptive neural net broom-balancer. In: Proc.
1987 IEEE International Symposium on Circuits and Systems. volume 2, 351–

357.

29. Minsky M, Seymour P (1969) Perceptrons. MIT press.

30. Hopfield JJ (1982) Neural networks and physical systems with emergent
collective computational abilities. Proceedings of the National Academy of

Sciences of the United States of America 79: 2554–2558.

31. Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by
back-propagating errors. Nature 323: 533–536.

32. Grossberg S (1987) Competitive learning: from interactive activation to

adaptive resonance. Cognitive Science 11: 23–63.

33. Chua L (1971) Memristor–the missing circuit element. IEEE Transactions on
Circuit Theory 18: 507–519.

34. Chua LO, Kang SM (1976) Memristive devices and systems. Proceedings of the

IEEE 64: 209–223.

35. Mead C, Conway L (1980) Introduction to VLSI Systems. Boston, MA, USA:

Addison-Wesley Longman Publishing Co., Inc.

36. Mead C, Ismail M (1989) Analog VLSI Implementation of Neural Systems.

Springer.

37. Bienenstock EL, Cooper LN, Munro PW (1982) Theory for the development of

neuron selectivity: orientation specificity and binocular interaction in visual
cortex. The Journal of Neuroscience 2: 32–48.

38. Barlow HB (1989) Unsupervised learning. Neural Computation 1: 295–311.

39. Bell AJ, Sejnowski TJ (1997) The independent components of natural scenes

are edge filters. Vision Research 37: 3327–3338.

40. Hyvärinen A, Oja E (1997) A fast fixed-point algorithm for independent
component analysis. Neural Computation 9: 1483–1492.

41. Comon P (1994) Independent component analysis, a new concept? Signal

Processing 36: 287–314.

42. Schölkopf, Simard P, Vapnik V, Smola AJ (1997) Improving the accuracy and
speed of support vector machines. Advances in Neural Information Processing

Systems 9: 375–381.

43. Nugent A, Kenyon G, Porter R (2004) Unsupervised adaptation to improve
fault tolerance of neural network classifiers. In: Proc. 2004 IEEE NASA/DoD

Conference on Evolvable Hardware. 146–149.

44. Nugent MA, Porter R, Kenyon GT (2008) Reliable computing with unreliable
components: using separable environments to stabilize long-term information

storage. Physica D: Nonlinear Phenomena 237: 1196–1206.

45. Nugent A (2008). Plasticity-induced self organizing nanotechnology for the
extraction of independent components from a data stream. US Patent

7,409,375.

46. Nugent A (2008). Universal logic gate utilizing nanotechnology. US Patent

7,420,396.

47. Nugent A (2009). Methodology for the configuration and repair of unreliable
switching elements. US Patent 7,599,895.

48. Yang JJ, Pickett MD, Li X, Ohlberg DA, Stewart DR, et al. (2008) Memristive

switching mechanism for metal/oxide/metal nanodevices. Nature Nanotech-
nology 3: 429–433.

49. Snider GS (2008) Spike-timing-dependent learning in memristive nanodevices.

In: Proc. 2008 IEEE International Symposium on Nanoscale Architectures
(NANOARCH). 85–92.

50. Stewart DR, Ohlberg DAA, Beck PA, Chen Y, Williams RS, et al. (2004)

Molecule-independent electrical switching in Pt/organic monolayer/Ti
devices. Nano Letters 4: 133–136.

51. Kozicki MN, Gopalan C, Balakrishnan M, Mitkova M (2006) A low-power

nonvolatile switching element based on copper-tungsten oxide solid electrolyte.

IEEE Transactions on Nanotechnology 5: 535–544.

52. Szot K, Speier W, Bihlmayer G, Waser R (2006) Switching the electrical

resistance of individual dislocations in single-crystalline SrTiO3. Nature

Materials 5: 312–320.

53. Dong R, Lee D, Xiang W, Oh S, Seong D, et al. (2007) Reproducible hysteresis
and resistive switching in metal-CuxO-metal heterostructures. Applied Physics

Letters 90: 042107.

54. Tsubouchi K, Ohkubo I, Kumigashira H, Oshima M, Matsumoto Y, et al.
(2007) High-throughput characterization of metal electrode performance for

electric-field-induced resistance switching in metal/Pr0.7Ca0.3MnO3/metal
structures. Advanced Materials 19: 1711–1713.

55. Oblea AS, Timilsina A, Moore D, Campbell KA (2010) Silver chalcogenide

based memristor devices. In: Proc. 2010 IEEE International Joint Conference

on Neural Networks (IJCNN). 1–3.

AHaH Computing

PLOS ONE | www.plosone.org 27 February 2014 | Volume 9 | Issue 2 | e85175

56. Yang Y, Sheridan P, Lu W (2012) Complementary resistive switching in
tantalum oxide-based resistive memory devices. Applied Physics Letters 100:

203112.

57. Valov I, Kozicki MN (2013) Cation-based resistance change memory. Journal

of Physics D: Applied Physics 46: 074005.

58. Hasegawa T, Nayak A, Ohno T, Terabe K, Tsuruoka T, et al. (2011)

Memristive operations demonstrated by gap-type atomic switches. Applied
Physics A 102: 811–815.

59. Jackson BL, Rajendran B, Corrado GS, Breitwisch M, Burr GW, et al. (2013)
Nanoscale electronic synapses using phase change devices. ACM Journal on

Emerging Technologies in Computing Systems (JETC) 9: 12.

60. Choi S, Ambrogio S, Balatti S, Nardi F, Ielmini D (2012) Resistance drift

model for conductivebridge (CB) RAM by filament surface relaxation. In: Proc.
2012 IEEE 4th International Memory Workshop (IMW). 1–4.

61. Pino RE, Bohl JW, McDonald N, Wysocki B, Rozwood P, et al. (2010)
Compact method for modeling and simulation of memristor devices: ion

conductor chalcogenide-based memristor devices. In: Proc. 2010 IEEE/ACM
International Symposium on Nanoscale Architectures (NANOARCH). 1–4.

62. Menzel S, Bottger U, Waser R (2012) Simulation of multilevel switching in
electrochemical metallization memory cells. Journal of Applied Physics 111:

014501.

63. Chang T, Jo SH, Kim KH, Sheridan P, Gaba S, et al. (2011) Synaptic

behaviors and modeling of a metal oxide memristive device. Applied Physics A

102: 857–863.

64. Sheridan P, Kim KH, Gaba S, Chang T, Chen L, et al. (2011) Device and

SPICE modeling of RRAM devices. Nanoscale 3: 3833–3840.

65. Biolek D, Biolek Z, Biolkova V (2009) SPICE modeling of memristive,
memcapacitative and meminductive systems. In: Proc. 2009 IEEE European

Conference on Circuit Theory and Design (ECCTD). 249–252.

66. Chang T, Jo SH, Lu W (2011) Short-term memory to long-term memory

transition in a nanoscale memristor. ACS Nano 5: 7669–7676.

67. Merrikh-Bayat F, Shouraki SB, Afrakoti IEP (2010) Bottleneck of using single

memristor as a synapse and its solution. preprint arXiv: cs.NE/1008.3450.

68. Jo SH, Chang T, Ebong I, Bhadviya BB, Mazumder P, et al. (2010) Nanoscale

memristor device as synapse in neuromorphic systems. Nano Letters 10: 1297–
1301.

69. Hasegawa T, Ohno T, Terabe K, Tsuruoka T, Nakayama T, et al. (2010)
Learning abilities achieved by a single solid-state atomic switch. Advanced

Materials 22: 1831–1834.

70. Li Y, Zhong Y, Xu L, Zhang J, Xu X, et al. (2013) Ultrafast synaptic events in a

chalcogenide memristor. Scientific Reports 3 doi:10.1038/srep01619.

71. Merrikh-Bayat F, Shouraki SB (2011) Memristor-based circuits for performing

basic arithmetic operations. Procedia Computer Science 3: 128–132.

72. Merrikh-Bayat F, Shouraki SB (2013) Memristive neuro-fuzzy system. IEEE

Transactions on Cybernetics 43: 269–285.

73. Morabito FC, Andreou AG, Chicca E (2013) Neuromorphic engineering: from

neural systems to brain-like engineered systems. Neural Networks 45: 1–3.

74. Klimo M, Such O (2011) Memristors can implement fuzzy logic. preprint

arXiv cs.ET/1110.2074.

75. Klimo M, Such O (2012) Fuzzy computer architecture based on memristor

circuits. In: Proc. 2012 4th International Conference on Future Computational
Technologies and Applications. 84–87.

76. Kavehei O, Al-Sarawi S, Cho KR, Eshraghian K, Abbott D (2012) An
analytical approach for memristive nanoarchitectures. IEEE Transactions on

Nanotechnology 11: 374–385.

77. Rosezin R, Linn E, Nielen L, Kugeler C, Bruchhaus R, et al. (2011) Integrated

complementary resistive switches for passive high-density nanocrossbar arrays.
IEEE Electron Device Letters 32: 191–193.

78. Kim KH, Gaba S, Wheeler D, Cruz-Albrecht JM, Hussain T, et al. (2011) A
functional hybrid memristor crossbar-array/CMOS system for data storage

and neuromorphic applications. Nano Letters 12: 389–395.

79. Jo SH, Kim KH, Lu W (2009) High-density crossbar arrays based on a Si

memristive system. Nano Letters 9: 870–874.

80. Xia Q, Robinett W, Cumbie MW, Banerjee N, Cardinali TJ, et al. (2009)

Memristor-1327 tor-CMOS hybrid integrated circuits for reconfigurable logic.
Nano Letters 9: 3640–3645.

81. Strukov DB, Stewart DR, Borghetti J, Li X, Pickett M, et al. (2010) Hybrid
CMOS/memristor circuits. In: Proc. 2010 IEEE International Symposium on

Circuits and Systems (ISCAS). 1967–1970.

82. Snider G (2011) Instar and outstar learning with memristive nanodevices.

Nanotechnology 22: 015201.

83. Thomas A (2013) Memristor-based neural networks. Journal of Physics D:

Applied Physics 46: 093001.

84. Indiveri G, Linares-Barranco B, Legenstein R, Deligeorgis G, Prodromakis T

(2013) Integration of nanoscale memristor synapses in neuromorphic
computing architectures. preprint arXiv cs.ET/1302.7007.

85. Turing AM (1952) The chemical basis of morphogenesis. Philosophical
Transactions of the Royal Society of London Series B, Biological Sciences 237:

37–72.

86. Getling AV (1998) Rayleigh-Bénard Convection: Structures and Dynamics.

World Scientific.

87. Athelogou M, Merté B, Deisz P, Hübler A, Lüscher E (1989) Extremal

properties of dendritic patterns: biological applications. Helvetica Physica Acta
62: 250–253.

88. Swenson R (1989) Emergent attractors and the law of maximum entropy
production: foundations to a theory of general evolution. Systems Research 6:

187–197.

89. Bejan A (1997) Constructal-theory network of conducting paths for cooling a

heat generating volume. International Journal of Heat and Mass Transfer 40:
799–816.

90. Jorgensen SE, Svirezhev YM (2004) Towards a Thermodynamic Theory for

Ecological Systems. Elsevier.

91. Schneider ED, Sagan D (2005) Into the Cool: Energy Flow, Thermodynamics,

and Life. University of Chicago Press.

92. Lotka AJ (1922) Contribution to the energetics of evolution. Proceedings of the
National Academy of Sciences of the United States of America 8: 147–151.

93. Hatsopoulos GN, Keenan JH (1981) Principles of General Thermodynamics.

RE Krieger Publishing Company.

94. Shang DS, Shi L, Sun JR, Shen BG, Zhuge F, et al. (2010) Improvement of

reproducible resistance switching in polycrystalline tungsten oxide films by in

situ oxygen annealing. Applied Physics Letters 96: 072103.

95. Kvatinsky S, Friedman EG, Kolodny A, Weiser UC (2013) TEAM: ThrEshold

Adaptive Memristor model. IEEE Transactions on Circuits and Systems I:

Regular Papers 60: 211–221.

96. Strukov DB, Williams RS (2009) Exponential ionic drift: fast switching and low

volatility of thin-film memristors. Applied Physics A 94: 515–519.

97. Pickett MD, Strukov DB, Borghetti JL, Yang JJ, Snider GS, et al. (2009)
Switching dynamics in titanium dioxide memristive devices. Journal of Applied

Physics 106: 074508.

98. Williams RS, Pickett MD, Strachan JP (2013) Physics–based memristor models.
In: 1365 Proc. 2013 IEEE International Symposium on Circuits and Systems

(ISCAS). 217–220.

99. Zhang JJ, Sun HJ, Li Y, Wang Q, Xu XH, et al. (2013) AgInSbTe memristor
with gradual resistance tuning. Applied Physics Letters 102: 183513.

100. Mladenov VM, Kirilov SM (2012) Analysis of a serial circuit with two

memristors and voltage source at sine and impulse regime. In: Proc. 2012 IEEE

13th International Workshop on Cellular Nanoscale Networks and Their
Applications (CNNA). 1–6.

101. Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM

Computing Surveys (CSUR) 31: 264–323.

102. Lloyd S (1982) Least squares quantization in PCM. IEEE Transactions on

Information Theory 28: 129–137.

103. Kriegel HP, Kröger P, Sander J, Zimek A (2011) Density-based clustering.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 1:

231–240.

104. Ankerst M, Breunig MM, Kriegel HP, Sander J (1999) OPTICS: ordering
points to identify the clustering structure. ACM SIGMOD Record 28: 49–60.

105. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from

incomplete data via the EM algorithm. Journal of the Royal Statistical Society:
Series B 39: 1–38.

106. Kotsiantis SB (2007) Supervised Machine Learning: a Review of Classification

Techniques. IOS Press. 3–24 pp.

107. Yu HF, Hsieh CJ, Chang KW, Lin CJ (2012) Large linear classification when

data cannot fit in memory. ACM Transactions on Knowledge Discovery from

Data (TKDD) 5: 23.

108. Ndong J, Salamatian K (2011) Signal processing-based anomaly detection

techniques: a comparative analysis. In: Proc. 2011 3rd International

Conference on Evolving Internet. 32–39.

109. Zhang G, Patuwo BE, Hu MY (1998) Forecasting with artificial neural

networks: The state of the art. International Journal of Forecasting 14: 35–62.

110. Hoeting JA, Madigan D, Raftery AE, Volinsky CT (1999) Bayesian model
averaging: a tutorial. Statistical Science: 382–401.

111. Cireşan DC, Meier U, Gambardella LM, Schmidhuber J (2012) Deep big

multilayer perceptrons for digit recognition. In: Neural Networks: Tricks of the

Trade, Springer Berlin Heidelberg, volume 7700 of Lecture Notes in
Computer Science. 581–598.

112. Chaaban I, Scheessele MR (2007) Human performance on the USPS database.

Report, Indiana University South Bend.

113. Kuzum D, Jeyasingh RGD, Lee B, Wong HSP (2011) Nanoelectronic

programmable synapses based on phase change materials for brain-inspired

computing. Nano Letters 12: 2179–2186.

114. Bache K, Lichman M (2013). UCI machine learning repository. Available:

http://archive.ics.uci.edu/ml.

115. Chen HL, Yang B, Liu J, Liu DY (2011) A support vector machine classifier
with rough set-based feature selection for breast cancer diagnosis. Expert

Systems with Applications 38: 9014–9022.

116. Kohavi R (1996) Scaling up the accuracy of naı̈ve-Bayes classifiers: a decision-
tree hybrid. In: Proc. 1996 2nd International Conference on Knowledge

Discovery and Data Mining. 202–207.

117. Deng L, Yu D (2011) Deep convex net: A scalable architecture for speech
pattern classification. In: Proc. 2011 Interspeech. 2285–2288.

118. Joachims T (1998) Text Categorization with Support Vector Machines:

Learning with Many Relevant Features. Springer.

119. Bennett KP, Blue JA (1998) A support vector machine approach to decision

trees. In: Proc. 1998 IEEE International Joint Conference on Neural Networks

Proceedings. The 1998 IEEE World Congress on Computational Intelligence.

volume 3, 2396–2401.

AHaH Computing

PLOS ONE | www.plosone.org 28 February 2014 | Volume 9 | Issue 2 | e85175

120. Ranzato M, Huang FJ, Boureau YL, Lecun Y (2007) Unsupervised learning of

invariant feature hierarchies with applications to object recognition. In: Proc.
2007 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

1–8.

121. Quinlan JR (1996) Improved use of continuous attributes in C4.5. preprint

arXiv cs.AI/9603103.

AHaH Computing

PLOS ONE | www.plosone.org 29 February 2014 | Volume 9 | Issue 2 | e85175

