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Abstract

Background: Copy number variations (CNVs) represent an important type of genetic variation that deeply impact
phenotypic polymorphisms and human diseases. The advent of high-throughput sequencing technologies provides an
opportunity to revolutionize the discovery of CNVs and to explore their relationship with diseases. However, most of the
existing methods depend on sequencing depth and show instability with low sequence coverage. In this study, using low
coverage whole-genome sequencing (LCS) we have developed an effective population-scale CNV calling (PSCC) method.

Methodology/Principal Findings: In our novel method, two-step correction was used to remove biases caused by local GC
content and complex genomic characteristics. We chose a binary segmentation method to locate CNV segments and
designed combined statistics tests to ensure the stable performance of the false positive control. The simulation data
showed that our PSCC method could achieve 99.7%/100% and 98.6%/100% sensitivity and specificity for over 300 kb CNV
calling in the condition of LCS (,26) and ultra LCS (,0.26), respectively. Finally, we applied this novel method to analyze
34 clinical samples with an average of 26 LCS. In the final results, all the 31 pathogenic CNVs identified by aCGH were
successfully detected. In addition, the performance comparison revealed that our method had significant advantages over
existing methods using ultra LCS.

Conclusions/Significance: Our study showed that PSCC can sensitively and reliably detect CNVs using low coverage or even
ultra-low coverage data through population-scale sequencing.
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Introduction

Copy number variations (CNV) are known to be an important

component of structural variation in the human genome, resulting

from a mixture of meiotic recombination, homology-directed and

non homologous repair of double-strand breaks, and errors in

replication [1]. CNVs contain duplication, deletion and multi-

allelic variation events of genetic material 1 kb or larger in size,

and might have functional impact through gene expression and

dosage [2,3]. It has been reported that CNVs confer high risk for

inherited diseases, complex diseases and cancer, such as autism

spectrum disorders [4], systemic lupus erythematous [5] and

neuroblastoma [6]. Common CNVs represented in more than 1%

of the population are defined as copy number polymorphisms

(CNP). These polymorphisms may contribute to phenotypic

variations and differences in disease susceptibility across different

ethnic groups [6,7]. Therefore the detection and population-scale

association analysis of CNVs is necessary for the study of migration

and evolution, as well as for clinical diagnosis.

For the last 10 years, the Array Comparative Genomic

Hybridization (aCGH) and Multiplex Ligation Probe Amplifica-

tion (MLPA) methods have provided ample literature on the

detection of CNVs [8,9,10]. Recently, massive parallel sequencing

has begun to offer genome-scale detection of CNVs through high

throughput, high-resolution methods. The Paired-End Read

Mapping (PEM) strategy was the first sequencing-based strategy

to detect CNVs, and is able to identify both insertions and

deletions with a resolution at kilobase level by comparing the

differences between the mapped read distance and the average

library insert size, though it is unable to detect insertions larger
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than the average library insert size and the exact borders of the

CNVs [11,12]. Later, a split-read (SR) method was created to

detect deletions and small insertions, but this method is restricted

in the unique regions of the genome and cannot detect

duplications with exact breakpoint resolution. Then the read

counts (RC) method was developed to detect CNVs by comparing

the reads aligned to a particular region and the expected value

calculated according to the region’s proportion in the whole

genome; this method was first used in tumor samples [13,14]. The

read counts method can achieve a high resolution in a relatively

low coverage sequencing, and some recently popular algorithms

are based on it, including SegSeq [14], CNV-seq [15], CNAseg

[16], ReadDepth [17] and rSW-seq [18]. However, most of these

algorithms need one real or theoretical comparative genome,

which induce an additional cost or unexpected fluctuations that

prevent further large-scale association research and clinical

applications.

Ideally, the number of reads located in a certain region is

proportional to its copy number, which makes it possible to detect

the copy number by counting directly counting the number of

reads. However, the uniformity of read distribution is influenced

by two main sources of bias: local GC bias and other multiplex-

related bias. The GC bias has been well reported in previous

papers [14,19,20]; moreover, there are multiplex reasons except-

ing GC content that could cause sequence bias, such as

chromosomal structure [21]. In the case of multiplex-related bias,

which is hard to observe and correct by individual/limited

samples, it is necessary to recruit population-scale sequencing

instead of using theoretical expectations or single comparative

controls. With population-scale low-coverage whole genome

sequencing (LCS), the sequence bias could be corrected to an

acceptable level, which would be highly beneficial when creating

new methods for CNV detection. Also, comprehensive approaches

can be recruited to control the false positive rate in low coverage

analysis with the use of population-scale data.

To achieve these goals, we have developed a population-scale

CNV calling (PSCC) method, a new bioinformatics method to

detect CNVs using population-scale LCS. PSCC consists of three

modules, including a two-step correction procedure to remove the

local GC content bias and multiplex-related bias, a binary

segmentation method to locate the candidate CNV regions, and

a combined statistics test to estimate the signal reliability and

determine the CNV genotypes. To evaluate the performance of

the PSCC method, we tested its sensitivity and specificity using

,26and ,0.26LCS data in silico, and then conducted detection

of CNVs in 34 clinical samples.

Methods

Overview of PSCC algorithm
The aim of PSCC is to detect CNVs through population-scale

sequencing using LCS data. For better CNV detection, we first

recruited a two-step correction procedure to remove the local GC

content bias and multiplex-related bias, then used a binary

segmentation method to localize the CNV breakpoint, and finally

utilized a combined statistics test to combat false positive controls.

The implementation of PSCC mainly consists of the following

steps (Figure 1):

(a) Observation window selection

(b) Two-step correction procedure

(c) Binary segmentation algorithm

(d) CNV genotype determination and combined statistics test

Observation window selection
To take into account the various mapping reads and the

sequencing reads of different regions of the human genome, we

used adjustable sliding windows in the genome to calculate the

statistic of RCs. The human reference genome was smashed into

sliding simulated reads in the same paired-end/single-end type

and read length as the case samples, and then remapped to the

reference. Then the window sizes were adjusted to have the same

expected RC, which is more comparable among windows in the

correction process. Previous papers have reported that the optimal

window size is inversely linked with the coverage, resulting in

,30 bp bins for 1006 coverage, ,100 bp bins for 20–306
coverage, and ,500 bp bins for 4–66 coverage [22]. Since the

sequencing length was single-end 36 bp, it meant that an expected

RC would range from 55 to 84 in each window. We estimated our

optimum bin size with the actual sequencing depth according to

this principle:

w~nR=N ð1Þ

Where w is the number of simulated reads that should be

located in each window, n is the expected RC of the actual sample

in each window, R is the number of unique mapped reads in the

simulated data, and N is the total sequencing reads.

Two-step correction procedure
Bias correction with local GC content. In each window,

the local GC content of each window is calculated as the average

GC content of mapped reads. Strong correlation between RC and

GC content has been reported in several studies [23,24,25]. The

bias is suspected to be introduced during PCR in library

preparation and cluster generation in the Illumina sequencing

workflow [26]. In this study, our data indicates that the RC will be

underrepresented in GC-poor and GC-rich regions, implying a

significant GC bias. Here, we propose to adjust the RC by using

the observed deviation in coverage for a given GC percentage

[20]. In practice, for all the GC percentages we determine the

deviation of coverage from the genome average and then correct

each RC according to the following formula:

RC0i,j~RCi,j: mj

mgc,j
ð2Þ

Where RCi,j
0 are read counts of the i-th window in sample j,

mgc,j is the median RC of windows that have the same GC content

with i-th window, and mj is the overall median of all the windows

in sample j.
Bias correction with population-based normalization. Irre-

spective of the GC content, there are other factors that influence the

library preparation and cluster generation process such as complex

genomic characteristics, and in the follow-up alignment the sequence

homology and repeat structure seriously affect the mappability. So the

RC becomes uniform in the single sample after the GC correction,

but can still show significant bias in population-scale statistics. These

biases should be similar in the same multisampling window due to the

chromosome inherent attributes. Based on this assumption, we

developed a population-based normalization procedure to eliminate

these multiplex-related biases. The mean of each window in a control

set is calculated to replace the expected value of single sample, while

the standard deviation will be used to evaluate the polymorphism and

to enact a false positive control in the subsequent procedures. This

Population-Scale CNV Detection Method
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process is executed by means of the following formula:

RCi
0~

1

n

Xn

j~1

RCi,j
0 ð3Þ

SDi
0~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n{1

Xn

j~1

(RCi,j
0{RCi

0)2

vuut ð4Þ

RCRi,j
0~RCi,j

0.
RCi

0 ð5Þ

Where RCi
0 and SDi

0 are the mean and standard deviation of

corrected read counts of the i-th window in all the n control

samples. The RCRi,j
0 is the relative ratio of corrected read counts

of the i-th window in sample j.

Through this two-step correction, we can obtain an unbiased

relative copy ratio (RCR) for each window. We also simulta-

neously obtain the deviation level in the population-based

normalization process, which can be used to estimate the reliability

of these regions that may not lead to a false positive.

Binary segmentation algorithm
Based on the corrected RCR data, CNVs can be identified as a

decrease or increase of the RCR across multiple consecutive

windows. Before CNV genotype determination, we need to

localize the segment breakpoints to identify the candidate CNV

regions. The data that we obtain are mathematically very similar

to the signal obtained from aCGH experiments, and the events in

RCR data can be detected using the same algorithmic approaches

that have been used for aCGH data [27]. At present, few statistical

methods have been developed and tested for the detection of

CNVs. Those methods in existence include circular binary

segmentation algorithm (CBS) [28], shifting level model (SLM)

[29], mean-shift algorithm (MSB) [22] and events significance

testing (EWT) [20]. Here, we merge the adjacent windows with

similar RCR into segments using a binary segmentation algorithm.

First, a set of candidate breakpoints is selected by calculating the

significance of differences (p-value) of each window within the

neighboring windows by a non-parameter test. The Wald-

Wolfowitz runs test [30], which has a better performance in

polymorphic conditions, is recruited here. A group of windows

with minimal p-values were selected as ordered initialized

candidate breakpoints.

Then an iterative algorithm is used to obtain the optimized

candidate breakpoints set. In each loop, the lowest significant

breakpoint (with maximum p-value) will be deleted and the p-

values of neighboring windows will be refreshed. This procedure

will be performed until all of the p-values are less than the

genome-wide significance threshold. Thus, a set of candidate CNV

regions are divided by these optimized breakpoints.

CNV genotype determination and combined statistics
tests

After segmentation, the CNV genotype of each segment must

be determined to provide new insights for further research and

clinical applications. With consideration regarding the data

stability and sequence parallelism, we recruited two statistical

tests to estimate the signal reliability and determine the CNV

genotypes.

First, we evaluated the significance of each segment as a CNV

using the U-test (alpha = 0.001); we will refer to this test as self-test

(ST). After this evaluation, we utilized the Parallelism-test (PT) to

estimate the reliability of each signal under the consideration of

multiplex-related bias. The test statistics can be obtained from

these formulas:

STk::m,j~
RCRk::m,j

0{meanj

sdj
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m{kz1
p ð6Þ

Figure 1. Bioinformatics pipeline of our copy number variation analysis strategy.
doi:10.1371/journal.pone.0085096.g001
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PTk::m,j~
RCRk::m,j

0{1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m{kz1

Xm

i~k

SDi
2

s ð7Þ

Where RCRk::m,j
0is the mean of the test region that contains

windows ranging from k to m, meanj and sdj are the mean and

standard deviation of sample j, and SDi is the standard deviation

of the i-th window in control samples.

In PT, the CNVs in stable regions will show a significant p-value.

Therefore, it can remove unreliable signals in unstable regions that

are easily affected by the experimental process or chromosomal

structures, such as tandem repeat. After ST and PT, we can

classify CNVs into four situations.

(a) When ST and PT are both insignificant, the CNV genotype

is consistent with the control set as normal.

(b) When ST and PT are both significant, it is a high-credible

deletion/duplication.

(c) When ST is significant but PT is insignificant, it will be

regarded as a false signal caused by instability of sequence or

multiplex-related bias.

(d) When ST is insignificant but PT is significant, it is regarded

as a false signal and shows an inappropriate sequence quality

of this sample. A replication will be advised when t his kind

of phenomenon happens a lot.

With the use of ST and PT, we effectively determined most

CNV genotypes, and successfully filtered most of the false positive

signals, resulting in a favourable sensitivity and a significant

improvement in specificity.

Results

Performance of two-step bias correction
For the purpose of data observation and method development,

samples from 90 normal Chinese individuals (CS) (data from the

1000 Genomes Project) and 34 Chinese individuals with Down

Syndrome (DS) were recruited for the data observation. The CS

samples were sequenced ,56 and the DS samples were

sequenced ,16 in paired-end reads. (Table 1) Before further

data analysis, we selected appropriate windows for this study. In

order to keep the expected RCs, we defined the adjusted window

using the simulated methods (described in Materials and Methods

S1). Based on formula 1, we got a series of window sizes that had

expected RCs of 25, 50, 100, 150, 250 and 500 in DS samples. To

set up the appropriate expected RCs, RC distribution under

different copy numbers (1, 2, 3) were presented (Figure S1 in

Materials and Methods S1). Generally, the shared proportions of

these three distributions decrease with more expected RCs in each

window. In theory, with more expected RCs, our method will

show an increased sensitivity and specificity but a decreased

resolution. To obtain a balanced performance, we empirically

used 150 as the expected RC in the following analysis.

Under the RC strategy’s assumption that the reads in any

location of the genome are random, the RCs of each window

should follow Poisson distribution. However, in practice the RC

distribution showed a severe bias [20,31]. In our CS samples, the

RC was considerably under-represented in GC-poor (GC,35%)

and GC-rich (GC .50%) regions (Figure 2a). Also, the coefficient

of variation (CV) indicated significant sequence instability in these

regions (Figure 2d). The existence of this GC bias may lead to an

unsatisfied performance. To eliminate this GC bias, we applied the

GC correction procedure to the RC, following formula 2

(Methods). After this process, most windows were centralized to

a genome-wide level (RCR = 1), showing less bias between RCR

and GC content (Figure 2b). In the case of CV, the amount had

decreased to some degree; however, the CV of GC-poor and GC-

rich regions was still at a considerably high level (Figure 2e). This

instability will still influence the performance of CNV detection.

Moreover, in terms of special structures, such as repeat regions,

GC correction showed less effectiveness in stability improvement

(Figure 2g, 2h). Therefore, it is necessary to correct these

multiplex-related biases using population-scale sequencing.

In multiplex-related bias correction, we first calculated the

expected RC of each window using 90 CS samples (formula 3,

Methods). Afterwards, we normalized the corrected RC and

obtained the RCR, following formula 5 (Methods). After

multiplex-related bias correction, the distribution of RCR was

more uniformly related to GC content, especially GC-rich regions

(Figure 2c). The amount of CVs significantly decreased, showing a

great improvement in data stability (Figure 2f). The RCRs of

repeat regions were also more centralized, implying better data

uniformity in special structures. In conclusion, we obtained

relatively unbiased statistic data after the two-step correction

procedure, which will benefit further CNVs detection processes.

CNV detection power estimation in silico
When combined with the segmentation algorithm and CNVs

genotype determination strategy (Methods), we can detect CNVs

with a population-scale control set. For comprehensive evaluation

of the performance of PSCC, we performed an intensive

simulation based on synthetic data generated from RCRs of the

90 CS samples (‘Sample recruitment’ in Materials and Methods

S1). In our simulation, the CNV size ranged from 20 kb to 10 Mb

(Table S3 in Materials and Methods S1), and the sequence depth

ranged from 0.26 to 206. The sensitivity/specificity was

estimated at call level in our simulation.

Generally, the sensitivity increased with larger size and higher

sequence depth (Figure 3 a, b). For the most part, CNVs over

100 kb could be detected with accuracy over 99.6% using 26
sequence data, while only 26.5% could be detected when we used

0.26 sequence data. The simulation indicated that it was able to

detect large segment CNVs at ultra-low sequence depth. For

instance, the sensitivity of deletion and duplication were 97% and

94% respectively when the sequence depth was 0.26 and the

CNV size was larger than 300 kb. In the case of specificity, most of

the false positive signals occurred at small sizes, and the results of

deletion were more accurately detected than results of duplication.

(Figure 3 c, d) For example, all the false deletions and duplications

were smaller than 100 kb when the sequence depth was 0.26. For

the CNVs smaller than 20 kb, the specificity of deletion was 100%

when the sequencing depth reached 26, whereas duplications

needed a depth of 56.

CNV calling in clinical samples
To estimate the performance of PSCC in actual practice, we

recruited 34 Danish (DC) patients with clinical abnormal

characterization in this study, which was approved by the

Institutional Review Board of BGI. Written informed consent

was obtained from all participants. 30 samples had been analyzed

using a 180 k Agilent oligo nucleotide array-based comparative

genomic hybridization (aCGH) platform prior to this study on an

indication of developmental delay, and 4 older samples had been

analysed with a Blue Gnome BAC array. CNVs detected by

aCGH were executed a strict filter operation by existing databases

Population-Scale CNV Detection Method
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(details in Materials and Methods S1). In 24 of these 34 clinical

samples at least one pathogenic CNV had been identified in each

sample, and in the other 10 samples, no obvious pathogenic CNV

had been identified by aCGH analysis. Finally, a total of 31

pathogenic CNVs were certified, including 19 deletions (from

Table 1. Date production of sample using in this study.

Samples Numbers Number of reads (M) Total base (Gb) Mapping rate (%) Depth (X) Coverage (%)

CS 90 170.91625.65 17.0962.57 89.2861.86 5.2760.74 96.2862.87

DS 34 46.5267.12 4.6560.71 87.5061.66 1.7060.10 59.6164.84

DC 34 116.38616.09 5.7060.79 94.3760.27 2.2260.21 74.8665.14

doi:10.1371/journal.pone.0085096.t001

Figure 2. RCR distribution in correction process. These plots represent the correction effects of the two-step correction methods in an
observed sample (CS-NA18632). (a, b, c) Performance in the RCR distribution [original (a), after correction step-1 (b), after correction step-2 (c)]. (d, e, f)
Performance in coefficient of variation changement [original (d), after correction step-1 (e), after correction step-2 (f)]. (g, h, i) Performance of the RCR
correction effect in the regions that have the similar GC content (i.e. 38,42%) but different genome structure (the left box is the stable regions, the
right box is the regions that close to centromeres, telomeres or N regions) [original (g), after correction step-1 (h), after correction step-2 (i)].
doi:10.1371/journal.pone.0085096.g002
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0.4 Mb to 18.3 Mb) and 12 duplications (from 0.4 Mb to 59 Mb)

(details in Table S2 in Materials and Methods S1).

DNA was extracted directly from 34 peripheral blood samples

and subsequent sequencing generated about 58 million paired-end

50-bp reads (i.e. about 26 coverage). All of the raw sequencing

data had been submitted to NCBI SRA (http://www.ncbi.nlm.

nih.gov/sra) and the Submission ID was SRA080273. The

sequence reads were mapped to the reference genome (HG19,

NCBI build 37) using SOAP2, and unique paired alignment reads

were used for the following analysis (Table 1).

For CNV detection of these 34 DC samples, we successfully

detected 47 CNVs, including 25 deletions and 22 duplications

(Table 2). Among these 47 CNVs, 31 CNVs (19 deletions and 12

duplications) were consistent with the pathogenic CNVs in aCGH

results (Table S2 in Materials and Methods S1). For the other 16

CNVs, 6 deletions ranged from 300 kb to 1.2 Mb and 10

duplications ranged from 300 kb to 700 kb. Of those CNVs, we

chose 12 of them, including 4 deletions and 8 duplications, for a

Real-time Quantitative PCR (qPCR) validation because of limited

DNA amount and primer design difficulty for the left locus. (Table

S4 in Materials and Methods S1) All these 12 CNVs were

validated to be accurate by qPCR (Figure S2 in Materials and

Methods S1). However, when we reviewed the benign CNVs in

aCGH data that were defined as polymorphism in Database of

Genomic Variants, 13 of these 16 CNVs were contained. (Table

S2 in Materials and Methods S1) It illustrated that most of these

CNVs maybe polymorphism in population, which has not been

eliminated in the population-based normalization due to the

insufficient control set of normal samples.

Performance comparison between different CNVs
detection methods

To evaluate the overall performance of our methods, we also

analysed these 34 clinical samples using available CNV detection

methods, SegSeq and ReadDepth. In methodology, SegSeq and

ReadDepth are significantly different from our method. SegSeq

uses a comparative genomic strategy to decrease the experimental

variance, while ReadDepth recruits a theoretical distribution to

detect CNVs. Another important difference is that SegSeq and

ReadDepth use relatively fixed thresholds to determine the CNV

genotypes. To detect the CNVs, we executed SegSeq with

suggested parameters (-W 400 –a 1000 –b 10), using the CS

samples as control (Materials and Methods S1), and executed

ReadDepth with the default parameters downloaded from the

official website.

For sensitivity, we compared the detection rate of the 31 aCGH

detected pathogenic CNV between PSCC, SegSeq, and Read-

Depth (Figure 4 a). As we mentioned, PSCC successfully detected

all these pathogenic CNVs. Also, we found SegSeq accurately

detected 34 CNVs but missed one deletion smaller than 1 M, with

a total sensitivity of 97.06%. ReadDepth successfully detected 29

CNVs but missed one deletion and one whole chromosome

Figure 3. The sensitivity and specificity of PSCC in simulated CNVs detection process. In these plots, X-axis stands for the CNV size ranged
from 0.2 to 206, and Y-axis was the percentage. The sequencing depth are color-coded and distinguished by characters. (a, b) Sensitivity of simulated
CNV detection [Duplication (a), Deletion (b)]; (c, d) Specificity of simulated CNV detection [Duplication (c), Deletion (d)].
doi:10.1371/journal.pone.0085096.g003

Population-Scale CNV Detection Method
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duplication of chrY. The total sensitivity of of ReadDepth is

93.55%.

Meanwhile, we subsampled the clinical samples to 0.56 to

estimate the robustness of these methods in ultra-low coverage

sequencing (Figure 4 b). All aCGH CNVs were successfully

detected in PSCC, whereas SegSeq dropped one deletion and one

duplication smaller than 1 Mb. In ReadDepth, one deletion and

one whole chromosome Y duplication were still missed. It

indicated the good sensitivity of our method in regard to CNV

detection of clinical samples, successfully detecting all 31

pathogenic CNVs. Both the result of ,26 and ,0.56 sequence

depth reveal the advantages of this method when compared to the

existing methods.

To compare the specificity of these three methods, we

calculated the overlap (cumulated across 34 samples) among these

methods (Figure 4 c, d). In this study, aCGH totally detected

261.37 Mbp pathogenic CNVs. For PSCC, 253.04 of

265.19 Mbp (95.42%) CNVs overlapped with the aCGH, whereas

only 0.25 of 3.33 Gbp (7.62%) for SegSeq and 0.23 of 5.94 Gbp

(3.83%) for ReadDepth. In addition, PSCC, SegSeq and Read-

Table 2. Statistics of CNVs detection by PSCC for 34 clinical samples.

Variation Type Size Detected by PSCC

Consisted with
pathogenic CNVs in
aCGH

Consisted with
benign CNVs in aCGH Validation of qPCR*

Deletion 300 k,1 M 7 2 4 3/3

1 M,5 M 11 10 - 1/1

5 M,10 M 4 4 - -

.10 M 3 3 - -

Duplication 300 k,1 M 12 2 9 8/8

1 M,5 M 3 3 - -

5 M,10 M 3 3 - -

.10 M 4 4 - -

Validation of qPCR, the results were expressed as A/B. A means the number of successful validated and B means the total number of validate loci.
doi:10.1371/journal.pone.0085096.t002

Figure 4. The detection results of confirmed CNVs using PSCC, SegSeq and ReadDepth. The four plots had shown the sensitivity and
specificity in three methods with a low coverage sequencing depth. (a) The sensitivity in 26 sequencing; (b) The sensitivity in 0.56 sequencing; (c)
The specificity in 26 sequencing; (d) The specificity in 0.56 sequencing.
doi:10.1371/journal.pone.0085096.g004

Population-Scale CNV Detection Method
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Depth detected 3.53 Mbp, 2.70 Gbp, and 5.33 Gbp method

specific CNVs. These numbers indicated the false prediction rate

of these three methods would be 1.33% (3.53 Mbp/265.19 Mbp),

81.08% (2.70 Gbp/3.33 Gbp) and 89.73% (5.33 Gbp/5.94 Gbp),

implying our correction and statistics strategy can effectively

improve the specificity. In the ,0.56subsampled set, the situation

was almost the same, our method had the lowest false prediction

rate of 7.16% (20.07 Mbp/280.39 Mbp), while the SegSeq’s

increased to 88.22% (4.87 Gbp/5.52 Gbp) and ReadDepth’s

decreased to 86.08% (3.87 Gbp/4.50 Gbp). It indicated the

robustness of our method on false positive control through low

sequence coverage. To sum up, our method successfully detects

pathogenic CNVs with high sensitivity and specificity, showing

robustness and advantages to existing methods, providing prom-

ising prospect for clinical application.

Discussion

In this study, we constructed an efficient bioinformatics method

for CNV analysis using an integration process. Large-scale

simulation data indicates that our method achieved 99.7%

sensitivity and 100% specificity for 300 kb CNVs in a low

coverage sequencing condition (i.e. about 26 coverage). For

clinical samples, our method effectively detected the CNVs in 34

DC samples (24 Microdeletion/Microduplication syndrome and

10 samples with no obvious pathogenic CNV) using 26 sequence

data and 0.56 simulated data, showing great potential for clinical

application.

Since only a low sequencing depth is needed, the cost of our

method can be controlled at an appropriate level, which is one of

the key aspects of large-scale practical applications. Currently, it

costs approximately $41 to generate 1 GB of sequence reads [32].

For example, it costs $246 to perform a ,26 sequencing, which is

comparable to the costs of high-resolution aCGH. Moreover, the

development of sequencing platforms with lower costs and shorter

turnaround times will significantly broaden the application of

sequence-based approaches for CNV detection. Our new PSCC

method has significant advantages when compared to other

bioinformatics methods. We identified all the pathogenic CNVs in

the clinical samples, and had much lower false prediction rate

compared to other methods. Considering the sensitivity and

specificity of our method, it may be a promising solution for basic

research and clinical application, both in newborn screening and

CNV detection.

There are still some issues that could be improved in the

primary stage. Duo to a limitation of the normal control set used in

this study, some low frequency polymorphism regions were also

retained in the final result. The accumulation of a larger

polymorphism database is necessary. Moreover, exogenous gene

insertion, small deletions and balanced translocations cannot be

detected using this method. The PSCC method should therefore

be combined with other methods, such as PEM and de novo

assembly methods, to make up for these disadvantages. Alongside

the progress of the sequencing technologies, especially the advent

of the third generation sequencing, we should also consider how

the long sequencing read length assisted local assembly can be

compositely applied to our method. This strategy not only solves

those special structural mutations, but also improves the resolution

in the breakpoint boundaries.

Conclusions

In summary, we have developed a bioinformatics strategy for

accurate CNV detection. It broadens the perspective of bias

correction and filter strategy of population polymorphisms noise

signals in candidate pathogenic CNV detection, and this new

PSCC strategy could be a promising new research tool and could

assist in the detection of CNVs in a clinical setting.
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