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Abstract

Leucine-rich repeat kinase 2 (LRRK2) is known to play a role in the pathogenesis of various diseases including Parkinson
disease, morbus Crohn, leprosy and cancer. LRRK2 is suggested to be involved in a number of cell biological processes such
as vesicular trafficking, transcription, autophagy and lysosomal pathways. Recent histological studies of lungs of LRRK2
knock-out (LRRK2 -/-) mice revealed significantly enlarged lamellar bodies (LBs) in alveolar type II (ATII) epithelial cells. LBs
are large, lysosome-related storage organelles for pulmonary surfactant, which is released into the alveolar lumen upon LB
exocytosis. In this study we used high-resolution, subcellular live-cell imaging assays to investigate whether similar
morphological changes can be observed in primary ATII cells from LRRK2 -/- rats and whether such changes result in altered
LB exocytosis. Similarly to the report in mice, ATII cells from LRRK2 -/- rats contained significantly enlarged LBs resulting in a
.50% increase in LB volume. Stimulation of ATII cells with ATP elicited LB exocytosis in a significantly increased proportion
of cells from LRRK2 -/- animals. LRRK2 -/- cells also displayed increased intracellular Ca2+ release upon ATP treatment and
significant triggering of LB exocytosis. These findings are in line with the strong Ca2+-dependence of LB fusion activity and
suggest that LRRK2 -/- affects exocytic response in ATII cells via modulating intracellular Ca2+ signaling. Post-fusion
regulation of surfactant secretion was unaltered. Actin coating of fused vesicles and subsequent vesicle compression to
promote surfactant expulsion were comparable in cells from LRRK2 -/- and wt animals. Surprisingly, surfactant
(phospholipid) release from LRRK2 -/- cells was reduced following stimulation of LB exocytosis possibly due to impaired
LB maturation and surfactant loading of LBs. In summary our results suggest that LRRK2 -/- affects LB size, modulates
intracellular Ca2+ signaling and promotes LB exocytosis upon stimulation of ATII cells with ATP.
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Introduction

LRRK2 is a ,280 kDa protein with two enzymatic domains

(Ras of complex GTPase domain and kinase domain) and several

protein-protein interaction domains such as an amino terminal

leucine-rich repeat domain and a carboxy terminal WD40 domain

[1,2]. LRRK2 and mutations thereof have been found to play a

role in the pathogenesis of various diseases. Mutations in LRRK2

are associated with the familial form of Parkinson disease [3–7] but

were also linked to inflammatory bowel disease [8], leprosy [9],

and cancer [10]. Recent findings suggested an important role for

LRRK2 in immune-response, which may explain the wide variety

of diseases associated with LRRK2 mutations [11]. LRRK2 is

expressed in the cells of the immune system and was suggested to

be involved in monocyte maturation [12,13]. It is also involved in

regulation of microglial inflammatory responses which may be

associated with late-onset Parkinson disease [14,15].

Despite the importance of LRRK2 for the pathogenesis in

various diseases little is known about the cellular function of

LRRK2. LRRK2 has been implicated in many different signaling

pathways such as membrane trafficking [16], apoptosis [17],

cytoskeletal remodeling [18], and transcriptional regulation [19].

LRRK2 was also described to modulate synaptic transmission

[20]. Silencing of LRRK2 in cortical neurons resulted in altered

availability of synaptic vesicles, increased vesicle fusion rate and

impaired compensatory endocytosis [21,22]. LRRK2 was also

suggested to play a role in lysosomal trafficking [23–25]. Gain-of-

function mutation in the LRRK2 kinase domain caused spherical

inclusions reminiscent of swollen lysosomes in axons of cultured

neurons [26]. In Drosophila, LRRK2 was shown to negatively

regulate perinuclear localization of lysosomes [27] and in human

brain LRRK2 localizes to vesicles in the lysosomal pathway [28].

A recent study found that LRRK2 -/- mice have an increased

number and average size of secondary lysosomes in kidney

proximal tubulus cells and LBs in ATII cells in the lung [29]. LBs
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are lysosome-derived secretory vesicles that store lung surfactant.

Upon stimulation surfactant is secreted via exocytosis of LBs.

Surfactant consists of lipids and specialized proteins and is secreted

into the alveolar lining fluid in order to reduce surface tension of

the lungs [30–32].

During LB exocytosis a sequence of highly regulated steps leads

to fusion of exocytic vesicles with the plasma membrane,

subsequent opening of a fusion pore and finally content release.

Several intracellular signalling cascades stimulate LB fusion with

the plasma membrane during the exocytic pre-fusion phase

[30,33], with changes in the intracellular Ca2+ concentration

([Ca2+]c) being at center stage [34]. Opening of the fusion pore in

ATII cells is preceded by lipid mixing of plasma membrane and

LB limiting membrane – the hemifusion [35]. Due to its tight

packing and the highly lipophilic nature surfactant does not readily

diffuse out of fused LBs following opening of the fusion pore. At

least two additional mechanisms are essential to promote secretion

during the post-fusion phase. First, the fusion pore acts as a

mechanical barrier for the release [36] and has to widen

sufficiently – a process modulated by [Ca2+]c [37]. Exocytosis of

LBs results in localized Ca2+ influx via vesicular P2X4 receptors

which promotes fusion pore expansion and subsequently facilitates

surfactant release [38,39]. Second, fused LBs acquire an actin coat

which compresses the vesicle and thereby actively extrudes poorly

soluble surfactant [40,41].

Within this study we investigated whether morphological

changes of LBs observed in LRRK2 -/- mice are also present in

LRRK2 -/- rats and whether they affect LB exocytosis and

surfactant secretion. We measured single LB fusion events with the

plasma membrane using high resolution, real-time fluorescent

microscopy. ATII cells are particularly suitable for analysing single

exocytotic events due to large size of secretory vesicles and slow,

sequential vesicle fusion with plasma membrane. LB exocytosis has

been intensively investigated in the past decade and there are

several established microscopy methods for detection of single

vesicle fusion events [37,41–43]. Similar to the previously reported

increase in LB size in LRRK2 -/- mice [29], we found that LB size

was also significantly increased in primary ATII cells from

LRRK2 -/- rats compared to LB size from wild-type (wt) animals.

Other morphological properties of lamellar bodies did not seem to

differ from wt animals. We also found that exocytotic activity upon

stimulation with ATP was significantly increased in ATII cells

from LRRK2 -/- animals. This is likely due to an increased Ca2+

release from intracellular stores upon stimulation with ATP, which

promotes triggering of LB exocytosis. However, using a biochem-

ical approach to quantify surfactant secretion we found that

surfactant release to the extracellular space was decreased after

stimulation. This was not due to failure of actin coat formation and

active extrusion of vesicle contents during the exocytic post fusion

phase. In summary our results suggest that LRRK2 -/- affects LB

size, modulates intracellular Ca2+ signalling and promotes LB

exocytosis upon stimulation of ATII cells with ATP.

Materials and Methods

Ethics Statement
Rats were maintained at the central animal facility of the Ulm

University according to institutional guidelines for ethical care of

animals. All experiments in this study were approved by

Regierungspräsidium Tübingen, grant Nr. 833.

Rats
LRRK2 -/- rats were purchased from SAGE Labs (Long Evans,

nomenclature: LEH-Lrrk2tm1sage, product number: TGRL4620)

as well as age- and gender-matched wildtypes (Long-Evans). The

age of animals ranged between 5 and 9 weeks.

Alveolar type II cell isolation
Alveolar type II cells were isolated from wt and LRRK2 -/- rats

according to the procedure of Dobbs et al. [44] with minor

modifications as recently described [41]. In short, rats were

anesthetized with ketamin (10%) and xylazil (2%), and injected

with heparin (400 IU/kg). Lungs were perfused, removed, washed

and incubated with elastase and trypsin at 37uC two times for 15

minutes. Afterwards, the lungs were immersed in DNAse

containing solution and sliced with scissors into bits of about

1 mm3. Enzyme reaction was blocked by incubation with FCS at

37uC for 2 min. The digested tissue was filtered 3 times through

gauze and nylon meshes and the final filtrate was centrifuged for

8 min at 1306g. After resuspension in DMEM medium, the cells

were incubated on IgG coated plastic dishes at 37uC for 15 min.

Non-adherent cells were centrifuged for 8 min at 1306g,

suspended in MucilAir medium (Epithelix, Geneva, Switzerland),

seeded on chamber slides (Ibidi, Martinsried, Germany), and used

for experiments for up to 48 h after seeding.

Immunofluorescence
Cells were washed twice in ice-cold DPBS (pH 7.4, Biochrom,

Berlin, Germany) fixed for 20 min in 4% paraformaldehyde

(Sigma, Schnelldorf, Germany) in DPBS and permeabilised for

10 min with 0.2% saponin and 10% FBS (Thermo Scientific,

Bonn, Germany) in DPBS. Cells were subsequently stained with

primary (1:300) and secondary (1:400) antibodies in PBS, 0.2%

saponin and 10% FBS for 30 min. Images were taken on an

inverted confocal microscope (Leica TCS SP5, Leica, Germany)

using a 636 lens (Leica HCX PL APO lambda blue 63.061.40

OIL UV). Images for the blue (DAPI), green (AlexaFluor 488), red

(AlexaFluor 568) and far red (AlexaFluor 633) channel were taken

in sequential mode using appropriate excitation and emission

settings. All used primary antibodies were from Abcam (Cam-

bridge, UK) apart from antibodies against surfactant proteins B

and C which were a gift from T. Haller (Innsbruck Medical

University, Austria). AlexaFluor phalloidin 568 and all conjugated

secondary antibodies were from Invitrogen.

Live-cell microscopy
The fura-2/FM1-43 assay for combined measurement of

changes in the [Ca2+]c and detection of individual LB fusion

events was performed as described previously [43]. In brief,

primary ATII cells were loaded with 3 mM fura-2 AM for 20 min

in MucilAir, washed twice in bath solution (in mM: 140 NaCl, 5

KCl, 1 MgCl2, 2 CaCl2, 5 glucose, 10 Hepes; pH 7.4) and kept in

bath solution with 0.5 – 1 mM of FM 1–43. To efficiently induce

LB exocytosis ATII cells were treated with various known and

potent agonists for surfactant secretion: ATP (100 mM), PMA

(300 nM), a combination of ATP and PMA, or ionomycin (1 mM)

(all from Sigma, Schnelldorf, Germany). The combined applica-

tion of ATP and PMA was used because the previous report

showed that the combined application can further increase LB

fusion probability [42] The experiments were performed on an

iMic digital microscope (Till Photonics, Germany) and on a Cell

Observer inverse microscope (Zeiss, Germany). Cells were

illuminated for 50 ms at a rate of 0.3–0.5 Hz at each excitation

wavelength (340 and 380 nm for Fura-2; 480 nm for FM 1–43). A

495 nm (Observer) and a 520 nm dichroic mirror (iMic) were used

to deflect excitation light. In this setting, channel crosstalk between

the FM 1–43 fluorescence and the fura-2 ratio would lead to small

under-estimations of [Ca2+]c as described in detail earlier [43].

Surfactant Secretion in LRRK2 Knock-Out Rats
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Images were acquired using MetaFluor (Molecular Devices,

Ismaning, Germany) or iMic Online Analysis (Till Photonics,

Germany). Images were analysed using MetaFluor Analyst

(Molecular Devices, Ismaning, Germany) or iMic Offline analysis

software (Till Photonics, Germany). FM1-43 intensities were

analysed in a region encircling the fusing LBs. Fura-2 fluorescence

was determined in a region of interest surrounding individual cells.

For live-cell actin-coating experiments we transfected ATII cells

with actin-GFP using a previously described adenoviral transfec-

tion system [40,41]. Before experiments cells were incubated with

LysoTracker Red (LTR, LifeTechnologies, Germany; 100 nM,

10 min) to detect LB fusions. LysoTracker dyes accumulate in LBs

and rapidly diffuse out of the vesicle after fusion. Experiments

were performed on the iMic digital microscope (Till Photonics,

Germany) with a 488 nm excitation filter for actin GFP and

568 nm excitation filter for LTR. We analysed the fraction of LBs

that were coated with actin following fusion (as determined by loss

of LTR fluorescence) and the fraction of actin coats that

contracted within 30 s and 60 s following actin coat formation.

Measurement of LB size
LB size was measured in cells stained with either Nile red

(200 nM, 5 min; Life Technologies Germany) or metabolically

labeled using Bodipy phosphatidylcholine (100 mM, 24 h, Life

Technologies Germany). Nile red, an unspecific lipid marker is,

due to the high phospholipid content of surfactant, predominately

trapped within LBs [35] whereas Bodipy phosphatidylcholine

selectively incorporates into surfactant stored in LBs [40,45,46].

Images were taken on the Cell Observer inverse microscope and

the area of fluorescence was measured for individual vesicles in

ImageJ. LB area was used to calculate vesicle diameter.

Quantitation of phosphatidylcholine release
Isolated ATII cells were seeded into 6-well plates (,0.56106/

well). At day 2 after isolation, cells were washed 3 times in bath

solution and stimulated with either ATP (100 mM) or PMA

(300 nM). The total volume in each well following stimulation was

0.5 ml. Cells were incubated for 15 min on a horizontal shaker

(120 rpm, 37uC) before supernatants were collected and analyzed

for dipalmitoylphosphatidylcholine (DPPC) content in triplicate

for each sample using coupled enzymatic reactions as described

previously [47].

Calculation of cytoplasmic Ca2+ concentration
We estimated the intracellular free Ca2+ concentration in

isolated ATII cells as described in detail previously [48–50] using

the equation [Ca2+]c = Kd6[(R2Rmin)/(Rmax2R)]6(Sf2/Sb2).

ATII cells were seeded in perfusion chambers (Ibidi, Martins-

ried, Germany) and stained with fura-2 AM (3 mM for 20 min).

Ratio (R) was calculated from 340/380 nm excitation intensities in

unstimulated cells in normal experimental bath solution. Rmin was

measured after Ca2+ ionophore ionomycin (20 mM) was added to a

Ca2+ free perfusion solution (in mM: 135 NaCl, 5 KCl, 1 MgCl2, 5

glucose, 5 Hepes, 5 EGTA). Rmax was measured after ionomycin

(20 mM) addition to Ca2+-containing perfusion solution (in mM:

134 NaCl, 5 KCl, 1 MgCl2, 5 CaCl2, 5 glucose, 5 Hepes). The

proportionality coefficient Sf2 was measured as the maximal

380 nm fluorescence intensity after ionomycin addition to Ca2+-

free solution. The second proportionality coefficient, Sb2, was

measured as the minimal 380 nm fluorescence intensity after

ionomycin addition to Ca2+-containing solution. We corrected

both coefficients for the background fluorescence which was

measured after MnCl2 quench (in mM: 140 NaCl, 5 Hepes, 5

MnCl2) at the end of the experiment. We used 224 nM as a Kd

value for fura-2 [48].

Calculation of intravesicular pH in LBs
ATII cells were incubated with 100 nM LysoSensor Yellow/

Blue (Invitrogen) at 37uC for 30 min. Cells were washed with

experimental bath solution and imaged on the Zeiss Observer

microscope (dichroic filter 400 nm, emission filter 490–530 nm)

and 406 fluar oil objective using Metafluor software. After

background subtraction, LB intensities at 340 and 380 nm

excitation were measured in ImageJ and the 340/380 nm ratio

was used for pH calculation.

Calibration of the ratio to pH relation was done as described

previously [51] by a free solution calibration. Bath solution with

1 mM LysoSensor was adjusted to pH values from 3 to 8 and

imaged as described. The calibration curve could be fitted well

with pH = c2log10((a2b)/(ratio2b)21), where a, b and c are

constants.

Statistical analysis
We used Microsoft Excel and GraphPad Prism (GraphPad

Software Inc., San Diego, USA) for statistical analysis. Unless

stated otherwise data are expressed as mean +/2 SEM. n denotes

true biological replicates (i.e. animals) and non-paired student’s t-

test was used to assess the statistical differences between wt and

LRRK2 -/- cell populations. Unless stated otherwise the number

of experiments performed/cells analysed in each biological

replicate was kept constant to account for correct weighting of

individual biological replicates when generating means. Due to the

low number of fusions/cell (on average 1–2 per responding cell)

and within individual experiments (6–8 responding cells) fusion

delay histograms were derived from pooled data from 3 to 6

animals. A non-parametric Mann-Whitney test was used to

compare the medians of fusion delays after stimulation.

Results

Morphological properties of LBs from LRRK2 -/- cells
The previous histological study of the lungs from LRRK2 -/-

mice showed enlarged size and number of LBs in ATII cells [29].

In this study we used fluorescence microscopy and immunocyto-

chemistry to analyse LB size, expression and localization of LB

markers as well as functional parameters of LBs in ATII cells

isolated from LRRK2 -/- and wt rats. Analyzing the size of LBs in

cells that were metabolically labeled with Bodipy phosphatidyl-

choline revealed that LB size was significantly (p,0.006) increased

in cells from LRRK2 -/- animals (diameter: 2.26 mm60.04, n = 4)

compared to LBs in cells from wt animals (diameter:

1.95 mm60.07, n = 4) (Figure 1A). Similar results were obtained

in cells when LBs were stained with Nile red, an unspecific lipid

marker that is predominately trapped within LBs [35]. LB size was

again significantly (p,0.0003) increased in cells from LRRK2 -/-

animals (diameter: 2.29 mm60.03, n = 4) compared to LBs in cells

from wt animals (diameter: 1.98 mm60.03, n = 4) (Figure 1B).

These changes in diameter correlate to a more than 50% increase

in LB volume. In all experiments 20 cells were analyzed in each

animal corresponding to approx. 350–450 LBs per animal.

Expression and localization of LB markers were not changed.

LB membrane marker proteins Lamp1 and ABCa3 transporter

were localized to the LB membrane in LRRK2 -/- as well as in wt

cells (Figure 2A&B) [38]. Surfactant proteins B and C, which are

stored inside LBs together with lipids and function in proper

spreading of surfactant [52], were also present in both LRRK2 -/-

Surfactant Secretion in LRRK2 Knock-Out Rats

PLOS ONE | www.plosone.org 3 January 2014 | Volume 9 | Issue 1 | e84926



and wt cells, with no obvious differences in their distribution and

abundance (Figure 2A&B).

To further investigate whether the observed increase in LB size

is linked to changes in lamellar body homeostasis we also

performed experiments to assess the pH in LBs from wt and

LRRK2 -/- cells using the dye LysoSensor. No significant

difference (p = 0.45) between the vesicular pH in LBs from wt

animals (5.12+/20.05, n = 4) and LBs from LRRK2 -/- animals

(5.18+/20.06, n = 4) could be observed. Approx. 150 to 250 LBs

were analyzed per animal.

LB fusion kinetics and changes in [Ca2+]c in LRRK2 -/- cells
In initial experiments we tested whether the morphological

changes observed in cells from LRRK2 -/- rats affect kinetics of

LB exocytosis. Therefore, we stimulated ATII cells isolated from

either wt or LRRK2 -/- rats with various secretagogues

stimulating surfactant secretion via different signaling pathways

[34,42]. ATP stimulates LB exocytosis mainly via a transient, IP3

mediated calcium release from internal calcium stores resulting in

a ‘‘triggered’’ fusion response. PMA on the other hand acts via

activation of protein kinase C without affecting intracellular Ca2+

concentrations and enables a more prolonged response to

stimulation whereas ionomycin acts as an ionophore and causes

massive Ca2+-entry from the extracellular space [34,42]. The

rationale for these experiments was to investigate potential effects

of LRRK2 -/- on LB fusion kinetics following activation of

different signalling pathways.We measured fusion response in

isolated ATII cells using the lipophylic dye FM1-43. FM1-43 is

essentially non-fluorescent in aqueous solutions but yields a bright

signal when incorporated into lipid layers. Upon fusion of LBs

with the plasma membrane and opening of the fusion pore FM1-

43 gains access to the LB lumen, incorporates into the lipophilic

vesicle contents (i.e. surfactant) and individual fusion events can

hence be readily detected [43]. In initial experiments we

determined the percentage of cells that responded to stimulation

with at least one fusion event within 10 min after stimulation.

When cells where stimulated with either 300 nM PMA, 300 nM

PMA plus 100 mM ATP or 1 mM ionomycin no difference

between the percentage of responding cells in wt and LRRK2 -/-

cells could be observed (Figure 3A). All these treatments cause

maximum activation of either the PKC (PMA, PMA plus ATP) or

Ca2+ (ionomycin) signaling pathways and result in comparable

activity responses (Figure 3A). However, when cells were

stimulated with 100 mM ATP only, a more physiological stimulus

[30,33,34], which elicits a transient rise in [Ca2+]c due to release of

Ca2+ from intracellular stores, cells from LRRKO -/- animals had

a significantly (p = 0.01) increased fusion response compared to wt

cells (33.467.9%, n = 5 and 10.964.7%, n = 6 percent of cells

responded to stimulation, respectively) (Figure 3A). When analyz-

ing the number of LB fusions in responding cells, we did not

Figure 1. LBs are significantly enlarged in LRRK2 -/- rats. (A) LBs (green) in cells that were metabolically labeled with Bodipy
phosphatidylcholine (left, asterisks indicate nuclei, scale bar = 10 mm). LB size was significantly (p,0.006) increased in cells from LRRK2 -/- animals
(diameter: 2.26 mm60.04, n = 4 animals) compared to LBs in cells from wt animals (diameter: 1.95 mm60.07, n = 4 animals) (middle). Size distribution
diagram for LB sizes derived from wt and LRRK2 -/- animals (right, n = 4 animals). (B) LBs (red) in cells that were stained with lipophilic dye Nile red
(left, asterisks indicate nuclei, scale bar = 10 mm). LB size was significantly (p,0.0003) increased in cells from LRRK2 -/- animals (diameter:
2.29 mm60.03, n = 4 animals) compared to LBs in cells from wt animals (diameter: 1.98 mm60.03, n = 4 animals) (middle). Size distribution diagram for
LB sizes derived from wt and LRRK2 -/- animals (right, n = 4 animals). In all experiments 25 cells were analyzed in each animal corresponding to
approx. 350 – 450 LBs per animal. Images were taken from LRRK2 –/- cells.
doi:10.1371/journal.pone.0084926.g001
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observe a difference between LRRK2 -/- and wt following

stimulation with any secretagogue, yet slightly more fusions were

observed in LRRK2 -/- responders following stimulation with

ATP (Figure 3B). These data suggested that LRRK2 -/- affects

exocytic response in ATII cells via modulation of intracellular

Ca2+ signaling but not vesicle recruitment to the plasma

membrane.

Based on these findings we further investigated the possible

impact of LRRK2 deletion on calcium-stimulated LB fusion

activity in ATII cells. We simultaneously analysed changes in

[Ca2+]c using fura-2 while monitoring individual LB fusion events

Figure 2. Expression and localization of LB markers are not affected by LRRK2 -/-. Immunocytochemical localization of Lamp1, ABCa3, and
surfactant proteins SP-B and SP-C in ATII isolated from LRRK2 -/- rats (A) and ATII cells isolated from wt rats (B). Lamp1 and ABCa3 localized to LB
limiting membrane, whereas SP-B and SP-C are inside the vesicle together with the lipid component of surfactant. No obvious differences in
localization of these markers in cells isolated from KO and wt rats were observed. Arrows indicate individual LBs in type II cells. Scale bar = 10 mM
doi:10.1371/journal.pone.0084926.g002

Surfactant Secretion in LRRK2 Knock-Out Rats
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(Figure 4). Overall [Ca2+]c kinetics were comparable between

LRRK2 -/- and wt cells following various modes of stimulation

(Figure 4A-D). However, in addition to increasing the number of

responding cells stimulation with 100 mM ATP also resulted in a

significant left shift in the fusion delay histograms (p,0.0001,

median delay was 102 s and 37 s for wt and LRRK2 -/-

respectively), indicating a pronounced ‘‘triggering’’ of the onset of

LB fusions (Figure 4A right). Fusion kinetics in cells stimulated

with 100 mM ATP and 300 nM PMA, 300 nM PMA or 1 mM

ionomycin were not significantly different in LRRK2 -/- and wt

cells (Figure 4B–D, p = 0.17, 0.21, and 0.10, respectively).

LB fusion activity is intimately linked to [Ca2+]c [34,42,49].

Fusion activity strictly depends on reaching the threshold [Ca2+]c

of approx. 320 nM and fusion kinetics correlate with [Ca2+]c

kinetics [42,49]. We therefore tested whether LRRK2 -/- affects

absolute [Ca2+]c and whether such an effect could account for the

prominent effect on LB fusion response and LB fusion kinetics

following stimulation with ATP. Resting [Ca2+]c was not

significantly enhanced in cells from LRRK2 -/- animals

(145.2627.3 nM, n = 4 in LRRK2 -/- cells and

121.2626.5 nM, n = 4 in wt cells, respectively, p = 0.55, approx.

15 to 20 cells were analysed for each animal)(Figure 4E). However,

the transient rise in [Ca2+]c upon stimulation with 100 mM ATP

resulting from intracellular release of Ca2+ was increased in cells

from LRRK2 -/- animals (Figure 4F). Mean peak [Ca2+]c reached

2.4960.68 mM (n = 3) in LRRK2 -/- cells and 0.4960.19 mM

(n = 2) in wt cells, respectively (p = 0.08) (Figure 4G).

Surfactant secretion assay
Based on our finding that knock-out of LRRK2 results in a

significantly enhanced LB fusion response in ATII cells when

stimulated with 100 mM ATP, we next examined whether this also

results in increased surfactant secretion. We analyzed the amount

of secreted phospholipids (DPPC is the main component of

surfactant) using a recently described enzymatic protocol [53].

Surprisingly, 30 min after stimulation with ATP the phospholipid

content of supernatants from LRRK2 -/- cells was significantly

reduced compared to wt cells (1.3460.09 mM, n = 3 for LRRK2

-/- cells vs 2.0260.16 mM, n = 3 for wt cells, p = 0.02). The mean

phospholipid content of supernatant was also decreased in

LRRK2 cell cultures following stimulation with PMA, however

the difference was not significant (1.760.39 mM, n = 3 for LRRK2

-/- cells vs 2.0260.41 mM, n = 3 in wt cells, p = 0.6) (Figure 5).

Actin coating
To further elucidate these conflicting results – increased number

of responding cells but reduced surfactant secretion in LRRK2 -/-

cells – we investigated the potential impact of altered LRRK2

expression on the regulation of surfactant secretion during the

post-fusion phase of LB exocytosis. The lipophilic nature of

surfactant impedes rapid dispersal in aqueous solution and

therefore surfactant does not readily diffuse out of fused LBs

following opening of the exocytic fusion pore. We already showed

that actin coating of fused LBs and subsequent actin coat

compression play a pivotal role in surfactant expulsion from the

vesicles [40,41].Actin compression is assisted by non-muscle

myosin II [40]. LRRK2 has already been demonstrated to be

involved in actin remodeling in primary neurons by phosphory-

lation of ezrin-radixin-moesin family of actin-binding proteins

[18]. Hence, we investigated a possible role for LRRK2 in actin

coating of fused LBs. Immunocytochemistry revealed that,

similarly to wt cells, actin and myosin II were recruited to fused

LBs in LRRK2 -/- cells (Figure 6A). Detailed analysis of actin coat

formation and compression in live-cell imaging experiments

revealed no difference in the incidence of actin coating in cells

transfected with actin-GFP (Figure 6B & C). Moreover, the

kinetics of actin coat compression on fused vesicles after 30 s and

60 s in LRRK2 -/- cells was not different from wt cells.

Discussion

Although LRRK2 was suggested to play a role in variety of

diseases its cellular role remains elusive. Recent evidence

implicated LRRK2 in regulation of secretory vesicle trafficking

[20–22,54] and in lysosomal pathways [26–29,55]. In particular,

one study found that genetic ablation of LRRK2 results in an

increased number and size of secondary lysosomes in kidney

proximal tubules cells and LBs in ATII cells in the lung [29]. It

was the aim of this study to investigate whether the morphological

changes observed in LBs from LRRK2 -/- animals have functional

implications for LB exocytosis and surfactant secretion.

The original observation on increased LB size was made in

LRRK2 -/- mice [29]. In this study we used LRRK2 -/- rats for

functional studies, because rat, but not mouse ATII cells resemble

a human phenotype [56] and all assays to study LB exocytosis and

surfactant secretion are well established for primary ATII cells

from rat [37,43]. The results of our study showed that LBs in

primary ATII cells isolated from LRRK2 -/- rats were signifi-

cantly enlarged compared to cells from wt animals. This is in line

with the initial observation in mice.

Stimulation of primary ATII cells with 100 mM ATP resulted in

a significantly increased percentage of cells that responded to

Figure 3. ATP stimulation results in an increased fusion
response in LRRK2 -/- cells. Response is expressed as the fraction
of cells with at least 1 fusion within 10 min of stimulation (A), and as a
number of fusions/cell in responding cells (B). n denotes number of
animals. Equal numbers of experiments were conducted in each animal.
doi:10.1371/journal.pone.0084926.g003

Surfactant Secretion in LRRK2 Knock-Out Rats

PLOS ONE | www.plosone.org 6 January 2014 | Volume 9 | Issue 1 | e84926



Figure 4. ATP accelerates LB fusion and increases intracellular Ca2+-release in LRRK2 -/- cells. LB fusion response time histograms (bars)
and fura-2 ratios (lines) in response to stimulation of ATII cells. (A – D) Fusion delay histograms from wt and LRRK2 -/- cells following stimulation with
100 mM ATP (A), 300 nM PMA (B), 100 mM ATP and 300 nM PMA (C) and 1 mM ionomycin (D). Stimulation with ATP resulted in a significant left shift in
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stimulation with exocytic activity when LRRK2 expression was

ablated. LB exocytosis is exceptionally sensitive to [Ca2+]c [34].

Ca2+ was described as a final trigger for LB fusion in ATII cells,

the threshold necessary for fusion in ATII cells is very low

(,320 nM), and fusion kinetics correlate with [Ca2+]c kinetics

[42,49]. The observation that resting [Ca2+]c is not significantly

elevated in LRRK2 -/- cells suggests that the increased rise in

[Ca2+]c upon stimulation with ATP is the main effector of the

increased fusion response in these cells. It is easily conceivable that

in LRRK2 -/- cells the threshold for LB fusion is reached more

readily and exceeded for prolonged times and hence more cells

exhibit LB fusions upon stimulation with ATP. Such a model is

also supported by the observation that in LRRK2 -/- cells the

exocytic response following ATP treatment is similar to the

response following stimulation that causes maximum elevation of

[Ca2+]c and activation of Ca2+-dependent fusion activity (iono-

mycin). The increase in the rise of [Ca2+]c upon ATP treatment in

LRRK2 -/- cells could be due to altered Ca2+ levels in

intracellular Ca2+ stores or increased Ca2+ release kinetics. It is

unlikely to result from altered Ca2+ extrusion mechanisms as the

time-course of the [Ca2+]c decay is unchanged. Effects of LRRK2

on Ca2+ homeostasis and Ca2+ signaling have already been

reported in other cell types [55,57,58]. In these systems

overexpression of LRRK2 led to an imbalance in Ca2+

homeostasis [57] and profound Ca2+ release from lysosomal

Ca2+ stores [58]. This is in contrast to the results within this study

where ablation of LRRK2 enhances Ca2+ release from intracel-

lular stores. This difference could be due to the different signaling

mechanism underlying Ca2+ mobilization in the different systems.

In ATII cells ATP elicits Ca2+ release via activation of IP3

receptors [42] whereas observations in HEK cells suggested a role

for two pore channels (TPCs) in LRRK2 –mediated effects on

Ca2+ mobilization [58]. The observation that the number of fusing

LBs in responding cells was not significantly increased in LRRK2

-/- animals suggests that the observed effects of LRRK2 -/- act

primarily at final stages in the LB fusion process. ATII cells lack a

pool of ‘‘readily releasable’’ or ‘‘primed’’ LBs [31,42]. Rather, LBs

are constantly transported towards the plasma membrane and

once in close proximity they fuse with the plasma membrane upon

an appropriate stimulus [42]. The increased Ca2+ release in

LRRK2 -/- cells following stimulation with ATP likely facilitates

or accelerates fusion of LBs that are already localized close to the

plasma membrane [42]. This is in line with the ‘‘triggered’’ fusion

response observed in LRRK2 -/- cells where the majority of

fusions occurred immediately after stimulation. However, due to

the transient nature of the rise in [Ca2+]c it barely affects

recruitment or trafficking of additional LBs to the plasma

membrane for fusion (only a slight increase in the number of

fusions in individual responding cells was observed).

LRRK2 -/- does not seem to affect Ca2+ independent LB fusion

activity as PMA induced LB fusion response is unchanged in

LRRK2 -/- cells. However, we cannot fully exclude the possibility

that PMA already causes a maximum stimulatory effect that

the fusion delay histograms in LRRK2 -/- cells. Delay histograms were derived from pooled data from 3 to 6 animals per experimental condition and
from 45 to 256 individual fusions. Cells were stimulated at t = 0 s. Fura-2 traces were derived from 7 to 116 cells. Panels represent wt cells (left), LRRK2
-/- cells (middle) and overlay of wt and -/- delay histograms (right). (E) Resting [Ca2+]c is not significantly enhanced in cells from LRRK2 -/- animals
(145.2627.3 nM, n = 4 in LRRK2 -/- cells and 121.2626.5 nM, n = 4 in wt cells, respectively, p = 0.55, approx. 15 to 20 cells were analysed for each
animal). (F) Changes in [Ca2+]c following stimulation with 100 mM ATP (Cells were stimulated at t = 0 s, n = 3 and 2 for LRRK2 -/- and wt cells
respectively). (G) Peak [Ca2+]c following stimulation with 100 mM ATP in LRRK2 -/- cells (n = 3) compared to wt cells (n = 2).
doi:10.1371/journal.pone.0084926.g004

Figure 5. DPPC concentration in supernatant as a measure of
surfactant secretion. DPPC concentration was measured in superna-
tant of unstimulated cells and of cells stimulated with either 100 mM
ATP or 300 nM PMA for 30 minutes. DPPC concentration in supernatant
was significantly higher in wt cells following stimulation with 100 mM
ATP.
doi:10.1371/journal.pone.0084926.g005

Figure 6. Actin coating and compression of fused LBs are not
altered in LRRK2 -/- cells. A) Immunostaining of ATII cells from wt
(upper image series) and LRRK2 -/- (lower image series) animals, labeled
for myosin IIA, filamentous actin (phalloidin) and LB membrane marker
ABCa3. Cells were fixed 3 minutes after stimulation with 100 mM ATP.
Myosin IIA and phalloidin staining of ABCa3 positive organelles indicate
actin coating of LBs following exocytic fusion with plasma membrane
(arrows). Scale bar = 10 mm. B) Percentage of LBs coated with actin-GFP
following fusion after 100 mM ATP stimulation in live-cell experiments
and C) fraction of actin coats that contracted within 30 s and 60 s
following fusion. Data were derived from 2 wt and 2 LRRK2 -/- animals,
and up to 67 fusions and 46 compression events were analysed for each
animal. No significant difference was observed between wt and LRRK2
-/- cells.
doi:10.1371/journal.pone.0084926.g006
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cannot be increased upon. It is well established that PMA causes a

strong fusion response (i.e. more cells responding within a defined

period of time after stimulation) due to the long lasting stimulatory

effect. Hence the combined application of ATP and PMA, evoking

a Ca2+ increase as well as direct stimulation of protein kinase C,

does not necessarily need to exceed the PMA response [42].

The observed increase in exocytic activity in LRRK2 -/- cells is

also in line with observations from cortical neurons where LRRK2

silencing increased fusion kinetics [21] and with observation that

gain-of-function mutation in LRRK2 results in impaired cate-

cholamine and dopamine secretion [20,54]. However, whether

changes in exocytic activity in these and other cells are also linked

to changes in Ca2+ signaling remains to be answered.

Shin et al showed that LRRK2 silencing in neurons leads to

impaired compensatory endocytosis [22]. We did not observe this

effect in ATII cells; however this could be due to the fact that

endocytosis is rarely observed in cultured ATII cells [59].

Although ATII cells from LRKK2 -/- rats contain larger LBs

and these LBs had an increased propensity for fusion with plasma

membrane upon physiological stimulation, the amount of secreted

phospholipids following stimulation was lower than in wt cells.

Therefore, we tested the possibility that the extrusion of secretory

material might be impaired in LRKK2 -/- cells. Surfactant is a

poorly soluble substance and the opening of the exocytic fusion

pore is not sufficient for efficient surfactant release from the fused

vesicle. Actin coating of fused LBs and myosin driven compression

of this coat is necessary for active surfactant extrusion [40,41]. In

addition, LRRK2 has been reported to influence actin remodeling

[18] so we analysed actin coat formation and compression in ATII

cells from LRRK2 -/- rats by immunostaining and in live-cell

experiments. These experiments revealed no significant differences

in actin coat formation and compression between LRRK2 -/- and

control cells. It is hence unlikely that impaired actin coat

formation and vesicle compression account for decreased phos-

pholipid extrusion in LRRK2 -/- cells. Another possible explana-

tion for the observed decrease in phospholipid secretion could be

an impaired packaging of surfactant in LBs of LRRK2 -/- cells or

decreased phospholipid content in LRRK2 -/- surfactant.

Although the findings presented in this study (expression and

localization of LB membrane markers and specific surfactant

proteins, loading of LBs with fluorescent phospholipids, staining

with Nile red, LB luminal pH) indicate that basic characteristics of

LBs are not significantly altered in ATII cells from LRRK2 -/- rats

we cannot exclude that lipid loading/packing of LBs accounts for

the observed decrease in DPPC secretion. Hence further high-

resolution studies using biochemical as well as ultra-structural

techniques will be required to fully investigate surfactant

composition in LBs from wt and LRRK2 -/- rats.

In summary our results suggest that LRRK2 -/- affects LB size,

modulates intracellular Ca2+ signaling and promotes LB exocytosis

upon stimulation of ATII cells with ATP. However, further studies

are required to fully elucidate the molecular mechanism how

LRRK2 regulates intracellular Ca2+ release in these cells and

whether LRRK2 affects surfactant loading of LBs. Results of these

studies will also shed some more light on whether the observed

effects of LRRK2 on exocytosis and secretion in other cell types

are linked to changes in intracellular Ca2+ signaling.
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