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1 Laboratorio de Investigación en Neurociencia, Departamento de Matemática y Ciencias,Universidad de San Andrés, Buenos Aires, Argentina, 2 CONICET, Buenos Aires,
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Abstract

Herein, we address the time evolution of brain functional networks computed from electroencephalographic activity driven
by visual stimuli. We describe how these functional network signatures change in fast scale when confronted with point-
light display stimuli depicting biological motion (BM) as opposed to scrambled motion (SM). Whereas global network
measures (average path length, average clustering coefficient, and average betweenness) computed as a function of time
did not discriminate between BM and SM, local node properties did. Comparing the network local measures of the BM
condition with those of the SM condition, we found higher degree and betweenness values in the left frontal (F7) electrode,
as well as a higher clustering coefficient in the right occipital (O2) electrode, for the SM condition. Conversely, for the BM
condition, we found higher degree values in central parietal (Pz) electrode and a higher clustering coefficient in the left
parietal (P3) electrode. These results are discussed in the context of the brain networks involved in encoding BM versus SM.
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Introduction

It is well known that humans quickly recognize living animals in

motion [1]. Detected very early in childhood [2], this capacity has

been recently recognized as relevant for social interaction [3]. A

successful approach for investigating biological motion introduced

by Johannson in the early seventies consists of presenting point

lights depicting joint movements in a visual display (point-light

display, PLD) [1]. Such stimuli preserve kinematic features while

removing distracting information such as color, texture, etc.

Notwithstanding, studies have shown that human subjects

presented with PLD stimuli maintain the ability to infer key

features such as action recognition [4], actor’s gender [5,6] and

emotional states [7,8].

A classical approach for investigating the neural basis of

biological motion coding entails measuring the event related

potentials (ERP) evoked during the visualization of PLDs depicting

human biological locomotion (biological motion, BM) or in a

scrambled configuration (scrambled motion, SM). ERPs recorded

during the viewing of PLDs portraying human activities reveal a

larger negative component for whole-body BM when compared to

SM in the 200–350 ms latency range after stimulation onset [3,9–

11]. This difference is found mainly in the right occipito-temporal

region, reflecting a selective recruitment of the superior temporal

sulcus (STS) [3,9,10]. A series of brain lesion, transcranial

magnetic stimulation (TMS), and fMRI studies have also

demonstrated the participation of the parietal lobe [12–14] and

the premotor cortex [15–17] in the recognition of human motion

in PLDs. By employing a wider temporal window of analysis,

Saunier et al. [11] showed that the difference in ERPs between

BM and SM, initially detectable in the right parieto-occipital

region, is followed by a similar difference in the fronto-parietal

region. Considering that the premotor area, the parietal lobule,

and the STS are classically regarded as the cortical core of an

action-perception network [18], it was suggested that the biological

motion detection process could implicitly map itself onto circuits

coding motor vocabularies [11]. Following this ERP study [11], it

became evident that several brain regions are involved in

discriminating between BM and SM.

In a seminal paper investigating the neural correlates of

perceptual coding, Rodriguez et al. [19] showed that the

perception of faces, as opposed to meaningless objects, generates

a long-distance pattern of synchronization among electrodes.

Furthermore, a period of strong desynchronization marks the

transition between the moment of perception and an ensuing

motor response. These results revealed the existence of a dynamic

brain map underlying cognitive task shifts [19]. Such neural

assemblies (defined as distributed local networks of neurons

transiently linked by reciprocal dynamic connections; for a review,

see [20]) can be accessed through the recently developed

functional network framework.

Networks of functional interactions have been broadly applied

to fMRI data, particularly in experiments employing resting state

methodology [21–29]. This approach has also been successfully

employed with EEG data [30–34]. Comparing the resting state

EEG functional networks of Alzheimer’s disease patients with
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those of age-matched control subjects [30] revealed differences in

the average cluster coefficient and in the average shortest path.

Similar results were found when comparing the functional

networks of 5 and 7 year-old children [32], indicating a potential

use of the neural network approach to delineate groups based on

interactions between EEG channels. Less is known about how

network parameters are modulated by subtle visual stimuli

differences.

In this work, we propose the use of a new fast-scale network

methodology to map functional networks extracted from electro-

encephalographic activity driven by visual motion stimulation. We

expected that network graph measures might further our

understanding of the cortical networks involved in distinguishing

human body locomotion from scrambled nonsense motion on a

millisecond scale, shedding new light on the computational coding

of cognitive operations in the human brain.

Materials and Methods

Functional networks derived from time series of EEG data

collected from human volunteers are analyzed in detail.

Participants
A total of sixteen healthy subjects (29.2566.3 years) with

normal or corrected to normal vision and with no known

neurological abnormalities participated in this study. The subjects

were unaware of the experiments purpose and gave their written

informed consent to participate. The study was conducted in

accordance with the declaration of Helsinki (1964) and approved

by the local ethics committee (Comite de Etica em pesquisa do

Hospital Universitario Clementino Fraga Filho, Universidade

Federal do Rio de Janeiro, 303.416).

Stimuli and procedure
Point-light display (PLD) animation was obtained after a session

of human walker motion capture (sampling rate of 100 Hz, Elite

System, BTS Bioengineering, Italy). The whole-body BM anima-

tion depicted ten markers (head, shoulder, elbow, hand, hip, knee

and ankle) indicating walker joint coordinates (x, y positions)

displayed as white dots against a black background using

Presentation software (Neurobehavioral Systems, Inc.). This

animation permitted a vivid perception of a walker’s movement

over a treadmill in the sagittal plane, achieving a complete gait

cycle [11] (see video S1).

A single actor’s movement repetition was used to create the BM

animation and a few SM versions, in which the human locomotion

pattern was unrecognizable (see video S2). This non- biological

motion control was created permuting the spatial position of the

dots, thus destroying the gestalt of the human walker motion while

maintaining the biological kinematics of each BM dot. For

example the dot in the head was interchanged with that of the

knee. A white cross (0:27o|0:28o) at the center of visual field

facilitated gaze fixation and minimized eye movement contami-

nation in the EEG signal.

All animations were shown at 25 frames/sec (to ensure smooth,

natural movements) on a 170 color flat screen [11]. Each

participant sat at a comfortable viewing distance from the screen

(approximately 70 cm) in a darkened room. The animations were

shown in two blocks with a five-minute inter-block interval. Each

block consisted of 25 BM and 25 SM stimuli presented randomly.

Each stimulus was displayed for 1.3 seconds, followed by an inter-

stimulus interval (ISI) of 5 seconds. In each trial, a fixation cross

appeared in the last second of the ISI. A total of 100 point light

animations were displayed (2 blocks 62 conditions [BM and SM]

625 repetitions).

EEG recordings
EEG activity was recorded using a BrainNet BNT 36 (EMSA)

consisting of twenty Ag/AgCl electrodes at the following scalp

positions according to the 10–20 system: Fp1, Fp2, F7, F3, Fz, F4,

F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, Oz, O2. The

impedance of each electrode was kept below 5 kV. The electrical

potential was amplified, bandpass-filtered (0.5–50 Hz), and

digitized at a 600 Hz sampling rate, with the mastoid electrodes

serving as a reference. The use of mastoids as a reference is widely

supported by the biological motion literature [11,33,34] and is

recommended for set-ups with a small number of electrodes.

Artifacts such as oculomotor or muscle activity were rejected

offline using a threshold criterion of +50mV .

Functional network construction and analysis
After filtering the 20-channel EEG data, a comparison of BM

vs. SM power spectrum was done for each frequency in the 0–

50 Hz range. Statistical significance was assessed by employing the

Wilcoxon test. No difference was observed at level of significance

of 0.05. Thus, without any a priori reason to further explore

functional networks at different frequency bands, the functional

correlation analysis was done with bandpass (0.5–50 Hz) filtered

signals. Functional networks evolving over time (Fig. 1) were

constructed by considering a moving window of 333 ms.

Consecutive time windows were shifted by 43.3 ms. The

Spearman (rank) correlation matrix, St, was calculated for each

temporal window [t,tz333ms]. This matrix contained the

20|19=2 pairs of electrode functional correlations (or interac-

tions). The Spearman correlation is defined as the Pearson

correlation between the ranked signals. Given two time series Xt,

and Yt with t[f1,2, . . . ,Tg, a rank time series for xt and yt is

constructed (xt and yt[f1,2, . . . ,Tg) and the Pearson correlation

between the last two series is computed as follows:

r~

P
t~1

T

(xt{x)(yt{y)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
t~1

T

(xt{x)2 P
t~1

T

(yt{y)2

s :

It is important to note that only correlations between zero-lag time

series were considered. As shown in Fig. S1, the rank correlation

decays from the maximum value, which occurs at lag zero, to

values near zero for lags on the order of 50 ms, where fluctuations

appears. The absence of maximums for non-zero-lag led us to

choose a zero-lag correlation criterion.

Once the correlation matrix was computed, we applied a

criterion for converting the continuous matrix to a binary matrix,

Yt, thus defining a network (Fig. 1). Changing this criterion

resulted in distinct functional networks. As shown in Fig. S2 A-B,

the EEG functional networks varied in time whether they were

constructed with a fixed number of links (or fixed average degree)

or a fixed correlation threshold criterion. Furthermore, the two

criteria resulted in different networks because of large fluctuations

in the average correlation (Fig. S2C). EEG data contains periods of

large (global) levels of synchronization between electrodes and

other periods without this synchronization [31].

This type of brain dynamics behavior has also been reported

[35] in resting state fMRI. This synchronization effect results in

networks that vary greatly in the number of links when using the

Visually Driven EEG Functional Networks
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fixed correlation threshold criterion, while the fixed number of

links criterion significantly reduces network variability. Therefore,

all EEG functional networks were constructed using the fixed

number of links criterion.

Extracting functional network measures
Once the network was constructed, summary measures, or

functions of the adjacency matrix, f (Yt), were computed. More

specifically, we selected properties that characterized each node

(local network measures) and properties that characterize the

networks as a whole (global network measures). The average

shortest path, or average path length, is one of the global measures

we studied in detail. The ability of a network of N nodes to

propagate information depends primarily on the separation

between nodes. The average separation between two nodes in a

graph is given by the average shortest path (L) defined as the

average of geodesic lengths over all pairs of nodes:

SLT~
1

N(N{1)

X
i,j~1

N

di,j

where the shortest path (or minimum links of separation) between

nodes i and j is represented by the variable di,j . Brain functional

networks can also be characterized by the level of segregation

[25,27,36], measured as the number of functional clusters (i.e. a

group of nodes) recruited during a particular task. A local measure

of segregation is given by the clustering coefficient of a given node

i, Ci. This measure is defined as the number of connections

between all neighbors of node i, ei, divided by the total number of

possible links between them equal to ki(ki{1)=2, where ki is the

degree (number of links) of node i.

Ci~
2ei

ki(ki{1)

Figure 1. Functional networks construction. Scheme depicting the construction of EEG functional networks and extraction of network
properties. In the upper left panel, a moving window of 333 ms was shifted by 43.3 ms in the 20-channel EEG data. For each consecutive time
windows ½t,tz333ms� the Spearman (rank) correlation matrix (St) was calculated considering the functional correlations of 20619/2 pairs of
electrodes (upper right panel). A binary matrix (Wt , lower right panel), converted from the continuous matrix by means of a network criterion (see
text), was employed to construct the EEG functional networks and to extract the network properties betweeness, path length, clustering and degree
of each node (lower left panel).
doi:10.1371/journal.pone.0084612.g001
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In this case the global measure is the average clustering coefficient.

SCT~
1

N

X
i~1

N

Ci:

As discussed in [27] another important brain network parameter is

the ‘‘central role’’ of a particular node. Different measures of node

centrality are described, with degree being the best known. In

theory, a brain region with large degree (interacting with many

other regions) is a region that facilitates functional integration.

However, a node can have a low degree but still be very important

in integrating two segregated regions, depending on the amount of

information that passes through it. This property describes another

measure of node centrality, the betweenness coefficient. For a

node i, this coefficient is defined as the fraction of all shortest paths

in the network that pass through this node:

~BBi~
1

N(N{1)
Bi

where

Bi~
X

h,k~1
h=k=i

N ph,k(i)

ph,k
:

ph,k is the number of shortest paths between nodes h and k, and

ph,k(i) is the number of shortest paths between h and k that pass

through i (i=j=k). To ensure the best representation of the

functional network, we directly studied Bi, which alludes to the

amount of flow passing through node i. The average betweenness

is defined as follows:SBT~1=N
P

i~1,...,N

Bi:

Statistical analysis
Global and local network parameters extracted trial by trial

from each functional network analysis window and for each

condition (BM or SM) were compared statistically using the

Wilcoxon (rank) test. Significant differences between BM and SM

should meet two criteria: first, the p-values should be less than

0.05/20 (Bonferroni correction); second, significant differences

should be verified in at least three networks with different numbers

of links.

Results

Fig. 2A illustrates BM and SM functional networks constructed

with 30 or 50 links, evolving over time for two different repetitions.

These functional networks were characterized by large variability,

regardless of the condition, repetition, number of links, or moment

in time.

Global network measures
Global network measures extracted from BM and SM

conditions were compared as a function of time (Fig. 2 panels B-

D). The average path length, SL(t)T, a global property that

reflects the average distance between nodes, was insensitive to any

difference between BM and SM regardless of the link density

(Fig. 2 B). Moreover, the average path length of networks with 30,

50, or 70 links showed no temporal modulation. For example, BM

or SM functional networks with 70 (30) links had an SL(t)T that

fluctuated around 1.85 (2.25). Fig. 2C shows the clustering time

evolution of BM and SM functional networks. This global network

measure tended to decrease slightly over time, but it was not

sensitive to the difference between BM and SM. The average

betweenness coefficient, SB(t)T, also did not differentiate BM and

SM (Fig. 2D). Thus, standard network (global) measures cannot

discriminate between BM and SM. Interestingly, global param-

eters extracted from stimuli-driven functional networks are clearly

distinct from those calculated from random networks (see Fig. S3).

Local network measures
Differences between BM and SM in local network measures

were found for degree, betweenness, and clustering coefficient.

Fig. 3 illustrates the moments in time when these differences

(corrected for multiple comparisons) were identified. A topological

schema indicating local network differences between BM and SM

for each of the tested electrodes is shown in the right panel. For

instance, differences in degree and betweenness were detected

between BM and SM in electrode F7 during a large time period

from 100 ms to 750 ms. In electrode P3, the clustering coefficient

differed between BM and SM from 150 ms to 550 ms. A

difference in the clustering coefficient between BM and SM was

also found in electrode O2 from 500 ms to 850 ms. Finally, a

difference in degree between BM and SM was detected in

electrode Pz from 350 ms to 700 ms.

Fig. 4 displays the p-values obtained from a Wilcoxon test for

degree and betweenness coefficients for each electrode and for

seven link densities. A significant difference in degree (p-value ,

0.05/20) between BM and SM was identified for electrode F7 for

several densities of links (Fig. 4A). The time evolution of the F7

average degree (Fig. 4B) reveals that this parameter was larger for

SM within the first 750 ms (each graph point represents a time

window of 333 ms; see Materials and Methods). We then looked

for new links appearing for electrode F7 in the SM condition that

could contribute to a higher degree value by determining which

nodes (electrodes) were connected with electrode F7 by a single

link (first neighbors of F7). Fig. 4C summarizes the number of

times each node was counted as a first neighbor of F7 in both

motion conditions from a total of 550 networks. When compared

with the BM condition, F7 is more connected with almost all other

electrodes in the SM condition (except electrode O1, which

connects to F7 exactly the same number of times in both

conditions). Thus, no specific new link appears in, or codes for, the

SM condition. A larger betweenness coefficient was also found for

this electrode in the SM condition (Figs. 4D and E). Two

simultaneous effects might contribute to this increase in the

betweenness coefficient of F7. On one hand, an increased degree

favors an increase in betweenness because more links pass through

the electrode. On the other hand, a network reorganization

maintaining a fixed degree, such as the one represented in Fig. 4F,

could occur. In this scheme, we show the effect of changing one

link over F7 betweenness. This gives electrode F7 a larger

centrality value in the SM condition; that is, more paths pass

through F7 in SM.

As depicted in Fig. 5, the clustering coefficient of electrode P3

differs between BM and SM. This coefficient was larger in the BM

condition (Fig. 5, panels A and B), indicating that its neighbors are

more interconnected in BM than in SM from 150 ms to 550 ms.

This suggests that P3 neighbors are segregated from the whole

network in the BM condition. Fig. 5C illustrates this process.

Electrode Pz exhibited a difference in degree between BM and SM

later in time (Fig. 5D), again with higher values in the BM

condition.

Electrode O2 was also involved in the process of differentiating

between BM and SM, with a clustering coefficient larger in SM

from 500 ms to 800 ms (data not shown).

Visually Driven EEG Functional Networks
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Finally, no differences in local network properties were found by

comparing functional networks computed from the fixation cross

period preceding BM and SM visual stimulation, indicating that

the above-described results are specific to BM and SM encoding in

the brain.

Discussion

In this work, we have asked whether graph measures extracted

from EEG functional networks evolving over time differentiate

point-light displays depicting human body locomotion and those

depicting scrambled motion. We have shown that the BM and SM

functional networks behave similarly in regard to global network

Figure 2. Comparing global properties of biological motion (BM, black lines) and scrambled motion (SM, red dotted lines). (A)
Functional networks evolving in time built from data gathered in two repetitions (i and j) of each condition (BM and SM) by employing the 30 and the
50 highest correlated links. Functional network properties: Average (B) path length, (C) clustering coefficient, and (D) betweenness depicted in
function of time for networks built from the highest 30, 50, and 70 links in BM and SM conditions.
doi:10.1371/journal.pone.0084612.g002

Figure 3. Comparing local properties of functional networks extracted from biological motion (BM) and scrambled motion (SM)
conditions for each electrode as a function of time. Color lines represent local network properties (degree, betweeness and clustering
coefficient) for which significance level between BM and SM was attained (p-value ,0.05/20).
doi:10.1371/journal.pone.0084612.g003

Visually Driven EEG Functional Networks
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properties but resolve from each other in specific network nodes

when local properties are considered.

A concern that arises when working with high-density

acquisition systems is the effect of volume conduction on EEG

functional networks. As mentioned, part of network construction

consists of defining a synchronization measure between nodes.

Like other measures of synchronization [19,37,38], the one used

here does not omit conduction effects. For instance, Peraza et al.

[39] recently showed that coherence, phase coherence, and phase

lag index are all affected by volume conduction. Notwithstanding,

the functional network approach allows us to make inferences

about EEG brain activity interactions under different conditions

[31,33,34]. In the same vein, synchronization measures have been

successfully used to map interactions associated with face versus

nonsense visual stimuli [19]. Likewise, the devised experimental

paradigm used herein was such that the stimuli were identical

except for the invoked shape of a walking human in the BM

condition. Hence, volume conduction effects should have affected

both conditions comparably. As such, we assume that the observed

differences between BM and SM are not a consequence of volume

conduction.

The main result of the present study involves functional network

local properties. Specifically, the local properties computed from

electrodes F7, P3, Pz, and O2 were sensitive to subtle differences

between the two visual stimuli, suggesting that whole-body

locomotion and non-sense visual stimuli draw on distinct local

networks. Interestingly, differences between BM and SM were first

detected in electrode F7, only later appearing in parietal and

occipital electrodes. These results are discussed in detail below.

In electrode F7 (corresponding roughly to the scalp region over

Brodmann’s areas 45 and 47 [40]), the first scalp site to show a

difference between the BM and SM conditions over time, both the

degree and the betweenness coefficient were larger in SM

compared to BM. This effect lasted for several hundreds of

milliseconds. The increase in degree found in electrode F7 is

indicative of a higher number of regions interacting with this

electrode in the SM condition. In other words, more electrodes

associated with F7 became linked with each other during the

coding of a non-sense, scrambled stimulus compared to that of a

readily recognizable [1] human biological motion stimulus. The

role of the left frontal electrode F7 in discriminating BM vs SM

was also revealed by use of repetitive TMS. This technique

permits to temporarily block the brain activity underlying the

stimulated region [41]. Repetitive transcranial magnetic stimula-

tion (rTMS, theta bursts) applied over the scalp region

corresponding to the left ventral premotor cortex (PMC,

Brodmanns’ area 45) reduce sensitivity to biological motion

perception, possibly by compromising access to and/or read-out of

the perceiver’s own motor representations [17]. In particular,

temporarily silencing the PMC’s neural activity by means of rTMS

increases the participant’s tendency to indicate that biological

motion was present when it was not [17]. Likewise, the local

degree and betweenness coefficient of electrode F7 were herein

able to tell apart familiar, clearly coded human locomotion from

an unrecognizable (and possibly more demanding) visual context.

These results support the hypothesis that the inferior frontal

lobule, which contains a representation of movement kinematics

[42,43], is a core node in PLD action recognition. Our results also

imply that non-sense, unrecognizable visual stimuli involves a

more extended brain network. It is possible that the processing of

familiar stimuli, such as whole-body BM, recruits committed

representations in the brain, whereas the coding of nonsense

stimuli involves a less constrained network. Interestingly, a delayed

higher clustering coefficient for SM was found in electrode O2,

suggesting a further recruitment of the occipital lobe in SM

stimulus processing.

Figure 4. Comparing local properties of biological motion (BM) and scrambled motion (SM) in electrode F7. P-values from the
Wilcoxon test for (A) degree and (D) betweenness for BM and SM at different numbers of links. Each line corresponds to one electrode studied during
a time widow starting at (A) 310 ms or (D) 137 ms. Average (B) degree and (E) betweenness for electrode F7 is plotted as a function of time for both
conditions, for networks built with 50 links, with a 95% confidence interval. (C) Histogram depicting the first neighbors of F7 with larger degree values
for SM compared to BM, as illustrated in the pictograms. (F) Pictorial representation of a scenario explaining the differences in betweenness between
conditions.
doi:10.1371/journal.pone.0084612.g004

Visually Driven EEG Functional Networks
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In the BM condition, higher clustering and degree values were

found in the left (P3) and central (Pz) parietal electrodes,

respectively, showing that this sub-network is more strongly

recruited during BM as opposed to SM processing. These results

confirm the participation of the parietal lobe in the coding of

biological PLD [14,44,45]. Likewise, the parietal cortex has been

shown to contribute to the read-out of motor vocabularies

triggered by action observation [46–49]. Taken together, our

results show that local functional network properties draw on a

parietofrontal network, that has been repeatedly demonstrated to

be an essential component of biological motion coding.

Early brain imaging data indirectly favors the conjecture that

attention is involved in biological motion processing, as regions

consistently enrolled in attentional coding such as the anterior

portion of the intraparietal sulci, the inferior and superior parietal

lobule, the amygdala and cerebellum have also been shown to take

part in the processing of point-light displays [12–14,45,50–54].

Indeed, even if the perception of biological motion depicting

human locomotion appears effortless, such process could require

attentional load [55]. In a careful ERP and source localization

study, Jokisch et al. [3] found that sources for the N170

component generated by the contrast between BM and SM were

located in the posterior cingulate cortex. As this area has been

suggested to mediate the anticipatory allocation of spatial attention

[56], Jokish et al. [3] argued that its activation could possibly

reflect high-level spread attention subserving neural processing

leading to the BM global percept. Applied to the present study, the

higher clustering and degree values found in P3 and Pz for BM as

opposed from SM condition could thus result at least in part from

distinct attentional demands. Further work might help disentangle

attentional x biological motion coding in the brain.

Levels of synchronization between areas of interest upon the

presentation of biological motion in different visual contexts

(point-light vs. real human motion) have been investigated using

the phase-lag index (PLI) [33]. The results showed that functional

connectivity is greater within the supplementary motor and left

temporal areas during the unfamiliar display (i.e. PLD) compared

with the familiar display (i.e. video maintenance condition). In the

same vein, the authors of [34] showed that the synchronization

likelihood, a general measure of linear and non-linear correlations

between EEG signals [37,57], discriminates between brain activity

networks evoked by the observation of biological motion presented

in point-light versus those presented in video displays. Unlike [34],

our study used the same visual context (i.e. PLD) and only

manipulated the biological motion information. Our results thus

differ from these studies [33,34] by establishing cognitive

correlates of fine topology network parameters calculated from

zero-lag functional interactions between electrodes. We chose a

data-driven approach where all the information available for each

electrode over time was employed to construct graphs of

interactions, allowing for a fine-grained comparison between

conditions without any a priori regions of interest.

Figure 5. Comparing local properties of biological motion (BM) and scrambled motion (SM) in electrodes P3 and Pz. P-values of the
Wilcoxon test for (A) clustering and (C) degree for BM and SM at different densities of links. Each line corresponds to one electrode studied during a
time window starting at (A) 137 ms or (C) 353 ms. Average (B) clustering coefficient for electrode P3 and (D) degree for electrode Pz plotted as a
function of time for both conditions in networks built with 50 links with a 95% confidence interval. Upper right: Pictograms illustrating the higher
clustering effect of BM compared to SM.
doi:10.1371/journal.pone.0084612.g005
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In conclusion, the use of a new fast-scale network methodology

was herein proposed for the mapping of functional networks

extracted from electroencephalographic activity driven by visual

stimulation. The local network graph parameters of degree,

betweenness, and clustering allowed us to distinguish between

biological and scrambled motion conditions in precise moments in

time and for specific node points. Higher clustering and degree

values herein found for respectively P3 and Pz electrodes indicate

that these nodes may be crucial in orchestrating a pattern of

activity through time allowing sorting out BM from SM.

Accordingly, the parietal cortex has been shown to encode body

kinematics [58]. As for F7, higher betweeness and degree values

found very early in BM x SM processing confirms that this left

frontal region plays a central role in disentangling biological from

non sense motion. Whereas F7 electrode provides motor kinematic

representations of the action, O2 would appear as its visual

counterpart. Indeed, the lateral occipital region was described as

encoding the visual kinematic representation of observed actions

[43]. Thus, subtle differences herein found between BM and SM

concern cortical regions (inferior frontal lobule, parietal cortex and

lateral occipital cortex) involved in the analysis of the kinematic

features of the action. In addition, differences in latency that occur

between conditions ([100–750 ms] for F7 and [500–850 ms] for

O2 electrode) suggest a possible top-down influence from frontal

to occipital regions. Taken together these results are consistent

with the proposal of a wide complex neural network within the

sensorimotor system devoted to the processing of biological motion

[11]. These results add on to the understanding of cortical

networks involved in the coding of biological motion. Thus, the

functional network approach is a suitable method for studying

brain function on the time scale of cognitive processing and it

allows for a new level of understanding of the complex phenomena

associated with brain function.

Supporting Information

Figure S1 Defining criteria to construct functional
networks: lag correlations. Spearman correlation as a

function of the lag. Three pairs of electrodes, C3-P4 (left panel),

Fp2-T4 (middle panel) and F7-F3 (right panel) are shown for 6

different subjects. Each color curve corresponds to the average

(over 25 repetitions) for one subject in the BM condition. The

correlation between the time series x½t,tz333{lag� and y½tzlag,tz333�
was computed for t~600ms. The behavior showed here is verified

for all pairs of electrodes. Interchanging x by y in the correlation

formula we obtain similar results.

(TIF)

Figure S2 Defining criteria to construct functional
networks: correlation threshold vs. fixed number of
links. (A) EEG functional networks were constructed employing

two different criteria: fixed number of links (upper row) and fixed

correlation threshold (bottom row). (B) Empirical distribution

function Fn(r) of the correlation, r, between two electrode signals.

Each color curve corresponds to a different moment in time, and

contains the 20|19=2 pairs of correlations between the twenty

electrode signals. (C) Average correlation, SrT~ 1
2:190

P
i~

1, . . . ,20
P

j~1,...,20,j=i ri,j , as a function of time. Data correspond-

ing to one subject observing biological motion.

(TIF)

Figure S3 Comparison EEG functional networks with
Erdös-Rényi networks of the same number nodes and
links. (A) Average path length, (B) average clustering coefficient,

and (C) average betweenness as a function of the number of links.

Brain EEG functional networks present a small world structure

(panel A and B), i.e. large value of the ratio SCT=SLT. The

average betweeness coefficient (SBT) of EEG networks (panel C)

shows a non monotonic relationship with the number of links.

Random networks, contrary to functional brain networks, satisfy a

monotonic decreasing relationship.

(TIF)

Video S1

(MOV)

Video S2

(MOV)
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