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Abstract

With the advent of Next Generation Sequencing the identification of mutations in the genomes of healthy and diseased
tissues has become commonplace. While much progress has been made to elucidate the aetiology of disease processes in
cancer, the contributions to disease that many individual mutations make remain to be characterised and their downstream
consequences on cancer phenotypes remain to be understood. Missense mutations commonly occur in cancers and their
consequences remain challenging to predict. However, this knowledge is becoming more vital, for both assessing disease
progression and for stratifying drug treatment regimes. Coupled with structural data, comprehensive genomic databases of
mutations such as the 1000 Genomes project and COSMIC give an opportunity to investigate general principles of how
cancer mutations disrupt proteins and their interactions at the molecular and network level. We describe a comprehensive
comparison of cancer and neutral missense mutations; by combining features derived from structural and interface
properties we have developed a carcinogenicity predictor, InCa (Index of Carcinogenicity). Upon comparison with other
methods, we observe that InCa can predict mutations that might not be detected by other methods. We also discuss
general limitations shared by all predictors that attempt to predict driver mutations and discuss how this could impact high-
throughput predictions. A web interface to a server implementation is publicly available at http://inca.icr.ac.uk/.
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Introduction

Many cancers arise as a result of the acquisition of a series of

fixed DNA sequence abnormalities, termed mutations, which

ultimately confer a growth advantage upon the cells in which they

have occurred [1,2,3,4]. These mutations can have several impacts

on the gene in or near which they reside. Mutations that

contribute to disease initiation or progression, often by altering the

protein product directly, are termed ‘‘driver’’ mutations, whereas

those mutations that are a result of the inherent genetic instability

of the cancer, confer no selective advantage to the cell and do not

contribute to disease progression are termed ‘‘passenger’’ muta-

tions.

With the advent of Next Generation Sequencing (NGS) the

identification of mutations in the genomes of healthy and diseased

tissues has become commonplace providing a new avenue to

discover potential genotypes underlying the molecular causes of

cancers [5]. Key to this endeavor is the ability to determine which

mutations are contributing to the disease process. The most

common mutational event in cancer that changes the protein

product is a missense substitution, where usually a single base

substitution changes the protein product by a single amino acid.

However the consequence of these mutations still remains

challenging to predict.

There is a large body of work documenting the consequences of

inherited missense mutations, as they comprise a large part of the

repertoire of human disease variants as evidenced in the OMIM

[6] and HGMD databases [7]. Studies show that disease-

associated mutations commonly impact protein folding, protein

stability, and protein-protein interactions (PPIs) [8] thus altering

protein function. What is key to determining the molecular and

hence biological impact of a mutation, is its location within the

protein structure and the molecular function of residues affected

[9]. Many studies have shown that both the evolutionary

conservation of the mutated residue, the severity of difference in

physiochemical properties of the substitution and the structural

attributes of the residues involved, are all indicative of the

disruption of the protein, with more ‘‘diverse’’ substitutions

resulting in disease [10]. This also includes inherited missense

mutations within cancer predisposition genes such as those in

BRCA1 [11,12].

More recently, studies have compared the conservation of

somatically acquired cancer mutations with neutral missense

mutations suggesting [13] [14] that both the evolutionary

structural and functional conservation of the mutated residue

and its local environment, combined with the severity of the

substitution discriminate between cancer associated and neutral

mutations.
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Sequence and protein structure have often been used to predict

whether non-synonymous single nucleotide polymorphisms

(nsSNPs) could be disease causing, as well as assisting in ranking

or prioritising candidates for experimental validation. Sequence

conservation has been used to predict which mutations would not

be tolerated within a protein, and are often used as a proxy to

identify disease-causing mutations [15,16,17,18,19,20,21,22]. Sim-

ilarly, protein structure has been used for estimating how

disruptive a missense mutation maybe [18,19,23,24,25,26,27,28].

Recently Reva et al. [29] successfully used comprehensive multiple

sequence alignment of proteins to create a functional impact (FI)

metric to score amino acid substitutions. Other methods include

filter-based algorithms to prioritize pathogenic mutations [30].

While several structure-based predictors exist for estimating

general pathogenic effects of missense mutations these are not

specifically oriented towards cancer mutations and do not benefit

from the comprehensive structural detail of protein interfaces.

From a structural perspective the structural impact of a driver

mutation is dependent on whether the protein is an oncogene or

tumour suppressor. The structural consequences of mutations

within tumour suppressors, where protein function is ablated, are

often similar to those in inherited diseases, in that they impact on

protein stability and folding. Mutations can also disrupt active sites

or ligand binding sites, whether directly by occurring in or near

the site or indirectly by destabilising the site’s structure, will also be

severely detrimental to the protein’s function. In contrast

mutations in oncogenes, where the protein is activated, are found

in loops and unstructured regions of proteins and not in the

protein core [31,32].

When considering the impact of a mutation, protein-protein

interfaces are also important regions of the protein to consider

since they are responsible for mediating protein interactions within

the cell. Protein interfaces have discernible characteristics such as

complementarity in shape and electrostatic charge and the

presence of hydrophobic patches [33,34]. Hydrophilic residues

are more frequent in interfaces facilitating transient interactions,

whereas interfaces in more permanent subunit associations in

complexes often have hydrophobic patches.

Recent analyses on protein structures in the Protein Data Bank

Europe (PDBe) [35,36] have revealed a comprehensive set of

protein interfaces which were deposited in the Protein Interfaces,

Surfaces and Assemblies (PISA) database [37]. Coupled with

genome-wide NGS mutation data, this gives the opportunity of

exploring how mutations manifest structural defects in proteins

and therefore provide useful insights into how they may cause

cancer genome phenotypes. Examples of interface mutations that

disrupt protein-protein interactions have been previously docu-

mented [38] and the value of molecular-level annotation of

proteins with respect to interfaces has recently been demonstrated

[39] by predicting the effect of mutations using interface proximity

and offering explanations for pleiotropy and locus heterogeneity in

terms of mutation location with respect to interfaces.

With the increasing amounts of sequence and mutation data

from NGS experiments, there is an accompanying need to develop

better ranking and prediction tools to assess and characterize

cancer mutations computationally. Here, we describe a new

predictor, InCa (Index of Carcinogenicity), based on criteria

derived from a large scale analysis of cancer driver mutations from

the COSMIC database and the HapMap mutations in the 1000

Genomes (1k) project. We show that by focusing on structure and

interface information, our parameters can be used to obtain

similar or better prediction than previous methods that predict

severity of mutations in cancer data sets based on structure and

sequence conservation, such as those described in [40] and [22]

and detect mutations that are not detected by some of these

methods. When we compare predictions of InCa and CHASM

[22], another cancer-specific missense driver mutation predictor,

we also find that relevant mutations are detected by both methods

that are not detected by the other. We discuss general caveats

affected by all current prediction methods and how they affect

predictions of driver mutations in the context of cancer biology.

Methods

Protein structure data and protein interface data
Protein interfaces were obtained from PISA and assembled into

an in-house database which was further expanded with data from

the Structure Integration with Function, Taxonomy and Sequence

(SIFTS) initiative database [35] allowing translation of PDB to

UniProt coordinates. PISA interfaces with complexation signifi-

cance scores (CSSs) of zero and an interface area of ,400 Å were

considered as ambiguous and excluded from our analysis. Using

the PISA quaternary structure definitions we computed intra- and

inter-molecular minimum atomic contacts for residues, as well as

the centre of gravity for each interface. Relative accessible and

buried surface areas (ASA and BSA) were calculated from the

PISA absolute ASA and BSA values as the fraction of the

accessible area of the respective amino acid in the tripeptide Gly-

X-Gly [41]. Secondary structure DSSP [42] assignments were

obtained from SIFTS and simplified to three states: helix, H, beta

sheet/strand, E, and coil, C. Non-human PDB interfaces were

filtered out using PDB chain to taxonomy mappings (ftp://ftp.ebi.

ac.uk/pub/databases/msd/sifts/text/pdb_chain_taxonomy.lst).

To obtain background distributions of amino acid frequencies in

our data set, we used a non-redundant human list of proteins from

NCBI (ftp://ftp.ncbi.nih.gov/mmdb/nrtable/nrpdb.060111) with

p-value for similarity cutoff of 10e-80. The UniProt database [43]

was parsed and the annotations for post-translational modifica-

tions and disulphide bonds were added to the residue data. A

further comprehensive set of post-translational modifications were

obtained from Phosphosite [44]. We included acetylation,

methylation, O-GlcNAc modification, phosphorylation, sumoyla-

tion and ubiquitination. Only the sites obtained via high

throughput mass spectrometry were taken to reduce any

investigation bias.

Neutral mutations, mutations in cancer genomes and
driver mutations

Non-synonymous SNPs from non-diseased individuals were

downloaded from the 1000 Genomes (1k) Project [45]. Those

from somatic cancer genomes were downloaded from COSMIC

version 64 [46]. The mutations in both studies were annotated to

transcripts in the Ensembl database [47,48] by alignment to the

reference human genome. The mutations were sorted with respect

to protein topological area by their interface area and CSS (if the

residue is in an interface), relative accessible surface area (relative

ASA) and buried surface area (relative BSA) (Table S1).

Driver mutations were taken from [22], which is a mutation list

from COSMIC in putative oncogenes and tumour suppressor

genes identified using a variant of the 20/20 rule [49]. We

obtained the most recent list from the author’s url (http://wiki.

chasmsoftware.org/index.php/CHASM_DL) downloaded on

21.12.2012.

Out full data frame of mutations is available in Dataset S1.

Deriving a Mutation Index of Carcinogenicity
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Biases in frequency of mutation classes and
physicochemical dissimilarity of residues

Overrepresentation of mutations classes was calculated by

constructing contingency tables and applying Fisher’s exact tests

correcting for multiple testing using false-discovery rate. Details

are provided in supplementary methods in Text S1. Details of

physicochemical dissimilarity for mutations are given in supple-

mentary methods in Text S1 and Table S2.

Results

1000 Genomes and driver mutation comparison
overview

Our compiled list of neutral and cancer driver mutations

mapping to proteins with structure comprised 2412 unique single

nucleotide polymorphisms from the 1000 Genomes (1k) project

and 3808 unique mutations from cancer drivers. These were

mapped to 1207 and 57 unique proteins (UniProt IDs) respec-

tively. 3 mutations and 23 proteins overlapped in the two data sets

(Figure S1 A–B).

The most frequently mutated proteins with driver mutations

with were p53, PTEN, EGFR, CDKN2A and PIK3CA, all of

which are highly studied oncogenes or tumour suppressors.

Conversely, among the proteins most frequently mutated with

neutral mutations were immune system proteins like HLA class II

histocompatibility antigen, HLA-DPB1 (P04440). The amount of

mutations for the top genes with the most neutral mutations and

most driver mutations are shown in Table S3. The average for

drivers and neutral proteins were 2.0 and 54.2 respectively, and

the mode 1 and 5 respectively. The distribution of mutations per

protein had a longer tail for driver proteins (Figure S2).

Cancer driver mutations are less conservative than
neutral mutations

To compare the neutral and driver mutations, it was necessary

to ensure that there was no underlying bias in the observed amino

acid frequencies in 1k and COSMIC. The normalised frequencies

were very similar in the two datasets and were also highly

correlated with those observed for both UniProt and the PDB as a

whole (Figure S3). There were two exceptions, with both Ser and

Pro residues being slightly under-represented in both the

structurally constrained datasets.

We calculated several measures to compare of the nature and

the conservation of the mutations in driver and neutral datasets.

Cancer driver mutations exhibited significantly higher physico-

chemical differences between the wild-type residue and the

mutant, than neutral mutations, suggesting that in general they

exhibit less conservative substitutions (Figure S4). This observation

was supported by the lower BLOSUM substitution scores, and the

lower Dayhoff substitution scores demonstrated by the driver

mutations, indicating that these mutations were less conservative

than neutral mutations.

Driver mutations also exhibited higher functional impact (FI)

scores [29], supporting the hypothesis that driver mutations are

both less conservative (Figure S4) and occur in both functionally

and structurally conserved regions of the protein. However, in a

number of cases the FI score could not be calculated because the

mutation fell outside a region of the requisite multiple sequence

alignment. There were also several 1k mutations where the FI

score was significantly high. Further analyses are required to

determine whether these mutations will disrupt the protein

function leading to a pathogenic impact, or whether these are

false positive results. Either way, the development of alternative

methods to predict the carcinogenicty of mutations is important.

To ensure these distribution differences were not due to a biased

artefact in the data for driver mutations having more extensive

interface or interaction partner annotation, we obtained the

corresponding distributions for the reduced set of 23 proteins in

the intersection of proteins with driver mutations and proteins with

neutral mutations. Using this set reduced the number of mutations

from 5500 to 1677, a 30% reduction. We observed the same

differences in distribution, with only two cases being below

statistical significance at the 0.05 level, namely FI scores for

mutations in buried residues and mean distance to interface for

mutations in interface areas (Figure S5). However, because this

reduced set greatly reduces the number of mutations available for

analysis, we suspect this loss of significance is likely due to

insufficient data.

Driver biases in topology, secondary structure and amino
acid composition

As we wanted to incorporate structural features in our

prediction algorithm we first investigated which structural

parameters to include. Several studies have suggested that

cancer-causing mutations preferentially occur in particular loca-

tions within a protein structure, for instance temperature-sensitive

Table 1. Summary of top mutation types in each category enriched in drivers.

secondary structure buried interface surface

coil TRI

sheet CRR,LRR

helix LRR

any C,H,L,W,Y,LRP,LRR,VRD G,L,GRE,LRP,LRR,GRV,RRP Y,LRR,GRV

doi:10.1371/journal.pone.0084598.t001

Table 2. Contingency tables for post-translational
modifications, disulphide bonds and electrostatic (h-bonds
and salt bridges) interface bonds in mutated residues.

NO PTM PTM NO SS SS
NO interface
bond

interface
bond

neutral 2387 25 2409 3 1987 425

driver 3019 69 3082 6 2077 1011

p 0.0007117 0.7398 ,2.2e-16

P-values are calculated with a Fisher’s test with a two-sided alternative
hypothesis.
doi:10.1371/journal.pone.0084598.t002

Deriving a Mutation Index of Carcinogenicity
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(TS) mutations often occur in buried regions of the protein. We

investigated these biases in topology of mutations as a whole and

investigated whether they occurred at an interface, on the protein

surface or were buried and we also recorded their secondary

structure (helix (H), sheet (E), or coil (C)).

In general, mutated residues occurred less frequently in buried

positions and more frequently in surface accessible positions

(Figure S6 A,C). This tendency was even greater for the neutral

mutations alone. Driver mutations occurred slightly more

frequently in interfaces. Interestingly, driver mutations occurred

more often in coils and beta sheets whereas neutral mutations

occurred less frequently in a-helices (Figure S6 B,D). In both

datasets arginine was the most frequently mutated residue despite

its highly redundant codon usage. We further calculated the

normalised frequency and observed/expected ratio of the corre-

sponding mutation classes for the reduced set of 23 proteins

containing both neutral and driver mutations. We observed the

same differences, with driver mutations occurring more frequently

in interfaces (Figure S7).

To further investigate the differences in the distribution of

driver and neutral mutations, the data was partitioned by

secondary structure, topology and mutated wild type residue.

Several biases were discernible in the type of amino acid mutated,

particularly when the data was partitioned by secondary structure

type (Figure S8): tryptophan residues were more often mutated in

drivers, as well as buried cysteine residues in beta sheets and coils,

buried hydrophilic residues (aspartate, glutamate, histidine and

phenylalanine) and interface glycine residues.

Several types of amino acid substitutions were enriched in

drivers (Figure S9, S10). Table 1 summarises the top 10

significantly enriched mutation types in each category. Both

glycine to valine and glutamate to glycine substitutions were

enriched in interface areas and leucine to proline mutations in

interface helices. These mutations were all predicted to be

deleterious from their physicochemical parameters. In particular

proline is known to be a ‘‘helix breaker’’ [50,51] and such

mutations to a proline residue within a helix are likely to have a

considerable structural impact. Some amino acid substitutions

were never observed in either data sets (Figure S9). We found that

amino acid substitutions requiring two or more nucleotide

substitutions (using values from the genetic code matrix) were

never observed in neutral mutations, whereas in drivers, several

cases of different amino acid substitutions requiring two or more

nucleotide substitutions were observed. However, in general,

amino acid substitutions requiring only 1 nucleotide substitution

were more prominent and the non-observed amino acid substi-

tutions corresponded mostly to those requiring 2–3 nucleotide

substitutions.

Conversely, alanine isoleucine and valine residues were mutated

more frequently in the neutral dataset, especially on the protein

surface (Figure S8), suggesting that when these residues are located

on the surface of the protein they can tolerate mutations with little

detrimental effects. Buried valine to isoleucine mutations were also

enriched in the neutral dataset probably facilitated by their

similarity in physicochemical properties (Figure S9B).

Driver mutations were significantly enriched in interface

electrostatic bonds and post-translational modifications (Table 2).

The enrichment of cysteine mutations in drivers prompted us to

examine whether they could disrupt disulphide bond formation. In

the majority of cases, mutated cysteines did not participate in

disulphide bond formation and when they did, there was no

statistically significant enrichment in driver, indicating that the

mutation defects cannot be attributed to their loss. Interestingly

the immediate vicinity (5 Å radius) of mutated buried cysteine

drivers was highly enriched in cysteine residues (Figure S11),

suggesting that the change in physicochemical properties may itself

contribute to the mutation severity, or that the proteins in our

dataset do not for disulphide bonds. This would be the case if

many proteins in our data set are located to the cytoplasm, as

opposed to localised to organelles and excretion, where disulphide

bond formation occurs following their synthesis in the endoplasmic

reticulum.

Driver mutations are located near protein interfaces
Driver mutations occurred closer to interface binding sites than

neutral mutations (Figure S3) suggesting that mutations that

interface disruption may be a factor in cancer pathogenicity. To

Table 3. Area propensities of mutations by accessibility.

area and accessibility
normalised frequency of
driver/neutral in full set

normalised frequency of driver/neutral in
intersection set

interface, ,10% accesssible 3.63 11.12

interface, 10–30% accesssible 2.52 4.49

interface, .30% accesssible 1.26 1.52

buried, ,10% accesssible 1.79 1.47

surface, 10–30% accesssible 1.55 2.38

surface, .30% accesssible 0.87 0.90

For each area, the percentages denote the relative ASA. Ratios denote the driver/neutral fraction. Values for the set of 23 proteins which contain both neutral and driver
mutations is shown on the right.
doi:10.1371/journal.pone.0084598.t003

Table 4. Ratios of COSMIC/1k of normalised hydrophobicity
propensities by accessibility.

PhiPhi PhiPho PhoPhi PhoPho

interface, ,10% accesssible 5.47 6.48 4.73 3.32

interface, 10–30%
accesssible

3.05 4.23 4.19 2.28

interface, .30% accesssible 1.28 2.13 2.20 1.50

buried 3.13 3.25 3.10 1.44

surface, 10–30% accesssible 1.93 2.34 2.46 1.51

surface, .30% accesssible 0.90 1.39 1.45 1.11

‘‘Phi’’ denotes hydrophilicity and ‘‘Pho’’ denotes hydrophobicity.
doi:10.1371/journal.pone.0084598.t004

Deriving a Mutation Index of Carcinogenicity
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investigate if the position of the mutation within the interface was

important we divided mutated residues into groups depending on

their relative accessible surface area (ASA) both in the monomeric-

unbound state, and their corresponding accessibility when

contributing to a multimer. We analysed these accessibilities and

compared their frequency in drivers and 1k datasets (Table 3).

Mutations occurring in interfaces in multimers that were in

partially accessible residues in the monomer, were enriched in the

driver dataset, suggesting that these were the most deleterious

residue positions when combined in an interface. We calculated

the same ratios for the intersection set of 23 proteins in the

intersection. We observed the same pattern with partially

accessible or buried residues in interfaces being enriched in driver

mutations.

We further analysed the driver and neutral mutations by also

taking into account the residue hydropathy changes between wild

type and mutant (Table 4).Hydropathy transitions (hydrophilic to

hydrophobic and vice versa) were enriched in drivers, with the

enrichment becoming stronger for residues of lower accessibility.

The only notable exception was the hydrophobic to hydrophilic

interface mutations, which showed slight enrichment in neutral

mutations. It is possible that such mutations may be better

tolerated in adjoining exposed hydrophilic interface patches.

Together these data indicate that the disruptions that cause the

cancer phenotype in interface areas are likely to occur from

Figure 1. Hydrogen bond enrichment in interface residues for charged and polar residues in driver mutations. Densities (denoted P(x))
are shown for mutations of each amino acid in both sets with their associated p-values comparing 1k and drivers with a two-sample Wilcoxon test
using a one-sided alternative hypothesis.
doi:10.1371/journal.pone.0084598.g001

Deriving a Mutation Index of Carcinogenicity
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mutations that are buried or partially accessible in the monomeric

unit. This effect is exacerbated when the residue hydropathy is

altered, suggesting that partially exposed interface residue

mutations in drivers may act primarily by distorting the protein

interface shape. This effect may be more deleterious than the loss

of hydrophobic contacts or electrostatic interactions potentially

imposed by mutations found in highly accessible interface residues.

Driver mutations disrupt electrostatic interactions across
interfaces

Formation of hydrogen bonds and salt bridges across the

opposing sites of the interface plays a pivotal role in interface

stabilisation [52]. To investigate whether mutations in drivers

more often occurred in interface residues critical for electrostatic

interactions, we calculated the maximum and mean hydrogen and

salt-bridge bonds for each mutated wild type residue side chain.

Compared to drivers, neutral mutations occurred in interface

residues enriched for non-hydrogen bonded amino acids and in

the majority of cases, the proportion of residues forming one or

more hydrogen bonds, was significantly lower (Figure 1).

Driver mutations often occurred in amino acids that contribute

a higher number of hydrogen bonds across the interface. To a

large extent, these patterns were observed for salt bridges too but

differences were statistically significant for glutamic acid and

histidine only (Figure S12).

Compositional differences between the drivers and
neutral mutational microenvironments

A previous study [9] has shown that structural disruption by a

mutation of the local environment correlates with the pathoge-

nicity of a mutation. These include whether a mutation cause a

steric clash, introduces a cavity in the protein, and estimate the

local change in stability of a protein. Studies have also indicated

that these metrics are dependent on both conformation and

resolution of the protein structure, so we developed a ‘‘fuzzy’’

packing metric to describe the mutated residue’s microenvirion-

ment, which consisted of the normalised frequency of each amino

acid residue in the vicinity of the mutated residue within a 5 Å

radius. This metric was calculated on both the isolated monomer,

and the PISA derived multimers so that we could capture

information on both inherent and the interfacial microenviron-

ments. Where more than structure was available, data from all the

available structures were combined.

Although overall, neither drivers nor neutral proteins and their

interfaces exhibited global compositional differences, for several of

the 20 amino acids there were statistically significant composi-

tional differences between the driver and the neutral interior and

interfacial microenvironments (Figure S13, as well as Dataset S2

for full listings). We observed instances of polar or charged residues

being in the vicinity of mutated polar or charged residues

significantly more often in drivers, suggesting that disruption of

electrostatic interactions or electrostatic patches of proteins are

important in contributing to the cancer phenotype. We further

fine-tuned the interface compositional analysis by subgrouping

substitutions by wild type and mutant amino acid. While the

differences did not reach significance, we observed several

substitutions that represented a loss of electrostatic interactions

in the context of the neighbouring residues. In several instances,

such as mutations of phenylalanine to serine substitutions (Figure

S14A) it is possible that cation-pi interactions with arginine

residues on the opposite side of the interface may be abolished.

Such interactions have been previously shown to be important

Figure 2. ROC curve for InCa and other mutation predictors.
Shown are the standard metrics averaged using 10% randomly
withheld annotations and 100 repetitions at each point. ‘‘simple
structure’’ denotes a model without using frequency profiles of
neighbouring residues. A model denoted ‘‘InCa FI’’ is a combined
model using FI as a parameter. AUC values are shown next to the
names.
doi:10.1371/journal.pone.0084598.g002

Table 5. ROC curve and prediction parameters for optimal thresholds in all tested methods.

optimal
threshold specificity sensitivity accuracy tn tp fn fp npv ppv

1-
specificity

1-
sensitivity 1-npv AUC

simple structure 0.53 0.77 0.72 0.74 4125 4845 1880 1250 0.69 0.79 0.23 0.28 0.31 0.82

InCa 0.54 0.83 0.77 0.80 4424 5225 1550 901 0.74 0.85 0.17 0.23 0.26 0.88

FI 0.67 0.74 0.54 0.63 3969 3680 3089 1362 0.56 0.73 0.26 0.46 0.44 0.69

InCa FI 0.56 0.85 0.75 0.79 4495 5106 1722 777 0.72 0.87 0.15 0.25 0.28 0.89

Poly-phen2 0.53 0.65 0.80 0.73 3463 4189 1062 1835 0.77 0.70 0.35 0.20 0.23 0.75

SIFT 0.52 0.75 0.70 0.73 3582 3319 1441 1173 0.71 0.74 0.25 0.30 0.29 0.77

InCa Random 0.52 0.44 0.59 0.52 2320 4012 2803 2965 0.45 0.58 0.56 0.41 0.55 0.51

doi:10.1371/journal.pone.0084598.t005

Deriving a Mutation Index of Carcinogenicity
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binding contributors in protein-protein interfaces [53]. Glycine to

valine mutations (Figure S14B) may be deleterious because they

not only increase the volume of the side chain, but also abolish the

conformational flexibility that is unique to glycine, potentially

introducing a more widely felt interface distortion around the

mutated residue. Full listings of microenvironments for each

substitution and area are provided in Dataset S3.

Model for predicting carcinogenicity (drivers) and
comparison with other predictors

Having established which structural parameters may contribute

to a mutation’s carcinogenicity, we created a model, Index of

Carcinogenicity (InCa), using a random forest algorithm [54], to

predict whether a mutation induces a cancer phenotype. The

parameters used and their contributing significance are listed in

Table S4.

We performed a 5 fold cross-validation with 100 iterations,

where 20% of mutations were randomly withheld at each iteration

and used the remainder as a training to train the model. The

model gave an area under the curve (AUC) of 0.88. The optimal

cut-off (which maximizes the distance to the identity (diagonal)

line) was 0.54 and at this threshold, the specificity was 0.83 and

sensitivity 0.77, which is in a similar range to other cancer-specific

methods that train on COSMIC subsets and neutral mutations

such as CHASM [22]. The AUC shows InCa performs better than

Polyphen and SIFT (the receiver operating characteristic (ROC)

curve is shown in Figure 2). The model denoted ‘‘simple structure’’

excludes the microenvironment parameters and a lower AUC in

this model shows that microenvironment parameters confer

predictive contribution. Full prediction metrics for all methods

are given in Table 5.

To ensure that the predictive capacity of our model held despite

possible inherent data bias in driver proteins, we re-ran the same

prediction assessment iterations on the reduced set of 23 proteins.

The InCa AUC dropped to 0.751 and there was a drop in

performance of the other predictors, but because this was greatly

reduced training set, we concluded our predictive parameters were

independent of biases in interface annotations (Figure S15).

We calculated a conservative InCa threshold, based on the

cross-validation InCa scores for mutations in the randomly

withheld sets, below which 99% of the neutral mutations lied, as

0.778. This was used as the cutoff for prediction of a driver.

Application of predictor on COSMIC mutations not
present in the driver list

To compare our method to CHASM, we applied InCa and

CHASM to the mutations in COSMIC that were not in the driver

mutation list. This mutation list consisted of 31471 mutations in

3353 unique proteins. We used the FDR threshold supplied by the

authors, 0.2, to determine which mutations were classed as drivers.

We retained all mutations with a CHASM FDR score below 0.2

and InCa score above 0.778. This resulted in 478 mutations

predicted as drivers by both programs, 458 predicted by InCa only

and 3482 mutations predicted by CHASM only (Figure 3). 193

proteins contained mutations predicted as drivers by both

programs. 239 proteins had mutations predicted as drivers in

InCa only and 690 proteins had some mutations predicted as

drivers by CHASM only. 27052 mutations did not score high

enough to be predicted as drivers by either InCa or CHASM.

We further explored the list of proteins in the InCa only set with

DAVID [55], manual literature mining and inspection. We found

that 216/239 (90%) of proteins had functional associations with

cancer (Table S5). We deduced that a significant amount of

relevant mutations are detected by InCa and CHASM that are not

detected by the other.

To further explore these proteins, we created an induced

protein-protein interaction network (PPIN) using the ROCK web

server [56]. 215 proteins were mapped and we found that by

taking a 1-hop network, 195 of 215 of the proteins (91%) were

connected in a large connected component (Figure 4A). Commu-

Figure 3. Unique mutations and proteins predicted as drivers by InCa and by CHASM from mutations in COSMIC that were not in
the training driver set.
doi:10.1371/journal.pone.0084598.g003
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nities from this network were enriched in GO BP terms that are

characteristic of cancer functions (Table S6). The network

connecting only the list proteins directly contained 217 proteins

and still gave a large connected component containing of 74

proteins. The network excluding orphan nodes is shown in

Figure 4B. Several visually discernible communities were appar-

ent. A few of these were enriched in canonical cancer functions

like signal transduction, cell proliferation and DNA metabolism,

but also in coagulation and RNA processing. Blood coagulation

was recently found to have important contributions to cancer

pathogenesis [57,58]. Similarly, RNA processing also has been

recently shown to be involved in cancer pathogenesis [59,60].

Community membership is listed in Table S7.

Investigation of BARD1 mutation
BARD1 has been previously characterised as an important

contributor to breast and ovarian cancer [61]. We characterised

the BARD1 S660R mutation in more detail (Figure 5). By doing

an energy minimisation on the mutated structure, we found that

the effect is similar to a previously documented C645R mutation

that destabilises the BRCT1 fold [62]. The arginine residue

cannot be accommodated and produces a similar effect to the

C645R and we therefore speculate this could be the mechanism

that contributes to its carcinogenicity.

Domain characterisation of INCA and CHASM driver
mutation predictions

To investigate the distribution of domains in the InCa and

CHASM driver mutation predictions, we plotted these and

compared them (Fig. S16 and Table S8). We found that CHASM

mutations are enriched in kinase domains whereas InCa mutations

are more evenly spread out throughout several Pfam domains.

This might suggest that sequence-based predictors like CHASM

might have a prediction bias for certain genes or domains that is

less pronounced in structure-based predictors.

Application of InCa to a lung adenocarcinoma data set
To further show the applicability if InCa to NGS mutation data

sets, we parsed the mutations from a recent lung adenocarcinoma

study [63] and applied InCa on the missense mutations. The study

contained 7659 missense mutations. We excluded mutations in our

training and testing sets; of the remaining mutations, 622 mapped

to structures and obtained InCa scores. 16 were predicted as

carcinogenic and were all in genes that were associated with

cancer in the literature (Table S9). The top scoring mutation was

in BRAF. Several of these mutations occurred in functional

domains or regions, such as the RNA-recognition motif (RRM1)

domain of SNRPA and the inhibitor TIMP2 binding region of

MMP2. The latter two proteins form a complex highly associated

in other cancers [64,65].

Figure 4. Protein-protein interaction network of genes containing mutations predicted as drivers by InCa only. A) 1-hop network for
the proteins containing mutations predicted as drivers in InCa only. The original proteins are shown as red ellipses. Connecting proteins are shown as
green circles. 29 of 215 proteins are in a giant component. B) Induced network of connections between original proteins only excluding orphans. The
network contains 94 proteins and optimal communities are colour coded. The legend show the top enriched GO BP term in each community.
doi:10.1371/journal.pone.0084598.g004

Figure 5. Energy minimisation of the S660R mutation in BARD1. The top panel shows the mutant Arg residue in the mutant structure
causing a steric clash with the helix opposite. The wild-type (WT) structure is shown in red overlaid with the mutatnt structure in blue. The bottom
panel shows the WT Ser residue.
doi:10.1371/journal.pone.0084598.g005
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Discussion

We have performed an in-depth structural analysis of missense

mutations in both driver mutations from COSMIC and neutral

mutations in 1k. Using these data we have derived parameters for

a new mutation carcinogenicity predictor that is based on

structural and protein interface parameters.

In both datasets it was surface residues that were more often

mutated. This is an expected finding for 1k since surface residue

mutations may play a key role in evolutionary diversification with

low immediate impact on protein structure and function, whereas

protein core mutations tend to have a much more severe effect on

protein structure and stability. Driver mutations found in surface

residues may be detrimental for a number of reasons. Partially

exposed side chains of surface residues were more enriched in

driver mutations, possibly because they have the potential to cause

significant local structural deformation, coupled with the fact that

such substitutions were in principle non-conservative. In addition,

large areas on the protein surface may serve as yet unidentified

interface forming sites for transient or less specific interactions,

particularly considering the very high protein density in the cell,

and hence may be more constrained in tolerating physicochem-

ically dissimilar residues. In agreement with our findings, it was

recently reported that driver mutations are clustered on surface

patches [14].

We observed specific biases in driver for mutated residues and

their resulting amino acid substitutions. Driver mutations were

enriched in mutated glycine and tryptophan residues as well as

buried cysteines. Interestingly, driver mutations occurred less

frequently on a-helices and more often on coils compared to 1k,

implying a more subtle effect than simple secondary structure

perturbation. Talavera et al. also observe that cancer-related

mutations have an overall tendency to occur near specific amino

acids possibly due to a positional bias for proximity to surface

residues and therefore hydrophilic neighbours [14], although it is

difficult to compare the data directly as different distance cut offs

were used. We found that buried cysteines often mutated to

tyrosines and tryptophan and tyrosine residues often mutated to

serine and arginine respectively. Driver mutations are also

commonly found in bond-forming residues in protein binding

interfaces, which may contribute to signaling aberrations and

lesions responsible for the cancer phenotype.

Our findings are generally consistent with the hypothesis that

interface disruptions are a significant factor in generating cancer

phenotypes. The amino acid residues neighbouring mutation sites,

both on the same molecule as well as its binding partner, displayed

significant compositional biases across the driver and 1k datasets

(Figures S12, S13 and Dataset S2, S3). The physicochemical

compatibility of the substitution as well as loss of electrostatic

contacts with the surrounding residues often linked driver

mutations to more adverse interface binding defects.

Using sequence and structural parameters that included residue

neighbourhood, interface electrostatic interactions and the se-

quence conservation as expressed by the FI score [29], we

constructed a predictive additive model that discriminates between

cancer-associated and neutral mutations. While it has been shown

that cancer related mutations occur more often in conserved

residues [14], we showed that using additional structural

information such as neighbouring residues and interface electro-

static bond information yields better prediction performance and

that performance is slightly increased from the inclusion of the FI

score. The performance of the predictor indicates that all these

parameters are important for assessing cancer mutations and in

that respect a simple examination of primary sequence conserva-

tion around the mutated residue may lead to the conclusion that

cancer mutations can occur at any position in the protein [14],

although there are clear mutational hotspots defined by higher

structure orders.

While the caveat of our method is that structural information is

required, we found several instances where FI scores are unavailable,

presumably due to insufficient sequence information or size of protein

families required for the computation. For these cases, our structural

method can still be used to predict cancerous character.

A comprehensive analysis of neighbouring residues of candidate

mutations would give value for discerning future potential cancer

mutations. With the advent of structural genomics initiatives, it

will be increasingly practical to investigate structures of unchar-

acterized proteins if they are relevant and more data will be

available. While structural predictors have been used extensively

in previous studies [23,25], we show that added value can be

obtained from structural information from comprehensive analy-

ses such as those in PISA and information of neighbouring

residues of the mutation.

In this work we focused on the classification of missense

mutations as their effect on protein function is more difficult to

interpret. While the 1000 Genomes project derives data from non-

diseased individuals it may contain a number of mutations that can

drive or predispose to cancer later in life. While in its current form

InCa may be subject to these issues, it may be possible to fine tune

its resolving power with interaction network perturbation analysis

features particularly as the cancer phenotype often is the result of

multiple signaling lesions [66].

The observation that CHASM predictions were enriched in

kinase domains suggests there could be a degree of gene-centricity

that is created by the datasets used for training and the method.

We also observed instance where FI scores gave false positives,

such as the BRAF D594V mutation, which decreases ERK

stimulation [67] but has a high FI score (4.46). The mutation also

occurred in our training data set and therefore highlighted that all

predictors trained on non-experimentally validated and charac-

terised drivers may potentially suffer from a few false positives in

the training set. Our results that InCa and CHASM detect

different mutations, albeit with large overlap, suggest that several

different methods should be used when determining mutation

carcinogenicity and that shortcomings of each individual methods

in isolation should be considered. While all current methods for

predicting the effects of single mutations are powerful, the effect of

mutations is often combinatorial and so the context of each

mutation should be taken into account for better biological

interpretation.

Supporting Information

Dataset S1 Data fame of mutations with all parameters.
(ZIP)

Dataset S2 Neighbouring residue profiles for mutations
classed by WT residue.
(ZIP)

Dataset S3 Neighbouring residue profiles for mutations
classed by substitution.
(ZIP)

Figure S1 Unique mutations and proteins in the cancer
driver and neutral datasets.
(TIF)

Figure S2 Distributions of amount of mutations per
protein.
(TIF)
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Figure S3 Background distribution of amino acid
frequencies in 1000 Genomes and COSMIC. A) Normal-

ised frequencies (denoted P(x) for density) of amino acids in each

set. The frequencies are ordered according to average value. B)

Normalised frequencies for each sample divided by area. C)

Pearson correlation coefficients of each set pair. Smooth trendlines

are overlaid in red on plots in the bottom left part of the panel. D)

as C) for each sample divided by area. The dataset each series

denotes is described below. PDB, NR, Hsa: All non-redundant

human crystallised sequences 1k: 1000 Genomes set of non-

redundant human crystallised sequences COSMIC: Cosmic set of

non-redundant human crystallised sequences Uniprot: Entire

Uniprot sequences Uniprot PDB: Entire Uniprot sequences which

have PDB entries Uniprot 1k: Entire Uniprot sequences in the

1000 Genomes set Uniprot COSMIC: Entire Uniprot sequences

in Cosmic Uniprot 1k and COSMIC: Entire Uniprot sequences in

Cosmic and 1000 Genomes.

(TIF)

Figure S4 Mutation severity in neutral and driver
mutations by physicochemical change of substitution,
mutational permissiveness according to BLOSUM 62,
Dayhoff, FI and distance to interface. The first row shows

plots of change in amino acid physiochemical character incurred

by the substitution. The driver mutations show a greater change in

physiochemical character, thus presumably incurring a greater

disruption to protein stability/function. The second row shows

boxplots of mutation substitution severity according to the amino

acid substitution values in BLOSUM 62 (EBI). The 1k mutations

hover around 0, whereas the driver mutations have less permitted

mutability. Rows 3 and 4 show that same using Dayhoff (EBI) (see

text) and FI scores. Rows 5 and 6 show minimum and mean

distances to interfaces. Because unique residues can have multiple

PDB files and each PDB file can have many interfaces, there are

several distances from each residue to each interface. The

proximity of driver mutations to the interface suggests that cancer

mutations tend to disrupt interfaces.

(TIF)

Figure S5 Mutation severity in neutral and driver
mutations by physicochemical change of substitution,
mutational permissiveness according to BLOSUM 62,
Dayhoff, FI and distance to interface, using the reduced
set of 23 proteins with both neutral and driver
mutations.

(TIF)

Figure S6 Propensities in mutations split by area and
2ry structure separately. A) Normalised frequency of

occurrences of mutations in each area. Cancer mutations occur

more frequently in buried and interface areas than neutral

mutations. B) Normalised frequency of occurrences of mutations

in secondary structures. Most carcinogenic mutations occur in

coils and beta sheets and less in helices. There is a small but

significant difference (Fisher’s test with a two-sided alternative

hypothesis) between the driver and 1k samples in both cases. C)

Fractions of observed normalised frequency to expected normal-

ised frequency (all residues in proteins) for each area. D) Fractions

of observed normalised frequency to expected normalised

frequency for each secondary structure.

(TIF)

Figure S7 Propensities in mutations split by area and
2ry structure separately, using the reduced set of 23
proteins with both neutral and driver mutations.

(TIF)

Figure S8 Enriched mutations in area, secondary
structure and WT residue comparing neutral and driver
mutations. Red denotes enriched classes in drivers and blue

denotes enriched classes in neutral mutations. A) Enrichment in

driver mutations divided by area and WT residue (so). B)

Enrichment in driver mutations divided by area, secondary

structure and WT residue (so).

(TIF)

Figure S9 Heatmaps of normalised substitution frequen-
cies and enrichment comparing neutral and driver
mutations. Red denotes enriched classes in drivers and blue

denotes enriched classes in neutral mutations. A) Driver/neutral

fraction of normalised frequencies for mutations by area and

substitution. B) Statistically overrepresented substitution frequen-

cies by area (so).

(TIF)

Figure S10 Heatmaps of normalised substitution fre-
quencies and enrichment comparing neutral and driver
mutations for mutation classes separated by area and
secondary structure. Red denotes enriched classes in drivers

and blue denotes enriched classes in neutral mutations. A) driver/

neutral fraction of normalised frequencies for mutations by area

and substitution. B) Statistically overrepresented substitution

frequencies by area (so).

(TIF)

Figure S11 Neighbouring residue profile of targeted
wild-type buried Cys mutations in the 5 Å vicinity.

(TIF)

Figure S12 Salt bridge enrichment in interface residues
for charged residues targeted by COSMIC mutations.
Densities (denoted P(x)) are shown for mutations of each amino

acid in both sets with their associated p-values comparing 1k and

COSMIC with a two-sample Wilcoxon test using a one-sided

alternative hypothesis.

(TIF)

Figure S13 Neighbouring residue profiles of mutated
interface residues in the 5 Å vicinity. The 5 Å neighbour-

hood profiles are shown grouped by mutated wild-type residue and

by area. Shown are signed p-values using a two-sample Wilcoxon

test. Red denotes enrichment in drivers and blue denotes enriched

classes in neutral mutations.

(TIF)

Figure S14 Neighbouring residue profiles for FRS muta-
tions and GRV mutations in the 5 Å vicinity of the
muatations. Profiles of neighbouring amino acid residues on

the mutated side of the interface are denoted by their codes and

those on the opposite side of the interface are denoted with

‘‘Opp’’. Neighbouring residues of interface phenylalanine muta-

tions in neutral mutations and drivers. Normalised (relative)

frequencies (P(x)) are shown for each amino acid for 0–5 Å. The

‘‘Opp’’ suffix denotes the molecule on the opposite side of the

interface to the mutated molecule.

(TIF)

Figure S15 ROC curve for Inca and other mutation
predictors using the reduced set of 23 proteins with both
neutral and driver mutations.

(TIF)

Figure S16 Pfamdomain distribution in InCa and CHASM
predicted driver mutations. A) InCa only. B) CHASM only.

(TIF)
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Table S1 Definitions of topological areas.

(XLS)

Table S2 Physicochemical properties of amino acids.

(XLS)

Table S3 Top mutated proteins for neutral mutations
and driver muations.

(XLS)

Table S4 Model parameters and importance in InCa.
The %incMSE is the increasing in mean of the error of a tree

(mean square error (MSE)) for regression and misclassification in

the forest when the observed values of this variable are randomly

permuted in the ‘‘out of bag’’ samples. The IncNodePurity is the

total decrease in node impurities from splitting on the variable,

averaged over all trees.

(XLS)

Table S5 Cancer functions for proteins containing
mutations that were predicted as drivers by InCa only.

(XLS)

Table S6 Enriched GO BP terms in communities of the
protein-protein interaction network of proteins contain-
ing mutations that were predicted as drivers by InCa
only.

(XLS)

Table S7 Community membership of proteins in the
protein-protein interaction network of proteins contain-
ing mutations that were predicted as drivers by InCa
only.
(XLS)

Table S8 Pfam domain counts for genes from COSMIC
mutations not in drivers that were predicted as drivers
by InCa only and CHASM only.
(XLS)

Table S9 InCa scores and predictions for the lung
adenocarcinoma data set.
(XLS)

Text S1 Supporting methods.
(DOC)
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