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Abstract

Cascading failures constitute an important vulnerability of interconnected systems. Here we focus on the study of such
failures on networks in which the connectivity of nodes is constrained by geographical distance. Specifically, we use random
geometric graphs as representative examples of such spatial networks, and study the properties of cascading failures on
them in the presence of distributed flow. The key finding of this study is that the process of cascading failures is non-self-
averaging on spatial networks, and thus, aggregate inferences made from analyzing an ensemble of such networks lead to
incorrect conclusions when applied to a single network, no matter how large the network is. We demonstrate that this lack
of self-averaging disappears with the introduction of a small fraction of long-range links into the network. We simulate the
well studied preemptive node removal strategy for cascade mitigation and show that it is largely ineffective in the case of
spatial networks. We introduce an altruistic strategy designed to limit the loss of network nodes in the event of a cascade
triggering failure and show that it performs better than the preemptive strategy. Finally, we consider a real-world spatial
network viz. a European power transmission network and validate that our findings from the study of random geometric
graphs are also borne out by simulations of cascading failures on the empirical network.
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Introduction

Cascading failures represent a particular vulnerability of

networked systems, and their effects have been experienced and

documented in several domains such as infrastructure networks

[1], financial systems [2], and biological systems [3]. An important

feature of real-world networks that has not been incorporated into

most studies on cascading failures, with some notable exceptions

[4–6], is the fact that they are subject to spatial constraints. In

other words, in most real-world networks, which node a given

node connects to, or interacts with, is largely determined by the

geographic distance between the two nodes. This rather severe

constraint has important consequences on the network’s behavior,

and gives rise to significant differences in the scaling behavior of

quantities of interest when compared to spatially unconstrained

networks [7].

In the context of cascading failures and strategies for their

mitigation, studying the effect of spatial constraints is crucial to

providing fundamental insights that are practically applicable. A

specific context within which studies of cascading failures have

proliferated is that of electrical power transmission systems [4,5,8–

12]. However, understanding such failures in the more general

context of flow bearing networks is just as important, especially

when confronted with the imminent rise of technologies like the

Internet of Things [13], which essentially consists of everyday

physical objects equipped with sensors to communicate with users

or other objects within their range.

Motivated by these reasons, we study a model of load-based

cascading failures on networks on a particular class of spatially

constrained networks – the Random Geometric Graph (RGG)

[14,15] – carrying distributed flows and compare its behavior to

that of unconstrained network classes. Closely related earlier and

recent works, employing resistor networks, investigated transport

efficiency, flow optimization, and vulnerability in complex

networks [16–20], and the emergence of traffic gridlocks and

congestion in road networks [21,22].

To validate the insights obtained from these spatially-embedded

model networks (RGGs), we also study the same load-based

cascading failure process on a real-world network with spatial

constraints – the European power transmission network main-

tained and operated by the Union for the Co-ordination of

Transmission of Electricity (UCTE). We find several revealing

features that arise from the presence of spatial constraints, the

most noticeable being a lack of self-averaging on such networks.

This is in stark contrast to the results for unconstrained random

networks, and thus points to the potential pitfalls of ignoring

spatial constraints when studying cascade mitigation strategies.
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Methods

Here, we briefly describe the distributed flow model and

cascade model that we utilize in this study. For clarity, we note

that we use the term ‘node’ and ‘vertex’ interchangeably in the rest

of the paper.

1. Distributed flow
We assume the flow on the network to be both directed and

distributed. Specifically, each unit of flow is associated with a

source and a sink, and takes advantage of all possible paths

between the source and the sink. We adopt a simple model of such

flow, by modeling the network as a random resistor network with

unit conductances along the links [19,20]. As each node and edge

plays a role in forwarding the current from the source to the target

node, each of them experiences a load. For one source-target pair

and for unit current flowing between them, the load on an

arbitrary edge e:(i,j) is the current along that edge: ‘ij~I
(st)
ij ;

analogously, the load on an arbitrary node i is the net current

Figure 1. Vertex load profiles in RGGs and ER networks. Calculated on (A) random geometric graphs and (B) Erdős-Rényi random grahs,
composed of N~1500 nodes with SkT~10 and averaged over 2000 network realizations. (C) Positive correlations are shown in the case of ER graphs,
while these correlations seem to disappear in RGGs for degree classes higher than the average degree of the network ensemble. Data were averaged
over more than 3000 network realizations for networks of N~1000 and SkT~10. The fluctuating tail of the red curve originates from the lack of
sufficient number of samples in the specific degree classes. The error bars correspond to one standard deviations. (D) A single network realization
(N~1000, SkT~6) showing the vertex loads. Note, that the node with the highest connections (blue arrows indicate the 3 highest degree nodes)
does not carry the highest load in the network (loads are color coded, and node sizes are proportional to loads).
doi:10.1371/journal.pone.0084563.g001

Figure 2. Correlations of vertex loads as a function of distance between vertices and extreme value characteristics of loads. (A) Load
and distance correlations in RGGs and rewired RGGs with rewiring probability p (see text). Pearson correlation coefficient as function of distance r
measured between two arbitrary nodes. Data were averaged over 100 network realizations for networks having 500 nodes. (B) System size
dependence of the maximum vertex load in networks with SkT~6. Data were averaged over 2000 network realizations. The parameter p corresponds
to the rewiring probability for links in the RGG.
doi:10.1371/journal.pone.0084563.g002
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flowing through that node: ‘i~I
(st)
i . These two loads are related

by the expression.

I
(st)
i ~

1

2

X

j

DI (st)
ij D: ð1Þ

For all our studies presented here, we assume that unit current

flows between N source/target pairs simultaneously. Specifically,

we assume that all nodes are simultaneously sources and unit

current flows into the network at each source. For each source

node, a target is chosen randomly and uniformly from the

remaining N{1 nodes. Consequently, the load is defined as the

superposition of all currents flowing through an arbitrary edge/

node, which is identical to the edge/node current-flow between-

ness [20,23,24]:

‘ij~
1

N{1

XN

s,t~1

DI (st)
ij D, ‘i~

1

N{1

XN

s,t~1

DI (st)
i D: ð2Þ

Currents I
(st)
ij along the edges due to one source/target pair are

obtained by writing down Kirchhoff’s law for each node i in the

network and solving the system of linear equations:

XN

j~1

Aij(Vi{Vj)~I(dis{dit), Vi~1, . . . ,N, ð3Þ

where we assumed that I units of current flow into the network at

a source s and leave at a target t, and where Aij denotes the

adjacency matrix of the network. Rewritten in terms of the

weighted network Laplacian Lij~dijki{Aij , where ki~
X

j
Aij

denotes the degree of node i, the system (3) transforms into the

matrix equation LV~I , where V is the unknown column voltage

vector, while I i is the net current flowing into the network at node

i, which is zero for all nodes with the exception of the source and

target nodes. As the network Laplacian L is singular, we use

spectral decomposition [18,25] to find the pseudo-inverse

Laplacian G~L{1, defined in the space orthogonal to the zero

mode. For example, by choosing the reference potential to be the

mean voltage [17], V̂Vi~Vi{SVT, where SVT~(1=N)
XN

j~1
Vj ,

one obtains:

V̂Vi~(GI )i~
XN

j~1

GijI(djs{djt)~I(Gis{Git), ð4Þ

for each node i. Thus, for I units of current and for a given

source/target pair, the current flowing through edge (i,j) is:

Figure 3. Cascades triggered by targeted and random removals. (A) Probability that a single node removal will trigger a cascade as function
of the tolerance parameter. (B) The ratio G of the size of the largest surviving network component to the initial network size, as function of the
tolerance parameter a, when the initial failure triggers a cascade. (C) Similar to (B), except for the case where the initial failure does not trigger a
cascade. In all (A), (B) and (C) subplots the red curve corresponds to the case when the triggered node is the node with the highest load, the blue
curve to the case when the triggered node is the most connected (highest degree) node in the network and the green curve shows the case when
the triggered node was chosen randomly. Network parameters are N~1500, SkT~6:0, while the data was averaged over 500 network realizations.
Error bars correspond to the standard error of the mean. (D) G as a function of tolerance parameter, unconditioned on whether or not a cascade was
triggered for RGGs, SF networks and ER networks. For each point, the data was averaged over 500 network realizations.
doi:10.1371/journal.pone.0084563.g003
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I
(st)
ij ~Aij(Vi{Vj)~AijI(Gis{Git{GjszGjt), ð5Þ

This relation shows that current along an arbitrary edge is

uniquely determined by the network topology. Therefore, this is a

fully deterministic model of flow and the only source of

randomness in the problem arises in the specific instantiation of

the network from its parent ensemble.

Electrical flows when applied to explicitly modeling the power

grid have commonly used a DC power flow model [4,5,11,12,26]

wherein links also possess a reactance in addition to resistance.

However, as pointed out in [4], the equations for this DC model of

power flow bear a close resemblance to that of a simple electrical

circuit with the current playing the analogous role of power.

Further, Scala et al. [11] have demonstrated that inferences made

using a DC power flow model, can still be useful despite neglecting

the true AC nature of the power transmission network [27]. We

emphasize that although the empirical network on which we

validate our results is an electrical grid, our studies are aimed at

understanding fundamental aspects of cascades on spatial

networks carrying distributed flow, and not towards designing

strategies specifically tailored for electrical power transmission

systems.

2. Cascade model
We model a cascading failure on a network carrying distributed

flow following the seminal model of Motter and Lai [28]. We

assume that each node is equipped with a load handling capacity

that is proportional to the steady-state load on it when the network

is intact. Specifically, the capacity of a node i is Ci~(1za)‘0
i

where a plays the role of a tolerance parameter, and ‘0
i is the load

on the node for the intact network. If a node on the network fails,

i.e. is absent or removed from the network, then the flow

undergoes a redistribution, and consequently, so do the loads on

the surviving nodes. If the new load on any surviving node exceeds

its capacity, i.e. if ‘iwCi, then that node also fails which leads to a

further redistribution and possibly further failures. This process

constitutes the model of a cascading failure that we utilize here.

3. Network models
We briefly outline the network models used in this paper and

the methods employed for generating associated ensembles.

Random geometric graphs. A Random Geometric Graph

(RGG) of size N in 2D is constructed by placing N nodes

randomly in the unit square with open boundary conditions, and

connecting any pair of nodes if the Euclidean distance between

them is less than a distance R, the connection radius [14,15]. The

average degree of the graph SkT can be controlled by varying R

since SkT~pR2N.

Erdös-Rényi graphs. An Erdös-Rényi (ER) graph [29] of

size N is constructed by connecting every pair of nodes with

probability p. The average degree of the network can be controlled

through p since SkT~p(N{1).
Scale-free networks. Scale-free (SF) networks [30] of size N

and degree-exponent c are constructed by first generating a degree

sequence by sampling the prescribed power-law distribution

P(k)*k{c that yields a desired average-degree SkT. The network

is then constructed using this degree sequence following the

Configuration Model [31].

Rewired random geometric graphs. To better understand

the role of spatial constraints in the observed characteristics of

cascades on spatial networks, we generated rewired RGGs as

follows. Starting with the original spatial network, we rewire an

arbitrarily chosen end of each link to a randomly chosen node in

the network with probability p. During this process, we ensure that

no self-loops or multiple edges are generated, by rejecting any

rewiring step that leads to these undesired features.

4. Empirical network
As a realistic testbed on which to validate our results, we use the

UCTE European power transmission network from the year 2002

[32–34], which we will henceforth refer to simply as the UCTE

network. This network is spread over a geographic area that

comprises 18 countries, and consists of N~1254 buses which

constitute the nodes for our purposes. The average degree of the

network is SkT~2:89.

Results

1. Load landscapes in RGGs
We begin by analyzing the vertex load distributions in RGGs

and comparing them to those in ER graphs with the same average

degree, the latter playing the role of a null-model where spatial

constraints are absent. Both RGGs and ER graphs are charac-

terized by homogeneous (Poissonian) degree distributions [35]. In

addition, RGGs exhibit a high clustering coefficient [15], resulting

from the spatial dependance of the connectivity and the transitivity

of spatial relationships. Path lengths on RGGs scale with the

network size N in contrast to the log N scaling found in ER

graphs. Given these differences, we expect that the vertex load

distribution for RGGs would also differ significantly from that of

ER graphs. Indeed, as shown in Figs. 1A and 1B respectively, the

vertex load distribution for RGGs has an exponentially decaying

tail with a decay constant �& 0:083, while the distribution for ER

graphs is best-fitted by a Gaussian distribution (parameters in

Figure 4. Cascades on single network realizations. Simulations
were performed on networks of size N~1300. Fractional size of
surviving giant component as a function of a for (A),(B) RGGs, (C),(D) ER
networks and (E),(F) SF networks.
doi:10.1371/journal.pone.0084563.g004
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caption). For identical average degrees, the mean vertex-load in

RGGs, (S‘T~32:54), is almost six times as large as that for ER

graphs. Figure 1C shows the average vertex-load conditioned on

the vertex-degree, as a function of the degree. Again, in contrast to

the case of ER graphs, the plot for RGGs does not display an

unambiguously positive correlation of vertex-load with degree over

the entire degree range. The vertex-loads are strongly correlated

with degrees up until a value close to the average degree, after

which they show a subtle decline. A visualization of the network

(Fig. 1D) makes it clear that the nodes with the highest loads do

not have degrees anywhere as high as the largest degree in the

network.

For a network where connections are spatially constrained, we

intuitively expect that a high load on a node is indicative of a high

load in its neighborhood. To substantiate this, we investigate the

spatial correlation between vertex loads on the network. Specif-

ically, we measure the correlation between vertex loads as a

function of the distance separating them, by systematically

obtaining all pairs of nodes (i,j) separated by a distance that lies

within (r{Dr,rzDr), and computing the Pearson correlation

coefficient between these pairs:

CL(r)~

P
i,jDrij[(r{Dr=2,rzDr=2) (‘i{S‘iT)(‘j{S‘jT)

sisj

ð6Þ

Figure 2A shows the Pearson correlation coefficient between

loads at a distance r apart from each other. 150 evenly spaced

values of r were considered within the complete range (0,
ffiffiffi
2
p

=2),

with Dr~

ffiffiffi
2
p

=2

150
. The resulting picture shows that loads are

positively correlated for nodes within a distance r~R where R is

the connection radius, while just beyond this value the correlation

sharply drops and continues to decrease monotonically thereafter,

reaching slightly negative values at very large separations. The

picture obtained for networks with different average degrees is

qualitatively similar, and does not change significantly for rewired

RGGs generated using small values of the rewiring parameter. It is

worth mentioning that although the spatial correlation captured

by the Pearson correlation coefficient indicates vertex loads being

correlated only within a short distance, it does not preclude the

existence of lower dimensional correlated structures – such as a 1D

backbone formed by vertices with high loads [36] -within the

network. To conclude this study of the load profiles, we analyze

the extreme value scaling of the load distribution with network size

N, a quantity of significance in determining the effective

throughput of the network [37]. As shown in Fig. 2B, the

maximum vertex load on RGGs scales as a power law with N,

with an exponent of 0:75. This is a much faster growth in

comparison to the scaling,*N0:25 found for ER graphs. Rewiring

the links of the RGG with increasing probability p, gradually but

systematically lowers the loads, and their scaling. (The scaling

exponents found for p~0:005 and p~0:01 are 0:545 and 0:44
respectively.).

2. Cascades of overload failures
Next, we simulate cascading failures on a network triggered

either by random or targeted removals of nodes, and quantify the

resilience of the network to such failures. The model used (see

Methods) is identical to that used in earlier studies [19,28,38], and

is parametrized by a single tolerance parameter a which quantifies

the excess load bearing capacity of a node. Following the notation

introduced in [28], the resilience of a network is quantified in

terms of the fractional size of the surviving largest connected

component after the cascade ends: G~N ’=N, where N ’ is the

Figure 5. Effect of rewiring in RGGs. (A) Transition in network structure from an RGG towards an ER network through the process of rewiring.
Multiple rewired versions (different values of p) are shown together with the two extreme cases. (B) Average vertex load in RGG, ER and rewired
versions of RGG as function of the fraction of rewired links p. Network parameters are: N~500, SkT~6:0. Data were averaged over 500 network
realizations.
doi:10.1371/journal.pone.0084563.g005

Figure 6. Effect of rewiring on cascades in RGGs. Cascades were
triggered by the removal of the highest load. Simulations were
performed on networks of size N~1300 with SkT~5:0. As p is
increased the lack of self-averaging that manifests itself in the form of
non-monotonicities in the curves for G versus a, disappears.
doi:10.1371/journal.pone.0084563.g006

Cascading Failures in Spatial Networks
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number of nodes belonging to the largest network component after

the cascade and N is the undamaged (connected) network size.

Figure 3A shows the probability that a cascade ensues after an

initial node removal. As seen, irrespective of the tolerance

parameter, cascades triggered by the removal of the node with

the highest load in the network leave behind the largest damage

when compared with those resulting from removal of the highest

degree node or a random node. Figures 3B,C show the fractional

size of the surviving giant component G as a function of the

tolerance parameter in the presence and the absence of a cascade.

Once again, the damage done is the worst for the case where the

initial node removed is the one with the maximal load, even in the

case where no cascade is triggered, suggesting that vertices with

the highest loads are those responsible for bridging together

distinct connected components and ensuring the structural

integrity of the network. Finally, Fig. 3D compares the damage

done due to cascading failures on RGGs with the damage in SF

and ER networks, all having the same average degree. Clearly,

while increasing excess capacity does lead to an increase, on

average, of the surviving giant component, the growth is

profoundly slower for RGGs than for the spatially unconstrained

networks. Henceforth, as we further investigate more detailed

characteristics of cascades, we restrict our studies to cascades

triggered by the removal of the vertex with the highest load, since

the damage done to the network is the most severe in this case.

As shown above, increased capacity allocation results in a

monotonic increase in the average surviving giant component size,

where the averaging is done over an ensemble of network

realizations. If such a monotonic increase was also obtained for

individual network instances, then increased capacity allocation,

although only weakly effective, would at least be a justifiable

preventative measure against cascades. Figures 4 A, B show the

size of the surviving giant component G as a function of the

tolerance parameter a for three individual instances of RGGs, for

different respective average degrees. As is clearly seen, the

variation in G is far from monotonic for a single network instance,

and differs significantly across instances. Thus, the trend observed

by averaging a macroscopic quantity, G, over an ensemble of

RGG networks (as was the case in Fig. 3) provides little indication

of the true behavior of the same quantity for an individual network

instance. This behavior persists even if the network size is

increased (not shown). Such lack of self-averaging has been

observed previously in fragmentation processes on lattices, to

which cascades bear a close resemblance [39]. In contrast, results

of cascades on single instances of ER and SF networks, shown in

Figs. 4B,C, are consistent with those obtained by averaging G over

respective network ensembles.

Presumably, this lack of self-averaging is a feature that results

from the embedding of the network in two-dimensions (with no

shortcuts). To conclusively validate this argument, we study how

the presence of a few spatially unconstrained links affects the

surviving giant component size, since the addition of such links has

the effect of increasing the underlying dimensionality of the space

in which the network is embedded. Specifically, for each link, we

rewire with probability p one end of the link with a randomly

chosen node in the network, without allowing self-loops or

multiple edges to form. Similar constructions have been used

before in [40–42]. By varying p between 0 and 1, we can

interpolate between RGGs and ER graphs, as is confirmed by the

results shown in Fig. 5, where both the degree-conditioned average

load and the average load undergo a smooth crossover from the

results expected for RGGs to those expected for ER graphs.

Figure 7. Location of overloaded nodes. (A) Position (distance and angle) of failed nodes relative to the initially removed one, here the highest
load in the network. Different colors correspond to different iterations of the cascade: blue squares (1st), red squares (2nd), green squares (3rd), light
blue triangles (4th), black squares (5th), magenta circles (6th), orange circles (7th), light green squares (8th), yellow triangles (9th). Network
parameters are the same as in Fig. 1, while each data point is the averaged location of nodes removed in a given stage over 300 independent
network cascades. (B) The distribution of the distance r from the cascade-triggering node for nodes that fail in the course of a cascade (See text for
details).
doi:10.1371/journal.pone.0084563.g007

Figure 8. The effect of average degree upon cascading failures.
Fraction of the largest surviving network component following
cascading failures (G) triggered by the removal of a single, randomly
chosen node as function of a tolerance parameter. The two curves
correspond to two ensembles of random geometric graphs, one with
SkT~6 (maroon) and one with SkT~10 (green). Data were obtained
for RGGs of size (N~1500), averaged over more than 400 network
realizations. The error bars correspond to the standard error of the
mean.
doi:10.1371/journal.pone.0084563.g008
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Figure 6 shows that even with as low as 5% of the links of the RGG

rewired, the non-monotonicity in G versus a completely disap-

pears. The interval of p within which the crossover takes place

contains values larger than the theoretical estimate of

p�*1=(SkTN=2) [43] at which the small-world crossover occurs,

likely a finite-size-effect due to the small system sizes considered

here. Thus, from a theoretical network-design point of view, the

incorporation of a few long-range links would be a simple step in

stabilizing flows and managing cascades, since it results in a more

predictable relationship between surviving-component size and

excess capacity. However, in practical situations the cost of adding

such long-range links could be prohibitive, and therefore may not

constitute a feasible solution for controlling the grid.

We also studied how length dependent link-conductances

affected our results. Specifically, we assumed that Cij~Aij=dij

for a link connecting nodes i and j where dij denotes the Euclidean

distance between them, and performed simulations to study the

dependence of the surviving giant component size G as a function

of the tolerance parameter a (analogous to results in Fig. 4 A,B),

and to investigate the effect of rewiring links to create a few long-

range connections in the network (similar to the results in Fig. 6).

For both cases, we found no significant quantitative difference in

the results for the case where conductances were length-

dependent. In particular, the non-self-averaging nature of cascades

manifested itself in exactly the same manner as is demonstrated in

Figs. S1 and S2.

As a next step in understanding the nature of spatial cascades,

we measure the spatial correlations between nodes that fail in

successive stages of the cascade. Here, a single stage refers to a

round of calculating vertex loads, and removing those nodes whose

load exceeds their respective capacity. Figure. 7A shows the average

location of failing nodes per stage of the cascade, relative to the

node that triggers the cascade. The most significant feature

observed here, as well as in the distribution of distance (from the

cascade-triggering node) for failing nodes in each cascade stage

(Fig. 7B) is the separation between the most likely locations for

nodes removed in the first and second stages. In subsequent stages,

the distribution of the location of failing nodes gets progressively

more uniform. In general, as seen from our simulations, cascades

last for only a few stages (the longest found in the systems studied

here was 11 stages) with most of the damage occurring by the

second stage, and then declining rapidly. The stage-wise distribu-

tions in Fig. 7B were obtained by aggregating all nodes removed in

a particular stage and belonging to a particular distance bin over

540 distinct cascades, and normalizing them by the total number

of nodes removed over the distinct cascades. Thus, declining

contribution of later stages is due to a combination of two factors:

the reduction in the number of nodes removed during later stages,

and the decrease in the probability of the cascade surviving up to

that stage. The all-stage distribution was generated in a similar

fashion as the stage-wise distribution, but disregarding the stages

associated with the nodes.

Finally in this section, we study the effect of average degree of

RGGs on their resilience to cascading failures. Figure 8 compares

the fractional size of the largest connected component as a

function of a for networks with average degree SkT~6 and

SkT~10. Surprisingly, the damage caused by cascading failures is

far more severe for the more well connected of the two network

ensembles. Although, for other dynamical processes such as

epidemic spreading and diffusion it is intuitively obvious that more

connections lead to more spread, here we would expect that the

presence of more paths between any source-sink pair on a denser

Figure 9. Preemptive node removal in RGGs. (A) Probability that a cascade occurs after removal of the node with highest load, despite a
fraction f of nodes being preemptively removed immediately after the initial trigger. (B) Fractional size of the largest surviving network component G
as a function of preemptively removed fraction f , when there is a cascade. (C) Fractional size of the largest surviving network component G as a
function of preemptively removed fraction f for a single network instance for different values of the tolerance parameter a. (D) The ratio of the
throughput (defined in text) of the surviving giant component and the throughput of the original network as a function of the altruist node fraction.
The red circle corresponds to the case when there no nodes are preemptively removed. Network parameters are: N~1500, SkT~6:0:, and a~0:15
for results shown in (A),(B) and (D).
doi:10.1371/journal.pone.0084563.g009
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network would lead to more effective load balancing, and

therefore weaker cascading failures. However, while increasing

the average degree does cause loads for each node to be lower and

more balanced initially, the excess capacity allocation in propor-

tion to these lower and more uniform loads, makes the network ill-

equipped to handle variations in load resulting from the initial

node removal. As a result, cascades cause more damage for a

denser RGG than a sparser one. In contrast, as is well known,

denser RGGs are structurally more resilient to random (non-

cascading) failures occurring in the network, since the giant

component undergoes a transition in size at fc~1{
SkcT
SkT

[44,45]

where fc is the critical fraction of randomly removed nodes from a

RGG, and SkcT is an embedding-dimension dependent constant

taking the value 4:52 [15] for two dimensions.

3. Cascade mitigation strategies
Next, we study two cascade mitigation strategies and evaluate

their effectiveness. We begin by analyzing the preemptive node

removal strategy proposed by Motter [38]. Intuitively, this method

aims to utilize node removal in such a way that the two competing

objectives of reducing the load on the network, and keeping the

network connected, are balanced. Specifically, the method

involves removing a fraction f of the lowest load nodes after the

initial node failure. This method was motivated by studies on

scale-free networks where the load distribution is heavy-tailed

implying that a significant fraction of nodes despite contributing to

the total load on the network by acting as sources of current/

packets, only frugally participate in the carrying of loads generated

by other source-sinks pairs, due to their low betweenness. The load

distribution for RGGs however, is comparatively much narrower,

and we would therefore expect that preemptive node removal

would not yield significant success. The results of investigating the

efficacy of preemptive node removal as a cascade mitigation

strategy are presented in Fig. 9. As shown in Fig. 9A, the

probability of a cascade occurring decreases (with increasing f )

until it reaches a minimum, and beyond which, it increases again.

A similar profile is also observed for the ensemble averaged values

of the fractional size of the giant surviving component G as a

function of f . Both plots show however, that even at the optimal f ,

and for as large as 50% additional capacity (i.e. a~0:5), the gains

obtained are weak. Furthermore, as a consequence of the lack of

self-averaging, individual network instances show profiles that are

highly variable and showing little resemblance to the ensemble

averaged results. Three such examples for individual network

instances are shown in Fig. 9C. Finally, we study how the

throughput in the giant surviving component after a cascade, wf ,

compares to the throughput on the original network, wi. The

throughput captures the maximum current that can be injected

per source without the network becoming congested. For w units of

current injected at every source, the network is uncongested if for

every node j, the inequality, wjƒCj holds. Consequently, for the

intact network (indicated by subscript i), the throughput is

wi~
1

maxjflj=Cjg
. The throughput can similarly be calculated

for the surviving component after a cascade. As shown in Fig. 9D,

the throughput after the cascade wf is larger than the initial

throughput for f w0. The increase in throughput is expected since

the size of the network is smaller after a cascade, leading to a

reduction in loads (due to the N dependance in the definition of

loads, see Eq. 2) and thereby an increase in the quantity

maxjflj=Cjg. For the case where f ~0, although the ensemble

average of the ratio wf =wi is smaller than one (&0:98), in most

individual instances the ratio is exactly one. In these cases, the

throughput after the cascade is determined by a node whose

connectivity before and after the cascade is k~1. Such a dangling

end has initial load equal to 1 which remains unchanged after the

cascade as well i.e. the reduction in the number of sources and

sinks in the system has no effect on its load, unlike for other nodes

which have higher connectivity. Therefore the value of lj=Cj after

the cascade for such a node often ends up being the highest among

all nodes, and by definition results in the throughput after the

cascade being identical to that before the cascade i.e. (1za).
When f w0, such dangling ends are removed as part of the

preemptive node removal process, and all surviving nodes end up

experiencing a reduction in load due to the reduced size of the

surviving giant component. As a result, the final throughput is

higher than the initial throughput, resulting in wf =wi being greater

than one.

In view of the observation that the pre-cascade vertex load

distribution in the RGG is not highly skewed, we propose a

cascade mitigation strategy where rather than reducing the total

load on the network by the making a fraction of nodes ‘‘absent’’

from the network as we did for the preemptive strategy, we assign

a random fraction f of nodes to be altruists who cease to act as

sources in the event of a node failure, but continue conducting

flow between other source-sink pairs. Figure 10A shows the drop

in the probability of a cascade as a function of the fraction f of

altruistic nodes. Clearly, the drop is significant in comparison to

that achieved by the preemptive node removal strategy. We also

Figure 10. Increasing the resilience of the network by
introducing altruist nodes. (A) Probability that a cascade is triggered
for an altruist/preemptively removed fraction f . The orange squares
indicated the probability of cascade when no nodes (other than the
initial cascade-triggering node) are removed, but when the current per
source is reduced by 20% (upper square) or 80% (lower square)
immediately after the initial node removal. (B) The fractional size of the
surviving giant component G when a cascade is triggered, as a function
of the altruist/preemptively-removed node fraction. Also shown are the
results when the current per source is reduced by 20% (upper square)
or 80% (lower square) immediately after the initial node removal, which
coincide with the f ~0:2 and f ~0:8 results respectively for altruistic
node removal. (C) Similar to (B), but for the cases where a cascade is not
triggered. (D) The ratio of the effective throughput (defined in text) of
the surviving giant component and the throughput of the original
network as a function of the altruist node fraction. The red circle
corresponds to the case when there are no altruist nodes. Network
parameters for all these plots are: N~1500, SkT~6:0, and a~0:15 for
results shown in (A),(B) and (D).
doi:10.1371/journal.pone.0084563.g010
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show the results of a third strategy which involves all surviving

nodes reducing the net current they inject into the network (per

sink) to a fraction f of its original value. We show the results (in

red) for the two values of f ~0:2,0:4, and note that the probability

of a cascade is approximately the same as that obtained when only

a fraction f of nodes are fully altruistic (i.e. inject no current into

the network). Figures 10B and C show comparative plots of the

size of the surviving giant component obtained for each of these

strategies, conditioned on whether a cascade occurs or not. In both

cases, the altruistic strategy, as well as the overall current reduction

strategy, show a significant improvement over the preemptive

node removal strategy. Understandably, this improvement comes

at the cost of the overall throughput in the network. Figure 10D

shows the effective throughput in the surviving component wf

normalized by the initial throughput wi of the intact network, as a

function of the altruist fraction f . For a principled comparison of

the throughputs before and after the cascade, we define the

effective throughput of the surviving giant component as the

current per source on the intact network that would yield the same

total current as that flowing through the surviving giant

component after the cascade. Mathematically, when the number

of altruist nodes in the surviving component is n, this effective

throughput is written as:

Figure 11. Characteristics of the UCTE network. The network consists of N~1254 nodes with an average degree of SkT~2:89. (A) Scatter of
loads as a function of node degree k (black squares) and the average load (red squares) as a function of node degree k. (B) The load distribution on
the intact UCTE network. (C) The degree distribution of the UCTE network. (D) A visualization of the UCTE network with loads indicated using both
node size and color.
doi:10.1371/journal.pone.0084563.g011

Figure 12. Cascades on the UCTE network. (A) Cascades triggered by the removal of a single node where the node was chosen using three
different criteria i.e. randomly, highest load or highest degree. (B) Cascades triggered by the removal of a single edge where the edge was either
chosen randomly or was the one with the highest load. Data obtained for cascade triggered by the random removal of a single node (edge) were
averaged over 100 different scenarios.
doi:10.1371/journal.pone.0084563.g012
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wf ~
1

maxjflj=Cjg
N{n

N
ð7Þ

As seen in Fig. 10D, the ratio wf =wi decreases as the altruist

fraction is increased, thus indicating that the increased surviving

fraction comes at the expense of the throughput of the network.

4. Cascade model on an empirical spatial network: The
UCTE network

Thus far, our studies have been confined to a stylized model of a

spatial network, viz. the RGG. We now study the outcomes of the

same cascading failure model on the UCTE network, several

aspects of which, have been studied elsewhere [5,32,46]. The

network consists of N~1254 transmission stations, with an

average degree SkT~2:889, spanning 18 European countries in

2002. The network is disassortative with an assortativity coefficient

of {0:1, and with a higher average clustering coefficient than an

ER graph (0:127). Figure 11 shows several other properties of this

network. The load appears to be positively correlated with the

degree (Fig. 11A), while the degree and load distributions span a

relatively narrow range (Fig. 11B,C respectively), as observed also

for RGGs. It is worth noting however, that the variance of loads is

significant even for small degree values, which makes it difficult to

straightforwardly assess the load bearing responsibility of a node

purely from its degree.

Figures 12 A,B show the cascades triggered on the UCTE

network by the removal of a a single edge and a single node,

respectively. The non-monotonicity observed in G versus a for the

model spatial networks is also observed here, thus reinforcing the

non-self-averaging nature of spatially constrained networks. In the

case of node-removal triggered cascades, removal of the highest-

load node results in the worst overall damage, as was also the case

for RGGs.

The visualization panels presented in Fig. 13 provide some

intuition on the cause of the observed non-monotonicity in G as

the tolerance parameter is increased. Figure 13 A shows the

landscape of loads on the network before the initiation of a cascade

where the size of the node is directly proportional to the load on

the node. Figure 13 B shows, the state of the network with

tolerance parameter a~0:4 after a cascade initiated by the

removal of the highest load, has terminated. Figure 13 C shows a

similar picture for the case where the tolerance parameter is

higher, (a~0:45), but where the eventual damage is greater (i.e. G

is smaller than the value obtained for Fig. 13 B). In this last panel,

the network consists of several nodes, indicated in red, that had

been removed in the course of the cascade depicted in Fig. 13 B,

but are now intact as a consequence of the increased tolerance.

However, counter-intuitively, the survival of these nodes result in

wider load imbalances, resulting in a larger overall number of

failures and a smaller surviving giant component. Thus, to some

degree, the nodes shown in red, behave like fuses which if removed

in the course of a cascade, end up saving a larger part of the

network from failure. Dynamic visualizations of the progression of

the cascades resulting in the final states shown in Figs. 13B,C are

provided in Movies S1 and S2, respectively. A feature that

becomes apparent in these dynamic visualizations is the non-local

nature of the progression of the cascade. As pointed out in [4] such

non-local progression is commonly observed in real cascade

situations, and is a feature which can be reproduced by a more

realistic DC power flow model, but not by simpler epidemic or

percolation based models. Thus it is worth noting that the model

presented in this work, despite being simpler than the DC power

flow model used in [4], can nevertheless capture a distinctive

attribute of real cascade progression.

Next, we compare the two cascade mitigation strategies, viz.

preemptive node removal and assignment of altruistic nodes, for

cascades initiated by highest load removal on the UCTE network.

As Fig. 14 A and B show, the altruistic strategy generally results in

a larger surviving giant component after the cascade, than in the

case when preemptive node removal is employed. It is also worth

Figure 13. UCTE network snapshots before and after cascades.
(A) The intact network with node sizes in proportion to their respective
steady-state loads. (B) The network and the loads after a highest-load-
removal-triggered cascade has terminated, with the tolerance param-
eter a~0:40. (C) The network and the loads after a highest-load-
removal-triggered cascade has terminated, with the tolerance param-
eter a~0:45. The red nodes here indicate nodes that were removed in
the cascade leading to (B), but survived in the cascade leading to (C).
doi:10.1371/journal.pone.0084563.g013
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noting that non-monotonicities due to the lack of self-averaging in

the cascade process, manifest themselves in these plots as well.

We conclude with an investigation of whether, in the case of

multiple initial failures, the failures being spatially localized has

any effect on the severity of the cascade. Figure 15A shows for a

given value of the tolerance parameter a, the size of the surviving

giant component G as a function of the number of nodes removed,

for concentrated and random failures on an RGG. Random

failures are only marginally more destructive than concentrated

ones, which is understandable in light of how the different cascade

stages resulting from just a single node’s removal can cover a wide

spatial spread, as seen in Fig. 7. We arrive at a similar conclusion

for the case of concentrated and randomly located failures within

the UCTE network from the results shown in Fig. 15B. Dynamic

visualizations of the progression of spatially localized and

distributed cascades on the UCTE network for the same number

of initially removed nodes are provided in Movies S3 and S4,

respectively.

Discussion

In summary, we have attempted a thorough analysis of the

characteristics of cascading failures and strategies for their

mitigation on spatially constrained networks, including a model

of such networks viz. the random geometric graph, as well as a

real-world power transmission network. The key finding worth

emphasizing from these studies is the inherent lack of self-

averaging for cascade processes on spatial networks. In other

words, conclusions gleaned from aggregate statistics on an

ensemble of such networks, yield information of little value

pertaining to a single network instance. For example, in contrast to

the observation for an ensemble of RGGs, for a single network

instance, increasing the excess load bearing capacity does not

necessarily reduce the severity of the cascade in a monotonic

fashion. Thus a straightforward measure for cascade prevention

could yield counter-intuitive results. We demonstrate that

increasing the effective dimensionality of the system i.e. easing

the effect of the spatial constraints by introducing rewired long-

range links eliminates these non-intuitive features. A standard

cascade mitigation strategy, extensively studied in the past, of

preemptively removing a fraction of underperforming nodes does

not effectively reduce the severity of cascades on spatially

constrained networks, due to the fairly narrow initial range of

loads in spatial networks. Instead, the strategy of introducing a

fraction of altruistic nodes appears to be a more effective

alternative. This holds true both for the model networks as well

as for the empirical network. Finally, we also find that cascades

resulting from spatially concentrated node failures do not appear

to be significantly less destructive than ones that are distributed

over the network. Thus, our results paint a complex picture for

how failure cascades induced by load redistribution on spatial

networks carrying distributed flow propagate through the network.

In short, for spatial networks, details specific to a network instance

play a very important role in determining strategies to increase the

resilience of the network against cascading failures, and methods

based on aggregate observations from a network ensemble will

present substantial pitfalls.

Figure 14. Cascade mitigation on the UCTE network. Comparison between the preemptive and altruistic node removal strategies on the UCTE
network with tolerance parameter (A) a~0:2 and (B) a~0:3.
doi:10.1371/journal.pone.0084563.g014

Figure 15. Cascades triggered by concentrated versus randomly distributed removals. (A) Fractional surviving giant component size after
a cascade as a function of number of initial nodes removed in concentrated and random removals for RGGs with N~1500 and SkT~6. (B) Fractional
surviving giant component size after a cascade as a function of number of initial nodes removed in concentrated and random removals for the UCTE
network. Each data point is an average over more than 25 realizations.
doi:10.1371/journal.pone.0084563.g015
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Note: Data on the UCTE network [32] that we used in

this work was obtained from the website http://www.see.ed.ac.

uk/,jbialek/Europe_load_flow which is currently non-functional.

A processed version of the original data (the UCTE network

structure) can be obtained by emailing the corresponding

author (SS).

Supporting Information

Figure S1 Cascade realizations on a single RGG of size
N = 1300 where conductances on links are inversely
proportional to their lengths. The behavior of the surviving

giant component size G as a function of the tolerance parameter a
(three individual realizations are shown) is practically indistin-

guishable from that found in the case where conductances on all

links are identical, shown in Fig. 4A in the main text. All

remaining parameters (besides conductances) and simulation

details are identical to that in Fig. 4A.

(EPS)

Figure S2 Effect of rewiring links in an RGG with link-
length dependent conductances. As the rewiring probability

p is increased, the non-monotonicities in G as a function of

tolerance parameter a gradually disappear, similarly to the

case where link conductances are independent of their length

(see Fig. 5). Simulations were performed with N~1300 and

SkT~5.

(EPS)

Movie S1 Progression of the cascade initiated by the
removal of the node with the highest load on the UCTE
network (N = 1254) with tolerance parameter a = 0.45.
Node sizes are proportional to the load on them. The single

orange node at the beginning of the movie indicates the node with

the largest node which is removed to trigger a cascade. The

overloaded nodes in subsequent stages are shown in orange before

they are removed. The total number of nodes removed in the

cascade is 167, and the number of nodes in the surviving giant

component is 465.

(MP4)

Movie S2 Progression of the cascade initiated by the
removal of the node with the highest load on the UCTE
network with tolerance parameter a = 0.45. Although the

tolerance parameter is greater than in the case of Movie S1, a

greater number of nodes, 299, fail in the cascade, and the resulting

giant component is also smaller, with 315 nodes. The nodes shown

in gray indicate those nodes which failed in course of the cascade

occurring for a~0:40 (shown in Movie S1), but survived when a
was increased to 0:45. The survival of these nodes potentially plays

a role in making the cascade more severe. All other color and node

size conventions are identical to those in Movie S1.

(MP4)

Movie S3 Progression of a cascade initiated by a
spatially localized removal of 9 nodes. Color and node size

conventions are as explained in caption for Movie S1. The

tolerance parameter used here is a~0:15. The number of nodes

removed in the course of the cascade is 297, and the number of

nodes in the surviving giant component is 329.

(MP4)

Movie S4 Progression of a cascade initiated by distrib-
uted (random) removal of 9 nodes. Color and node size

conventions are as explained in caption for Movie S1. The

tolerance parameter used here is a~0:15. The number of nodes

removed in the course of the cascade is 297 (same as for

Movie S3), and the number of nodes in the surviving giant

component is 374.

(MP4)
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