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Abstract

Background: The HPTN 052 trial confirmed that antiretroviral therapy (ART) can nearly eliminate HIV transmission from
successfully treated HIV-infected individuals within couples. Here, we present the mathematical modeling used to inform
the design and monitoring of a new trial aiming to test whether widespread provision of ART is feasible and can
substantially reduce population-level HIV incidence.

Methods and Findings: The HPTN 071 (PopART) trial is a three-arm cluster-randomized trial of 21 large population clusters
in Zambia and South Africa, starting in 2013. A combination prevention package including home-based voluntary testing
and counseling, and ART for HIV positive individuals, will be delivered in arms A and B, with ART offered universally in arm A
and according to national guidelines in arm B. Arm C will be the control arm. The primary endpoint is the cumulative three-
year HIV incidence. We developed a mathematical model of heterosexual HIV transmission, informed by recent data on
HIV-1 natural history. We focused on realistically modeling the intervention package. Parameters were calibrated to data
previously collected in these communities and national surveillance data. We predict that, if targets are reached, HIV
incidence over three years will drop by .60% in arm A and .25% in arm B, relative to arm C. The considerable uncertainty
in the predicted reduction in incidence justifies the need for a trial. The main drivers of this uncertainty are possible
community-level behavioral changes associated with the intervention, uptake of testing and treatment, as well as ART
retention and adherence.

Conclusions: The HPTN 071 (PopART) trial intervention could reduce HIV population-level incidence by .60% over three
years. This intervention could serve as a paradigm for national or supra-national implementation. Our analysis highlights the
role mathematical modeling can play in trial development and monitoring, and more widely in evaluating the impact of
treatment as prevention.
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Introduction

In 2011, the HPTN 052 trial (HPTN: HIV Prevention Trials

Network) reported that early antiretroviral therapy (ART) reduces

HIV-1 transmission amongst serodiscordant couples by 96% [1].

This finding, obtained in a closely monitored individually-

randomized trial, corroborated the results of earlier studies [2,3]

and opened new and exciting perspectives for HIV prevention and

control: expanding HIV testing and treatment could reduce sexual

transmission of HIV close to zero [4]. A recent observational study

in South Africa demonstrated that in fact, the ART coverage in

the population immediately surrounding an individual was highly

predictive of his/her risk of HIV acquisition [5]. In this context,

several trials have been designed in order to test the feasibility of

large scale HIV combination prevention strategies including

universal HIV testing with immediate antiretroviral treatment

for HIV-positive persons, and to measure their impact at the

population level [6–10].

HPTN 071 (PopART, Population effects of Antiretroviral

Therapy to reduce HIV transmission) is the largest of these trials,

co-funded by the Office of the US Global AIDS Coordinator

(OGAC), the US National Institutes of Health, and the Bill and

Melinda Gates Foundation. It is planned to start in 2013, with

annual follow-up until 2016, and analyses and results reported in

2017 [11–14].

In brief, it is a cluster-randomized trial consisting of 21

communities in Zambia and South Africa, covering approximately

1.2 million people. Each community, delimited as the catchment

population of a health facility delivering ART, will be randomized

to one of three arms. Interventions in arms A and B will include

home-based voluntary testing (HBT) and counseling, male

circumcision, prevention of mother to child transmission

(PMTCT) services, treatment of sexually transmitted infections

(STIs), condom distribution, and ART for HIV positive individ-

uals. ART will be offered universally (regardless of CD4 count) in

arm A and according to national guidelines (currently CD4,350

cell count per mL of peripheral blood) in arm B. Arm C will serve

as a control arm with health system strengthening activities to

ensure that standard of care services (voluntary testing and

counseling, male circumcision, PMTCT, treatment of STIs, and

ART for HIV positive individuals) are delivered according to

national guidelines. The inclusion of three arms will allow separate

assessment of the benefit of enhanced home-based voluntary

testing, counseling and linkage to care, under national guidelines

for treatment, and the additional prevention benefit of treatment

regardless of CD4 count. The primary end-point will be

cumulative HIV incidence over 3 years, measured in cohorts of

2,500 adults randomly selected in each of the 21 communities

(total cohort size 52,500).

Mathematical modeling is an essential tool to assess the impact

of interventions on HIV epidemics [15] because of the indirect

benefit to members of the population not receiving the interven-

tion. Also, mathematical modeling allows analyzing in a single

framework the effect of multiple interventions, and thus takes into

account synergistic (or interfering) effects between components of a

combination prevention package. Therefore, over the last years,

mathematical models have been increasingly used to provide

insights in the potential long-term impacts of different interven-

tions [4,16,17] and to assist with the post-hoc interpretation of

trials and observational studies [18,19]. It has also become clear

that mathematical modeling could be used more extensively within

clinical trials, to assist trial design, to inform monitoring and

evaluation as a trial progresses, and finally to interpret and

extrapolate the trial results [8].

Mathematical modeling was a key part of designing the HPTN

071 (PopART) trial: we developed a deterministic compartmental

model of HIV transmission specifically conceived to assist the trial

design. We focused on realistically describing the intervention

package to be delivered during the trial. Model parameters were

calibrated based on data collected during previous studies in the

study communities as well as routine national surveillance data.

In the following, we describe this mathematical model and

present the predicted impact of the intervention package that will

be delivered during the trial. Most importantly, we present an

extensive uncertainty and sensitivity analysis to quantify the

influence of process variables (such as the uptake of testing) on the

relative reduction in population level cumulative incidence in the

intervention arms compared to the control arm. This analysis

pinpoints the key variables that drive the magnitude of the

reduction in incidence, and could therefore affect success or failure

of this intervention package. Monitoring those variables during the

trial will enhance evaluation of its progress, as will feeding values

back into the model to obtain revised interim predictions.

Materials and Methods

Model structure
The model was designed with the intention to be simple but

capable of representing different scenarios explored in trial design,

and to represent a relative consensus of existing approaches to

modelling the dynamics of generalised HIV epidemics. Its

structure was particularly inspired by the models of Granich et

al. [4], Hallett et al. [20], and Bezemer et al. [21,22]. The model

describes the generalised HIV epidemics in Zambia and South

Africa, the two countries where the HPTN 071 (PopART) trial will

take place.

The model is a deterministic compartmental model describing

heterosexual transmission of HIV in the population aged 15 and

over, specified by ordinary differential equations for the time-

evolution of the number of individuals in different states. Our

model is not age-structured and we therefore do not distinguish

between the intervention, which is universal, and the measurement

of incidence, which is in a cohort of adults aged 18 to 44. Our

choice of age group was motivated by the availability of national

prevalence estimates to which we calibrate our model.

A full description of the model structure, equations and

parameterization, is presented in the supporting information (see

in particular Figures S1 and S2 in File S1 and Tables S1, S2, S3

and S4 in File S1 for model structure and Tables S5, S6, S7, S8

and S9 in File S1 for definitions and values of model parameters).

Individuals are classified by sex (female/male), infection status

(susceptible/infected), and sexual risk propensity (high/medium/

low). The susceptible and infected stages are further stratified to

represent the clinical progression of HIV and the intervention

delivered in each arm of the trial. The model includes temporal

delays between different steps of the intervention (such as testing

and treatment). Susceptible males are classified as uncircumcised,

uncircumcised planning circumcision (following a negative HIV

test), circumcised in the wound healing period, and circumcised

(see Figure 1A). Infected individuals are classified as untreated,

untreated waiting for treatment (following a positive test), treated

but not virally suppressed, and treated and virally suppressed.

Infected individuals who are untreated are further classified in one

of five disease stages: acute/early HIV, followed by four stages

defined by the CD4 count (stage 1 corresponds to CD4$500 cells/

mL peripheral blood, stage 2 to 350#CD4,500, stage 3 to 200#

CD4,350, and stage 4 to CD4,200, see Figure 1B). Upon ART

initiation, infected individuals enter an ART category correspond-
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ing to the CD4 count level at which they initiated treatment, such

that persons initiating treatment at higher CD4 levels have a better

prognosis. A schematic description of the model for infected

individuals is presented in Figure 2A.

Modelling testing, treatment, and circumcision
We separately modelled a background level of HIV-related care

for adults in all arms that would be presumed to occur in the

absence of the trial activities, and an additional process, specific to

interventions implemented in arms A and B during the trial.

Background testing, treatment and circumcision
Background HIV testing was not modelled explicitly. Instead,

we modelled the rate at which individuals initiate ART,

encompassing both testing and successful linkage to care. We

assume that only individuals with CD4,350 could initiate

treatment. The rate at which they do so was modelled as a

smooth function gradually ramping up from 2004 onwards, with a

greater rate for individuals with CD4,200.

We assumed that, in all arms and both countries, a certain

proportion of males are circumcised prior to entry into the

modelled population at age 15. We assume these are fully

circumcised. We did not model any adult circumcision outside of

that offered as part of the intervention package in arms A and B.

Additional testing, treatment and circumcision in arms A
and B during the trial

During the trial, community HIV care providers teams (CHiPs)

will offer, in arms A and B, home-based testing in annual rounds

in all intervention communities. These intervention rounds are

scheduled to last 6 months: here we model these taking place from

1st July to 31st December, from 2013 to 2015. Both the schedule

and start date are subject to adjustment, with a likely 4 to 5-month

delay from this modelled schedule. These annual rounds of testing

were modelled by a constant number of tests offered each day by

CHiPs. Following testing by CHiPs (which, when offered, is only

accepted by a proportion of individuals), a fraction of men testing

negative will decide to get circumcised and a fraction of individuals

testing positive will decide to link to care (and start ART if

eligible). Those individuals will go through the ‘‘waiting’’ stages

(awaiting circumcision or awaiting treatment) before becoming

circumcised or initiating treatment. Those stages were modelled to

account for delays from the time that elapses between HIV testing

and presentation at the health facility for circumcision or

treatment initiation.

Treatment failure and drop-out
Individuals on ART were assumed to stop receiving treatment

(e.g. due to dropping out or treatment failure) at a rate of 10% per

year (an assumption varied in sensitivity analysis). They were then

assumed to go back to the ‘‘untreated’’ stage. They may then be

re-started on treatment at a later time at the same rate as

treatment-naı̈ve persons.

Clinical progression on and off treatment
Upon becoming infected, all persons first enter a period of acute

HIV infection lasting for a mean of 2.9 months, after which

infected persons may enter any of the CD4 cell count categories.

The proportion entering each category and the rate of progression

to the next lower CD4 count category were calibrated to recent

Figure 1. Model structure for susceptible men. A. Flow diagram of the model. Arrows depict the different flow rates between compartments.
Men can be circumcised during childhood (i.e., before the age of 15). If they are not, they can be circumcised following a negative HIV test. Upon
testing, some HIV negative men decide to get circumcised. They then enter a ‘‘waiting’’ stage, which encompasses the time from testing to them
actually visiting the clinic for circumcision. After circumcision, they go through a healing period, before being circumcised and healed. B. Relative
susceptibility and infectivity in the different stages, relative to an uncircumcised man. Relative susceptibility and infectivity of circumcised men in
healing period incorporate both biological increases in susceptibility and infectivity and reduction in sexual activity during the healing period (see
main text).
doi:10.1371/journal.pone.0084511.g001
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clinical cohort data from the large multinational CASCADE

collaboration [23] (see File S1). Compared to previous models,

which assumed all individuals start with a post-seroconversion

CD4 count $500 and progress through each CD4 stage, the new

model better captures heterogeneity between individuals observed

in the clinical seroconverter data.

Upon treatment initiation, following the approach of Granich et

al. [4], individuals enter a ‘treatment’ compartment mirroring the

CD4 stage from which they initiate treatment. They then progress

through stages of treatment half as fast as untreated patients. This

simple model allows capturing the improved prognosis for patients

initiating treatment at higher CD4 cell counts [24–28]. Sensitivity

analyses show that the short-term predicted epidemiological

impact is not strongly dependent on assumptions about the rate

of progression of individuals on treatment (see supplementary

material in File S1). However, a more mechanistic representation

of viral suppression and CD4 reconstitution [29] could be

important for capturing long-term predictions of epidemiological

impacts, costs, and clinical benefits. Interpretation of current

clinical data from generalised epidemics in sub-Saharan Africa has

proven difficult because of the confounding of mortality and loss to

follow up [30]; improving these estimates will be an important

feature of the analysis of trial outcomes in HPTN 071 (PopART),

albeit with a relatively short time horizon.

Contact patterns, relative susceptibility and relative
infectivity

We use a model of assortative heterosexual sexual mixing

between three sexual risk groups. Individuals in our model form

partnerships at different rates according to their risk group. We

assume that individuals in the low and middle risk groups have on

average one new partner every ten years and one partner every

Figure 2. Model structure for infected individuals. A. Flow diagram of the model. The model describes progression through different stages of
natural history and treatment. Arrows depict the different flow rates between compartments. Once infected, individuals enter an early/acute infection
stage and then progress to death through 4 stages of infection shown in b. At any stage after acute infection, individuals can get HIV tested,
following which a proportion of individuals will decide to seek care. Those individuals then enter the ‘‘treatment pending’’ stage, during which they
visit the clinic and get assessed towards ART eligibility. Once assessed, all those eligible initiate treatment. Once on treatment, individuals go through
a first phase during which viral load is not fully suppressed, before becoming successfully treated, that is, having a negligible viral load. Individuals on
ART can drop out of or fail treatment; they then go back to the pre-test stages. B. Flow diagram of the four stages of infection following acute
infection and leading to death. Those stages are defined by the level of CD4 in cells/mm3. Individuals can only move from a higher to a lower CD4
count. The rate of progressing through those stages is different for treated and untreated individuals (see File S1). C. Relative infectivity (on the log
scale) of the different stages, compared to an undiagnosed individual with CD4$350, not in acute infection. Individuals in acute infection and stage 4
(CD4,200) have an increased infectivity. Individuals on ART have a decreased infectivity.
doi:10.1371/journal.pone.0084511.g002
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year, respectively. The average number of partners per year for

individuals in the high risk group is calibrated to fit national HIV

prevalence estimates. We assume partnerships are made prefer-

entially within the same risk group, with a level of assortativity

which is calibrated by fitting the model to national HIV

prevalence estimates. We also assumed that 5% of partnerships

are formed with partners from outside the study community,

thereby allowing for ‘‘contamination’’ of the intervention com-

munities. We further assume that within a partnership, unpro-

tected sexual acts occur at an instantaneous rate which depends on

the risk groups of the two individuals: it is the same for all

partnerships between individuals of different risk groups, as well as

partnerships between two mid-risk individuals; it is twice as high

for partnerships between two high-risk individuals and twice as low

for partnerships between two low-risk individuals.

During the trial, we aim to collect data for better parameterisa-

tion of this component of the model.

We assumed that circumcision decreases male susceptibility by

60% [31–34]. We assume infectiousness is greater during acute/

early and late stage infection, and reduced for individuals on ART

(see Figure 1B, Figure 2C and Table S7 in File S1). Men in the

wound healing period following circumcision are assumed to have

decreased sexual activity, but an increased susceptibility and

infectiousness per sex act, in balance leading to an overall reduced

susceptibility and infectiousness during the same period than had

they not undergone circumcision [35,36]. We assume no

difference in infectiousness for circumcised and healed infected

males and uncircumcised infected males.

In a sensitivity analysis, we also investigate potential conse-

quences of reductions in unprotected sexual activity (modelled as

lower susceptibility and infectivity levels) for individuals in the

‘‘waiting’’ stages due to the HIV counselling and condom

distribution.

Model calibration
The non HIV-related death rate was calculated dynamically to

constrain the population size and the birth rate to match national

demographics data since 1978 (see File S1).

The HIV epidemic was calibrated to match HIV prevalence

estimates reported by UNAIDS [37] by varying the basic

transmission rate (l0, the rate at which an untreated infected

individual with CD4$350 not in acute infection transmits to a

partner, assuming they are both in the mid-risk group), the time of

seeding of the epidemic, the proportion of individuals in each risk

group, the rate of sexual contacts in the high risk group, and the

assortativity. The background rate of ART initiation was modelled

as a Hill function increasing from 2004 onwards to achieve the

ART coverage data reported during the ZAMSTAR trial [38,39].

Uncertainty and sensitivity analysis
Uncertainty and sensitivity analyses were conducted to assess

whether the predicted reduction in HIV incidence in the

intervention arms was strongly influenced by the parameter values

chosen to best fit the UNAIDS national prevalence estimates, and

to analyse the impact that the ‘‘process’’ parameters, such as the

uptake of circumcision during the intervention, would have on the

estimated reduction in HIV incidence.

Influence of parameters calibrated to prevalence curves
For each country, we used a Latin hypercube sampling scheme

[40] to simulate epidemics for range of values for the parameters

described in Table 1, and selected the 9 parameter sets (out of

9000) with best fits to the prevalence. For each of these, we then

ran an optimization routine, starting from this parameter set, to

obtain a neighbour parameter set with an improved fit to HIV

prevalence. Because we were using a local optimisation algorithm,

this did not converge on the global optimum. We compared the

predicted reduction in incidence under these 9 final parameter sets

to the original best-fit parameter combination.

Influence of process parameters
To explore the influence of process parameters that could

potentially be controlled during the intervention implementation,

we defined four scenarios ranging from best to worst case (most

optimistic, optimistic, central and most pessimistic), with corre-

sponding parameters shown in Table 1. For each country, we

generated, using a Latin hypercube sampling scheme [40], a set of

1000 parameters drawn uniformly within the range defined by the

worst and best cases, and examined the resulting variability in the

predicted 3-year cumulative HIV incidence in each arm. In order

to assess the main drivers of this variability, we used a linear model

exploring the relationship between the reduction in 3-year

cumulative HIV incidence in intervention arms and the process

parameters. The relative impact of each process parameter on the

reduction in incidence was assessed by examining the proportion

of the variance explained by each predictor (see File S1).

Results

The projected HIV prevalence and incidence for each country

and in each arm are shown in Figure 3, demonstrating a good fit to

the UNAIDS national prevalence estimates used for calibration.

The saw-tooth pattern in incidence in the intervention arms

projections reflects the six-monthly rounds of the intervention. In a

sensitivity analysis, we found that rounds of 6 months for the

CHiPs intervention would be preferable to rounds of 9 or 12

months, as they would lead to a greater reduction in HIV

incidence over 3 years (see supporting information, in particular

Figure S7 in File S1). The predicted relative reductions in HIV

incidence for both countries are shown in Table 2. Under the

central target, we estimated a reduction in 3-year cumulative

incidence of 61% (Zambia) and 62% (South Africa) in arm A and

25% (Zambia) and 26% (South Africa) in arm B respectively,

compared to standard of care (arm C), with an effect increasing

from one year to the next.

These results were based on parameter values that yielded HIV

epidemics most closely matching UNAIDS prevalence estimates.

Exploring a variety of parameter sets which fitted those relatively

well, we found that very different combinations of parameter

values relating to the contact structure in the population could

match the prevalence data (see Figures S3 to S5 in File S1). This

suggests that these data alone are not very informative about the

structure of contacts between the three risk groups, or the

characteristics of those groups.

Despite those differences, we found that the predicted reduction

in HIV incidence over three years was relatively stable regardless

of the parameter set chosen (see Figure S6 in File S1).

However, the reduction in 3-year cumulative incidence was

highly dependent on the value of process parameters such as the

uptake of circumcision or testing, as illustrated in Figure 4. We

found a very strong linear dependence of the relative reduction in

3-year cumulative HIV incidence on process parameters (adjusted

R-squared .97% in both arms and both countries). The

coefficients of the regression were strikingly similar between

countries, although interestingly, a stronger influence of param-

eters related to circumcision was found in Zambia, where we

assumed only 13% of men are circumcised during adolescence,

than in South Africa, where we assumed 76% of men are

HPTN 071 (PopART) Trial: Mathematical Model
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circumcised during adolescence, as measured in ZAMSTAR

[38,39] (see Table 1).

Unsurprisingly, the major driver of the variability in the

reduction in incidence was the magnitude of community-level

changes in sexual risk behavior in response to the intervention

activities (ibc), especially in arm B, where over 80% of the variance

in the outcome is explained by ibc. We emphasize that in the

model, behavior change refers to an overall response in the

community, not to specific responses in individuals following

ART. While this behavior is an overall modifier that affects all

individuals, it will be balanced by counseling and treatment in

those aware of their status. Therefore the principal manner in

which this community change affects incidence is through changed

risk behaviors in individuals who do not know their serostatus. In

particular, changes towards more risky behaviors could jeopardize

the success of the trial and lead to an increase in incidence in

intervention arms compared to the control arm. On the other

hand, protective changes in sexual behavior resulting from the trial

activities could increase the reduction in incidence beyond that

directly associated with the home-based testing, active linkage to

care, ART and circumcision interventions. However, based on

previous experience, we do not expect major changes in risk

behavior during this trial, and our baseline scenarios reflect this

assumption [41–43].

The second driver of the variability in the reduction in

cumulative incidence was the relative infectivity of individuals

under ART, which accounted for 34% (Zambia) and 35% (South

Africa) of the variance in cumulative incidence in arm A, and

approximately 8% in arm B in both countries. In fact, in arm A,

the relative infectivity of individuals on ART was as important as

the community-level changes in sexual risk behavior in response to

the intervention activities, which accounted for 33% (Zambia) and

34% (South Africa) of the variability in cumulative incidence.

Other important drivers included the uptake of testing and

ART, the proportion of sex acts with partners from outside of the

community and the rate of drop-out from ART. The uptake of

circumcision was found to have little influence on the outcome in

South Africa, but a larger influence in Zambia, especially in arm

B.

Although the intervention is planned to run for a 3-year

duration, we looked at the impact of an intervention extended to a

Figure 3. Model fit and projections under central target scenario for Zambia (top row) and South Africa (bottom row). Left panels
show HIV prevalence and right panels show annualized HIV incidence over time. The red, blue and black lines correspond to arms A, B and C
respectively. The grey dots and error bars are the UNAIDS HIV prevalence estimates [37].
doi:10.1371/journal.pone.0084511.g003

Table 2. Projected impact of the intervention on HIV
incidence in Arms A and B compared with Arm C for central
and optimistic target scenarios (specific parameter values for
each scenario defined in Table S10 in File S1).

Country Relative reduction in…

Central
target

Optimistic
target

Arm A Arm B Arm A Arm B

Zambia 3-year cumulative incidence 61% 25% 63% 27%

2-year cumulative incidence 58% 24% 61% 25%

First year incidence 51% 20% 54% 21%

Second year incidence 65% 27% 67% 28%

Third year incidence 67% 29% 68% 30%

South Africa 3-year cumulative incidence 62% 26% 64% 27%

2-year cumulative incidence 59% 25% 61% 26%

First year incidence 52% 22% 55% 23%

Second year incidence 65% 28% 67% 29%

Third year incidence 68% 29% 69% 30%

doi:10.1371/journal.pone.0084511.t002
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10-year horizon under the central target. We found a reduction in

10-year cumulative incidence of 63% and 29% in arms A and B

respectively in Zambia, and 64% and 29% in South Africa,

compared to standard of care (arm C). The relative reduction in

incidence for year 10 only would be 61% and 30% for arms A and

B respectively in Zambia, and 64% and 31% in South Africa.

Discussion

We developed a deterministic compartmental model to predict

the potential impact of the intervention activities that will be

undertaken in the HPTN 071 (PopART) trial, designed to explore

the potential population effect of universal home-based testing (in

arm B) and universal testing and treating (in arm A) on HIV

incidence in large communities in Zambia and South Africa. Our

pre-trial modeling analysis predicts that if intervention targets are

reached, HIV incidence will decrease dramatically in both

intervention arms, with a 3-year cumulative reduction of 61 to

62% in arm A and 25 to 26% in arm B, relative to standard of care

(arm C), in both countries. Our model predicts that the reduction

in cumulative HIV incidence associated with home-based HIV

testing (.25% over 3 years in arm B) will be much greater than

that effected by community-based HIV testing in a recent trial in

sub-Saharan Africa and Thailand (14% over 3 years, not

statistically significant) [44].

In addition to projecting the overall impact of the complex

intervention package for the purposes of designing and ensuring

adequate power in the trial, understanding, in this pre-trial phase,

the modifiable factors affecting the reduction in incidence is

crucial to prioritize allocation of human and financial resources to

areas where the success of the intervention could be threatened.

We showed that the reduction in 3-year cumulative incidence in

the intervention arms compared to the control arm is almost

linearly determined by a handful of process parameters. This

linear dependency suggests that monitoring a few parameters

during the course of the HPTN 071 (PopART), and other similar

trials, should be enough to assess its progress in real time and to

increase targeted efforts if needed.

Unsurprisingly, we found that important threats to the trial

success would be increases in risky sexual behaviors at the

population level in response to the trial activities and secondarily

the uptake of testing and ART as well as non-adherence to

treatment. We hypothesize that continued counseling, facilitated

by the annual visits of the CHiP teams in all households will be

important to prevent increased risk behaviors and promote

adherence.

The uptake of circumcision appeared to be a relatively

important factor in determining changes in incidence in Zambia,

where the current circumcision levels are low, but less so in the

South African trial sites, located in the Western Cape region where

circumcision is more common.

We found that once uptake of the intervention and adherence

are ensured, minimizing delays in linkage to care would favor the

trial success, but might not be as crucial as could have been

anticipated, if those delays do not greatly exceed those we have

explored here.

Importantly, 10-year model projections suggested that in the

long term, prolonged interventions similar to those proposed in

arms A and B would allow to maintain HIV incidence at lower

levels, but not achieve elimination. This result is different to that of

Granich et al. [4] who found that annual incidence could be

reduced below 1 per thousand per year within only a few years.

However, that model made much more optimistic assumptions

about the reduction in infectiousness for persons on ART (99%

versus 90% in our central target scenario) as well as uptake of

universal testing and treatment (92% of untreated persons per year

versus 70% in our central target scenario), which we showed were

important determinants of the reduction in HIV incidence. Our

model predictions had previously been compared to predictions of

eleven other models, in a study designed to assess the influence of

assumptions regarding HIV epidemiology on the predicted impact

of ART on HIV incidence [16]. Although long-term predictions

Figure 4. Uncertainty on the trial outcome in Zambia (top panels) and South Africa (bottom panels). The red and blue histograms show
the relative reduction in 3-year cumulative incidence in arms A and B respectively when parameters vary within ranges shown in Table 1. The left
panels show results obtained when all parameters are varied, and the right panels when assuming no population-level behavioural changes
associated with the intervention.
doi:10.1371/journal.pone.0084511.g004
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varied substantially across models, our model was generally

consistent with others, and rather conservative with regards to

the long-term reductions in incidence due to ART. Epidemiologic

and service uptake data collected during the trial, in conjunction

with mathematical modelling, should improve the accuracy and

precision of future model projections and allow re-evaluation of

the effort required to achieve HIV elimination.

In the uncertainty analysis, we found that the relative reduction

in incidence over the three years of the trial was largely insensitive

to input parameters (such as structure of the sexual mixing matrix),

despite great uncertainty on some of these parameters. However,

such uncertainty can affect the long term projections of

interventions, as illustrated by the variability in the predicted

reduction in cumulative 10-year incidence in Arm A in South

Africa (see Figure S6 in File S1) when assuming that the

intervention were extended to a 10-year horizon. Similarly,

improving the mechanistic representation of viral suppression,

CD4 cell dynamics, and survival on ART, would probably affect

the long-term projections, although unlikely to change the short-

term ones. Data collected during the trial, in particular through

the questionnaires administered in the population cohort and in

planned case-control studies, will help quantify some of those

parameters directly, notably the parameters describing the

structure of contacts between and within risk groups. The prospect

of combining these granular survey and biomarker data with novel

phylogenetic methods for associating clusters of transmissions

provides a unique opportunity to answer long-standing epidemi-

ological questions, such as the amount of transmission occurring

during primary HIV infection [45], patterns of sexual mixing, the

geographic patterns of infection [46,47] or the importance of core

groups of highly transmissible or particularly at-risk individuals.

This will be crucial when trying to generalize the trial results to

wider spatial and temporal scales.

Indeed, the HPTN 071 (PopART) trial will be performed at an

unusually large scale, with approximately 1.2 million individuals

across all clusters and trial arms [11,14]. Therefore this

intervention could serve as a paradigm for routine implementation

of universal testing and treatment on a provincial or even national

scale. The economic analysis of HPTN 071 will provide guidance

on whether routine implementation is a valuable investment in the

health of populations, and is therefore an integral part of the trial.

It will help policymakers assess the costs and benefits of universal

testing and treatment, in comparison to alternative strategies. In a

collaborative effort to estimate the cost-effectiveness of earlier

ART eligibility and expanded access to ART in low- and middle-

income settings, both the population-level health-benefits and

particularly the implementation costs of earlier ART eligibility and

achieving high levels of access to early ART were identified as key

uncertainties and sources for caution in policy setting; the HPTN

071 trial is ideally placed to answer these questions. Many

expected benefits of HPTN 071, including saved future healthcare

costs due to secondary infections averted, will occur after the trial.

It is therefore crucial to integrate the projected outcomes from the

epidemiological model into an economic model, with the objective

of calculating the cost-effectiveness of HPTN 071 over different

time horizons.

The model used in this analysis relies on simplified represen-

tations of the complex dynamics of HIV infection and the

determinants of the spread of HIV. Data collected during the trial

will allow assessing the extent to which simplifications we have

made, such as omitting age structure, considering only heterosex-

ual sex, disregarding the nature of sex, assuming similar

distribution of men and women amongst risk groups, or assuming

independence between risk group and propensity to have sexual

contacts outside of the community, are reasonable. The model also

does not include selection and transmission of drug resistant strains

of virus. A more detailed model, informed by those data, will be

developed during the trial and used to help interpreting the trial

results. This future model will also be able to account for how

potential changes in the national treatment guidelines in Zambia

and South Africa and other secular changes in the epidemic and

the response to the epidemic affect the outcomes of the trial and

the course of these severe HIV epidemics.

Our analysis highlights the role that mathematical modeling can

play in trial development and monitoring, and more widely in

evaluating the impact of treatment as prevention. In the case of the

HPTN 071 (PopART) trial, we showed that a reduction in 3-year

cumulative incidence by over 60% could be expected, but would

require careful real-time monitoring of the intervention uptake to

ensure adequate program coverage.

Supporting Information

File S1 Combined supporting information. This file

contains a detailed description of the model structure and

parameterization as well as sensitivity analyses.

(PDF)
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