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Abstract

Asymmetry in distributions of potential outcomes (i.e. skewness), and whether those potential outcomes reflect gains or
losses (i.e. their valence), both exert a powerful influence on value-based choice. How valence affects the impact of
skewness on choice is unknown. Here by orthogonally manipulating the skewness and valence of economic stimuli we
show that both have an influence on choice. We show that the influence of skewness on choice is independent of valence,
both across and within subjects. fMRI data revealed skew-related activity in bilateral anterior insula and dorsomedial
prefrontal cortex, which shows no interaction with valence. Further, the expression of skew-related activity depends on an
individual’s preference for skewness, and this was again independent of valence-related preference. Our findings highlight
the importance of skewness in choice and show that its influence, both behaviourally and neurally, is distinct from an
influence of valence.
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Introduction

Value-based decision-making is influenced by risk in potential

outcomes, and also by whether those potential outcomes reflect

gains or losses (i.e. their valence). Recent evidence suggests that

risk and valence exert independent influences on choice [1].

However, in those paradigms risk was defined as the variance in

potential outcomes, ignoring that a crucial aspect is asymmetry in

probabilities of possible outcomes. Such skewness powerfully

influences choice in foraging animals [2] and in humans

performing laboratory based economic tasks [3]. Indeed, attitudes

to negative skew (i.e. a small chance of a particularly bad outcome)

are important in performance measurement of financial invest-

ment [4], and attitudes to positive skew (i.e. a small chance of a

particularly good outcome) help explain gambling [5]. How the

impact of skewness on choice is affected by outcome valence is

unknown, and here we examine this relationship behaviourally

and neurally.

A behavioural influence of skewness has been highlighted in

recent work using options involving only gain amounts [3,6].

Neurally, in both studies, and also when passively viewing skewed

mixed gambles containing both gains and losses [7], skewness in

value-based stimuli was reflected in activity within anterior insula,

a region implicated in processing of uncertainty [8–10]. In

contrast, there is a dearth of behavioural data on the relationship

between skewness and valence, although the attractiveness ratings

of a skewed gamble with gains can be markedly reduced by adding

a loss outcome [11]. As far as we are aware studies of neural

encoding of skewness have relied on either gains or mixed gambles

[3,6,7].

We orthogonally manipulated skewness, variance and valence of

value-based stimuli during economic choice. Expected Value (EV)

was kept constant within these choices. Behaviourally, we tested

whether skewness influenced choice, and also asked how this

influence of skewness may relate to the influences of both variance

and valence. Using fMRI, we asked how the influence of skewness

was reflected neurally, and how this may differ according to

valence, with a particular focus on anterior insula.

Methods

Participants and ethics statement
All participants provided written, informed consent. The

University College London (UCL) Ethics Committee approved

the study. All participants were healthy and were recruited using

institutional mailing lists. 27 right-handed participants took part

(age mean 24 years, range 18–33; 13 male; one further participant

excluded who used a fixed strategy of choosing the sure option).

No participants had taken part our previous studies with related

paradigms [1,3].

Task
In this ‘‘accept/reject’’ task (Fig. 1) there were 200 trials

presented in a random order, of which 100 were ‘‘gain trials’’ (all

possible outcomes $0) and 100 were ‘‘loss trials’’ (all outcomes

#0). In each trial participants chose to accept or reject a lottery

(four possible outcomes) compared to a sure option (£12 in ‘‘gain

trials’’; £-12 in loss trials). Each trial began with a fixation cross

presented for 1-2secs (mean 1.5secs), followed by viewing the
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options for 4020msec; and finally a black square appeared to

indicate participants had 1500msec to input their choice by button

press (the black square turned white when they chose). If

participants did not respond, they received £0 on a ‘‘gain trial’’

and the maximum loss possible on a ‘‘loss trial’’ (£-24).

Our decision-variables of interest were skewness, variance and

valence. We controlled for the Expected Value (EV) of the lottery,

which was always equal to the sure option (i.e. £12 or £-12). We

manipulated the two aspects of risk by using a set of 100 lotteries

(four possible outcomes, all $0; Fig. 1b) in which we paramet-

rically and orthogonally manipulated the degree of skewness (10

levels, with half positively skewed and half negatively skewed) and

variance (10 levels). We presented each lottery in this set once to

give 100 ‘‘gain trials’’. To manipulate valence, we multiplied all

amounts by –1 to give 100 ‘‘loss trials’’ (i.e. all outcomes #0, and a

sure option of £-12). This created a set of ‘‘gain trials’’ and a set of

‘‘loss trials’’ that were matched in their parametric modulations of

skewness and variance.

Participants began the day with an endowment of £24. After

the experiment, one ‘‘gain trial’’ and one ‘‘loss trial’’ were picked

at random and their outcomes were added to the endowment to

determine payment. Participants could receive between £0–48.

Stimulus sets
We generated the set of 100 ‘‘gain trials’’ in two stages. First, we

generated a list of every possible trial within the following

constraints: lottery EV was £12 (i.e. equal to the sure option); each

lottery had four outcomes (i.e. four pie chart segments); outcomes

were between £0–£24; the smallest allowable probability was 0.1;

and the smallest allowable probability increment was 0.05.

Second, from within this very large number of potential trials,

we selected our set of 100 trials that were the closest match to our

desired 10 levels of skewness and 10 levels variance. Variance

ranged from 7 to 124, skewness ranged from –317 to 317 (absolute

skewness ranged from 30 to 317).

Calculation of EV, Variance and Skewness. For a given

lottery with N potential outcomes (m1, m2,… mN), with probabil-

ities p = p1, p2, …pN, we define the EV, variance (Var) and

skewness (Skw) of the outcome distribution as follows:

EV~
XN

n~1

mnpn ð1Þ

Var~
XN

n~1

mn{EVð Þ2pn ð2Þ

Skw~
XN

n~1

mn{EVð Þ3pn ð3Þ

Statistical analysis
In our behavioural analyses, statistical tests were carried out

using paired or independent-samples t-tests, or mixed analyses of

variance (ANOVA) in SPSS; reported p-values are two-tailed.

Reaction time analysis
We normalised each individual’s RTs by taking the natural

logarithm, mean-correcting and dividing by the standard devia-

tion. However, we note that our findings were the same

irrespective of having used ‘‘raw’’ or normalised RTs.

Behavioural modelling
We modelled choice using utility functions described previously

[1]. Additionally we assessed utility functions explicitly including

an influence of skewness on choice. We fit data on an individual

participant basis, modelling behaviour by estimating model

parameters using maximum likelihood analysis implemented in

Matlab. We compared models with different utility functions using

Group Bayes Factors, where the Bayesian Information Criterion

(BIC) penalisies model complexity [12]. In all our models, on each

trial the subjective values, or utilities (U), of both options were

computed using one of the utility functions below. These values

were then compared to generate a trial-by-trial probability of each

choice, using a softmax function with a free parameter b
(constrained between 0 and 20) that allows for noise in action

selection.

The behavioural modelling enables us to confirm that our

manipulations of skew, variance and valence consistently influ-

enced choice. Therefore, to illustrate the influences of variance

and valence on choice we used the same two models we used

previously to illustrate these effects with unskewed lotteries [1].

First, to test for an influence of variance we used a Mean-Variance

model (U = EV + Var*r), in which r is a free parameter (a risk-

neutral individual has r = 0, risk-averse r,0, and risk-seeking

r.0). Second, to test an additional influence of valence we used

the winning Mean-Variance-Valence (MVV) model from our

previous datasets with unskewed lotteries [1], with a rgain

parameter reflecting risk preference in gain trials and a rloss

Figure 1. Experimental design. Our design orthogonally manipu-
lates variance, skewness and valence in a modification of our ‘‘accept/
reject’’ task (previously in this task we parametrically manipulated EV
and lotteries were unskewed). a) In each ‘‘gain trial’’ individuals chose to
accept a lottery (4 possible outcomes, all $0; EV £12) or reject and so
receive £12 for certain. b) We created a set of 100 ‘‘gain trials’’ that
parametrically and orthogonally manipulated the degree of skewness
(10 levels) and variance (10 levels) of the lotteries. In this set of gain
trials half had positive skew (e.g. panel c), and half had negative skew
(e.g. panel d) (the two example lotteries in panels c and d are
highlighted in panel b by circles). e) Multiplying all ‘‘gain trial’’ amounts
by –1 gave 100 ‘‘loss trials’’ with identical parametric manipulations.
Panel f shows the example lottery in panel c when it is a loss trial, and
panel g shows the example lottery in panel d when it is a loss trial. All
200 trials were presented in random order.
doi:10.1371/journal.pone.0083454.g001

Dissociating Influences of Skewness and Valence
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parameter reflecting risk preference in loss trials. Third, in the

current study we added the influence of skewness in an MVV-

skewness model (U = Mean + r*Variance + y*skew) with the free

parameter y reflecting skew-preference in addition to those for

rgain, and rloss. Note that in this study lottery EV does not

contribute as it always equals the sure option. We also

implemented Expected Utility, Prospect Theory and Cumulative

Prospect Theory models, as previously detailed in [1].

fMRI data acquisition
This was identical to that previously reported in [1]. Using a 3T

Allegra scanner (Siemens) each participant underwent one

functional run (515 volumes), acquired using a gradient-echo

EPI sequence (46 transverse slices; TR, 2.76 secs; TE, 30 ms;

363 mm in-plane resolution; 2 mm slice thickness; 1 mm gap

between adjacent slices; z-shim –0.4 mT/m; positive phase

encoding direction; slice tilt –30 degrees) optimised for OFC and

amygdala. We acquired a T1-weighted anatomical scan and local

field maps.

fMRI data analysis
Functional data were analysed using standard procedures in

SPM8 (Statistical Parametric Mapping; www.fil.ion.ucl.ac.uk/

spm). fMRI timeseries were regressed onto a composite general

linear model (GLM). The GLM contained boxcars for the length

of time the lottery was displayed (5.5 seconds) to examine the

decision-making process. Delta functions were also included for

button presses, lottery onset to account for visual stimulus

presentation, and for trials in which subjects failed to respond.

We modelled our neuroimaging data using a 2 valence (gain, loss)

by 2 choice (risky, sure) design, as in [1]. Additional parametric

modulators were included, with the height of the boxcar

modulated by the skewness and variance of the lottery on each

trial. Additional GLMs using modifications of this design (e.g.

alternative parametric regressors) are described in the Results. The

delta functions and boxcars were convolved with the canonical

haemodynamic response function.

We report all activations at P,0.05 that survive whole brain

correction using family-wise error at the cluster level [13], unless

otherwise stated. Clusters were defined using a threshold of P

,0.005. For presentation, images are displayed at P,0.001

uncorrected. Unless otherwise stated, small volume correction

(P,0.05) was for a sphere of 8 mm radius around stated

coordinates. Conjunction analyses were performed using the

SPM 8 conjunction null function [14].

Results

Choice behaviour is influenced by skew, variance and
valence

The influence of risk on choice is indexed by the proportion of

riskier choices made overall (PropRisk; risk-neutral = 0.5; risk-

averse,0.5; risk-seeking.0.5). Individuals were risk-averse overall

(PropRiskall 0.456s.d. 0.09; one-sample t-test versus risk-neutral,

t(26) = –3.2, P = 0.004; Fig. 2a). The impact of valence on choice is

given by the difference in riskier choices in each domain

(ImpValence = PropRiskgain-PropRiskloss). Individuals were sensitive

to valence (ImpValence 0.126s.d. 0.17; one-sample t-test versus no

effect of valence, t(26) = 3.6, P = 0.001), gambling more for gains

(PropRiskgain 0.516s.d.0.12) than loss outcomes (PropRiskloss

0.396s.d.0.12; t(26) = 3.6, P = 0.001). These data for risk and

valence replicate previous findings in a similar paradigm, where

instead we manipulated EV and variance but controlled for skew

[1].

Skewness also influenced choice (Fig. 2b). Half the lotteries were

positively skewed and half negatively skewed enabling us to assess

the impact of skewness on choice (ImpSkew = PropRisknegSkew –

PropRiskposSkew). Individuals were sensitive to skewness (ImpSkew

0.326s.d.0.20; one-sample t-test versus no effect of skew, t(26) = 8.2,

P, 161026), and individuals chose the risky option more often

when negatively skewed (PropRisknegSkew 0.616s.d. 0.12) compared

to positively skewed (PropRiskposSkew 0.296s.d. 0.14; t(26) = 8.2,

P,161026; Fig. 2b). This is the same direction of effect as in a

similar paradigm manipulating skewness only with gains (Sym-

monds et al., 2011). Strikingly, this influence of skewness

was identical regardless of whether outcomes reflected gains

(PropRiskGainNegSkew 0.676s.d. 0.17; PropRiskGainPosSkew 0.346s.d.

0.16; t(26) = 7.3, P,161026); or losses (PropRiskLossNegSkew 0.546s.d.

0.14; PropRiskLossPosSkew 0.236s.d. 0.17; t(26) = 7.8, P,161026; Fig.

2b), with no interaction seen between the effect of skewness and

valence (see ANOVA below).

For variance there was no simple categorical division between

trial types (e.g. comparable to gain v. loss, or positive v. negative

skew). However, for illustration we split trials into the half with the

higher and the half with the lower variance and then assessed its

impact on choice (ImpVariance = PropRisklowVar – PropRiskhighVar).

Variance influenced choice (ImpVariance 0.056s.d.0.11; one-

sample t-test versus no effect of variance, t(26) = 2.5, P = 0.018)

and subjects made more risky choices when the variance was low

(PropRiskLowVar 0.476s.d. 0.09), than when it was high (PropRis-

kHighVar 0.426s.d. 0.11; t(26) = 2.5, P = 0.018; Fig. 2b). There was

no interaction with valence (see ANOVA below) but was an

interaction with skewness in both gains and losses such that

variance influenced choice with negatively but not positively

skewed gambles (Fig. 2b).

Summarising these findings across subjects, a 2 valence (gains,

losses)62 skew (positive, negative)62 variance (high, low) ANOVA

(Fig. 2b) revealed significant main effects of skew (F(1,26) = 67,

P = 161028), valence (F(1,26) = 13, P = 0.001), variance (F(1,26) = 6,

P = 0.02) and no interaction except for that between skewness and

variance described above (F(1,26) = 7, P = 0.01).

Individuals’ skew preferences were independent of those
for valence or variance

We next examined inter-individual differences, asking if an

individual’s sensitivity to one decision variable predicted their

sensitivity to another. The influence of skewness on an individual’s

choices (ImpSkew) did not predict the influence of valence

(ImpValence v ImpSkew: r = 0.24, P = 0.2; Fig. 3) nor variance

(ImpVariance v. ImpSkew: r = –0.17, P = 0.4) nor the proportion of

risky choices they made overall (PropRiskall v. ImpSkew: r = –0.17,

P = 0.4).

The proportion of risky choices an individual made overall

(PropRiskall) did not predict the influence of valence (PropRiskall v.

ImpValence: r = –0.02, P = 0.9) nor variance (PropRiskall v. ImpVar-

iance: r = –0.25, P = 0.2). However, we noted a significant

correlation between individuals’ preferences for variance and

valence (ImpVariance v. ImpValence: r = –0.45, P = 0.02; i.e. more

gambling for gains than losses was associated with more gambling

for higher than lower variance options).

Behavioural modelling confirmed that skew, variance and
valence influenced choice

The purpose of the behavioural modelling was to confirm that

our manipulations of skew, variance and valence consistently

influenced choice, as shown by comparing our ‘‘summary statistic’’

models. To illustrate the influences of variance and valence on

Dissociating Influences of Skewness and Valence
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choice we used the same two models used previously to illustrate

effects with unskewed lotteries [1]. As before, the influence of

variance was captured by a Mean-Variance model that correctly

predicted 59%6s.d.7% of choices (summed BIC = 7094). The fit

of the model was improved by adding valence, shown in the

winning Mean-Variance-Valence (MVV) model in our previous

datasets with unskewed lotteries [1] (BIC = 7003). In turn, that

model was improved by also accounting for skew in our MVV-

Skew model (MVVS BIC = 6102). Notably, this MVVS model

also outperformed more standard Expected Utility, simple

Prospect Theory and more complex Cumulative Prospect Theory

models (with the reference point as zero or as a free parameter),

and a modified MVVS model with separate skew parameters for

positive and negative skew. In absolute terms the MVVS model

correctly predicted 73%6s.d.7% of choices.

Reaction times
Reaction times (RTs) also showed influences of skew, variance

and valence (Fig. 4). Further, these data were consistent with each

acting as appetitive or aversive stimulus features, where it is known

that individuals are slower to approach aversive stimuli and faster

to approach appetitive stimuli [15]. We have further examined

and discussed such RT effects previously [1]. Regarding valence,

individuals were slower to approach (choose) options entailing loss

compared to gains (gains RT 5946s.d.90msec; losses 643694;

t(26) = –3.8, P = 0.001).

Regarding risk, this can be aversive, neutral or appetitive

depending on an individual’s risk preference. We found that

individuals’ risk preference with gains (PropRiskgain) strongly

predicted RT differences when approaching (choosing) the riskier

relative to the sure option (i.e. RTriskier-RTsurer) with gains (r = –

0.58, P = 0.001); and risk preference with losses (PropRiskloss)

strongly predicted the RT difference with losses (r = –0.48,

P = 0.01). Furthermore, the pattern was exactly as predicted

where risk-averse individuals were slower to approach risk; risk-

neutral showed no RT difference; and risk-seeking subjects were

faster to approach risk.

Figure 2. Dissociable influences of skew and valence on choice across subjects. A simple metric of risk preference as the proportion of
riskier choices (PropRisk; risk-averse,0.5; risk-neutral = 0.5; risk-seeking.0.5). a) Individuals were risk averse overall (i.e. PropRiskall ,0.5). Valence also
influenced choice, with more gambling for gains than losses (ImpValence = PropRiskgain-PropRiskloss). b) Choice was influenced by skew, with more
gambling for negatively than positively skewed gambles. Variance only affected choice within negatively skewed gambles, such that individuals
preferred low variance compared to high variance options. Error bars show s.e.m., * P = 0.04, **P = 0.001, *** P = 561025.
doi:10.1371/journal.pone.0083454.g002

Figure 3. Individuals’ preferences for skew were independent
of those for other influences. The impact of skew on an individual’s
choices (ImpSkew) did not predict the effects of: a) risk overall (i.e.,
proportion of risky choices, PropRiskall); b) the impact of valence
(ImpValence); c) or the impact of variance (ImpVariance) (all correlations
p . 0.2).
doi:10.1371/journal.pone.0083454.g003

Figure 4. Reaction times. a) Individuals were slower to choose
options entailing losses compared to gains. b) Inter-individual
differences in preference for negatively or positively skewed gambles
predicted their reaction time effects. Risk preference with negatively
skewed gambles predicted the RT bias when approaching the riskier
relative to the surer option (RTriskier-RTsurer) with negatively skewed
gambles; and the same was seen with positively skewed gambles. The
same effects are observed when using both raw and normalised RT data
(normalised shown here). Error bars indicate s.e.m.. *** P = 661024.
doi:10.1371/journal.pone.0083454.g004

Dissociating Influences of Skewness and Valence
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Both aspects of risk (skewness and variance) showed the same

pattern. Individuals’ risk preference with negatively skewed

gambles (PropRisknegSkew) strongly predicted the RT difference when

approaching (choosing) the riskier relative to the surer option

(RTriskier-RTsurer) with negatively skewed gambles (r = –0.52,

P = 0.005); and risk preference with positively skewed gambles

(PropRiskposSkew) strongly predicted the RT difference with positively

skewed gambles (r = –0.74, P = 961026; Fig. 4). Individuals’ risk

preference with high variance gambles (PropRiskhighVar) predicted

the RT difference with high variance gambles (r = –0.58,

P = 0.001); and risk preference with low variance gambles

(PropRisklowVar) strongly predicted the RT difference with positively

low variance gambles (r = –0.38, P = 0.048).

Neural data
We first tested for a representation of skewness in the stimuli.

Initially, we used the same 2 valence (gain, loss) by 2 choice (sure,

risky) factorial design as in our previous study with unskewed

lotteries [1], but here with lottery skewness and variance as trial-

by-trial parametric regressors. Activity is whole-brain cluster-level

corrected (P,0.05) unless otherwise stated. We replicated the

main effects of valence (greater activity for gains than losses in

bilateral striatum and obitofrontal cortex (OFC); greater activity

for losses than gains in pre-SMA/dmPFC and SVC in bilateral

anterior insula) and choice (risky.sure in posterior parietal cortex)

in the factorial analysis. Again parietal activity correlated with the

parametric manipulation of lottery variance (Table S1). However,

no activity correlated with skewness in that GLM, nor in an

alternative GLM using the modulus of the skewness (i.e. the

unsigned magnitude of the skewness in each trial).

However, robust activity was seen for skewness as it interacted

with choice (Fig. 5; Table 1). This was shown in a new GLM with

a 2 valence (gain, loss) by 2 skew type (posSkew, negSkew) by 2

choice (risky, sure) factorial design corresponding to the categorical

distinctions in our design, and with variance as a parametric

modulator. An interaction of skew type by choice in bilateral

anterior insula and pre-SMA/dmPFC (Fig. 5a) was driven by

increased activity for choosing a risky option with positive skew

(Fig. 5b), which was the specific action to which individuals were

least disposed behaviourally (Fig. 2b). Further, this pattern of skew-

related activity did not interact with outcome valence (Fig. 5b; no

suprathreshold voxels for an interaction with valence within

10 mm of the peak in each cluster) and conjunction analysis

between this activity in gains and losses revealed activity regardless

of valence in these same areas (pre-SMA/dmPFC and right

anterior insula). We also note that, as above, activity in this GLM

corresponded to the manipulations of valence (gain.loss in OFC

and striatum; and loss.gain SVC in dmPFC/pre-SMA) and

variance (positive correlation in parietal cortex; Table 1).

Next we asked if inter-individual differences in sensitivity to

skewness were also reflected neurally. Applying our impact of skew

metric (ImpSkew) to the contrast that revealed skew-related activity

above (i.e. the interaction of skew type and choice), demonstrated

a negative correlation with activity in regions including hippo-

campus and OFC (Table 2). This indicated that the less susceptible

an individual was to skewness (i.e. lower ImpSkew), the more

significant the interaction of choice and skew, driven both by

greater activity for risky.sure choices in posSkew trials, and lower

activity for risky.sure choices in negSkew trials. This correlation

was specific to ImpSkew, as skew-related activity did not correlate

with PropRiskall, ImpValence or ImpVariance. Further whilst activity for

risky.sure choices correlated with overall risk preference (i.e.

PropRiskall) in anterior insula (Table 2), this was again specific and

did not correlate with ImpSkew, ImpValence or ImpVariance. Finally,

for completeness we note there was no correlation between

variance-related activity and the ImpVariance, nor between activity

for gains versus losses and ImpValence.

Finally, we asked if neural activity correlated with unified

subjective value (SV) derived from the winning behavioural model.

In contrast to the robust findings above, No such correlation was

seen (whole brain corrected or using SVC in vmPFC, OFC and

striatum as regions of interest specified in the PickAtlas toolbox

[16] in a GLM as above but with lottery SV as the parametric

modulator, nor when using chosen minus unchosen SV, nor using

the difference in SV between options.

Discussion

Here we demonstrate that the skewness of outcome distributions

influenced choice behaviour. Furthermore, this influence of

skewness on choice was independent of valence both across (Fig.

2b) and between (Fig. 3a) subjects. Neurally, we observed skew-

related activity across subjects in anterior insula, a region

implicated in aversive representations [17,18], and between

subjects correlating with individuals’ skew preference in hippo-

campus and vmPFC/OFC. Mirroring our behavioural findings

these patterns of skew-related activity were seen for gains and

losses (Fig. 4b). These data support the idea that risk is not

monolithic, either in terms of its behavioural effects or neurally,

and instead that distinct aspects of risk including variance and

skewness can powerfully influence choice.

The observation that skewness influenced choice behaviour is

consistent with human [3,6] and animal data [2]. Our data help

characterise this influence of skewness in two further ways. Firstly,

we dissociate this influence of skewness from other aspects of risk.

Secondly, individuals’ preferred negative to positive skew, which

replicates a recent study using a similar format [3] and previous

work showing negative skew preference on average [19]. We note

that other studies have shown a mixture of participants with

Figure 5. Choosing skewed lotteries alters anterior insula
activity. Skewness may affect action-selection by influencing the
disposition to approach economic stimuli. We examined neural activity
in a GLM with a 2 valence (gain, loss) by 2 skew type (posSkew,
negSkew) by 2 choice (risky, sure) factorial design corresponding to the
categorical distinctions in our design, and with variance as a parametric
modulator. a) There was an interaction of skew type by choice in
bilateral anterior insula. As shown in panel b this was driven by
increased activity for choosing (approaching) the risky option with
positive skew, which was the specific action to which individuals were
least disposed behaviourally. Further, as shown in panel b this pattern
of skew-related activity did not interact with outcome valence.
Parameter estimates plotted for the peak of the interaction in right
anterior insula. Error bars indicate s.e.m.. *,0.05, **,0.005, ***,0.001
doi:10.1371/journal.pone.0083454.g005
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positive or negative skew-seeking [20] or positive skew seeking

behaviour [21,22].

Neurally, we showed that skew-related activity was distinct from

the activity related to other aspects of risk. Skew-related activity

here was found in anterior insula, a region implicated in two

previous studies of skewness in gains [3,6] and when passively

viewing skewed mixed gambles [7]. Anterior insula is a region also

implicated in processing of uncertainty more generally [8–10]. In

line with other recent work with unskewed gambles [1], this skew-

related activity here was contingent on choice, and specifically

there was increased activity in anterior insula when choosing the

least preferred option (i.e. choosing the risky option when it

contained positive skew), where anterior insula is known to be

implicated in aversive representations [18].

We note that if anterior insula plays such a role we would also

expect increased activity here for choosing the lottery with losses,

as we have shown previously [1]. However, in this experiment

skew-related preference dominated behaviour (Fig. 2b) which may

have reduced sensitivity and we do not see strong evidence for

such valence-related activity. Tentative evidence for this here is

seen in the simpler GLM that collapsed across skewness type and

that showed greater activity for losses than gains (Results above

and Table S1), as well as in our main GLM where Fig. 5b shows a

tendency towards a greater effect of risky than sure choices in

losses than in gains. This could be usefully examined in future

work.

In addition to such skew-related activity across subjects,

between subjects we noted brain regions that integrate this skew-

related activity with individuals’ preferences for skewness. This was

seen in hippocampus, a region identified with reward in a meta-

analysis of value-based choice [23] and implicated in goal-directed

behaviour [24]. It was also seen in OFC, a region implicated in an

integration of preference and reward related activity [25]. In these

regions, the less susceptible an individual was to skewness (i.e.

lower ImpSkew), the greater the interaction of choice and

skewness. This closely parallels previous findings between subjects,

where for example in a framing task participants who showed less

framing exhibited greater OFC activity associated with the

interaction of choice and frame [26]. As those authors speculate,

individuals less susceptible to the frame may be better at

representing their own affective influences, which enables them

to modify their behaviour.

The influence of skewness on choice behaviour was independent

of outcome valence both across (Fig. 2b) and between (Fig. 3a)

Table 1. fMRI results across subjects.

Region L/R x y z Z #vox p

Gain . Loss

Ventral Striatum 18 5 –8 5 233 0.002

Putamen R 21 20 –5 4.9

27 11 –5 4.8

Putamen L –21 8 –2 4 271 8E-04

–15 17 –2 3.9

Amygdala –18 –1 –17 3.9

OFC L 0 44 –17 4.1 177 0.011

dmPFC R 9 68 13 3.4

OFC 6 62 –5 3.3

Supr. Frontal gyr. L/R 18 41 46 4.6 322 2E-04

Supr. Medial gyr. –3 44 49 3.7

–15 32 55 3.6

Riksier . Surer

Postr. Parietal gyr. R 42 –73 37 4.7 1551 ,1E-12

27 –67 34 4.7

Occipital 33 –79 40 4.6

Supramarginal gyr. L –51 –37 31 4.2 442 ,1E-04

Supr. Parietal lobule –24 –76 46 4.1

Supramarginal gyr. –51 –49 34 4.1

Mid. Cingulate/Postr. L/R 3 –34 40 4 243 0.003

18 –19 43 3.5

–9 –19 37 3.4

IFG (p. Tri) L –48 35 16 4.5 495 ,1E-05

Mid. Orbital gyr. –45 50 –5 4.1

IFG (p. Tri) –51 35 7 4

Mid. Frontal gyr. R 24 11 49 4.5 1242 ,1E-10

51 38 19 4.3

36 29 40 4

Precentral gyr. –48 5 40 3.8 159 0.025

IFG (p. Oper) –48 8 25 3.8

Infr. Temporal gyr. L –48 –46 –11 4.3 137 0.048

–57 –52 –5 3.9

Cerebellum –39 –55 –26 3.3

Mid. Temporal gyr. R 54 –49 –2 3.5 171 0.018

Fusiform gyr. 39 –46 –14 3.5

Mid. Temporal gyr. 60 –37 –8 3.3

Interaction: posSkew.negSkew & riskier.surer

Antr. Insula R 36 26 1 4.3 170 0.023

36 20 –11 4

IFG (p. Tri) 36 29 10 3.3

Antr. Insula L –33 17 1 3.8 187 0.015

IFG (pars Tri) –33 29 –2 3.6

–51 41 1 3.6

ACC L/R –9 32 25 3.6 223 0.006

pre-SMA/SMA 0 20 52 3.4

Mid. Cingulate cortx 6 26 37 3.3

Variance (pos. correl.)

Postcentral gyr. R 63 –7 31 3.8 199 0.007

Table 1. Cont.

Region L/R x y z Z #vox p

63 –16 31 3.8

Supramarginal gyr. 60 –25 40 3.6

This table shows all activity surviving cluster level correction across the whole
brain (P,0.05 FWE corrected; threshold of P,0.005 used to define the clusters)
for our GLM with a 2 valence (gain, loss) by 2 skew type (posSkew, negSkew) by
2 choice (risky, sure) factorial design corresponding to the categorical
distinctions in our design, and with variance as a parametric modulator. We
report all activity for all main effects and contrasts in the factorial design, and
for positive and negative correlations with variance and for the interaction of
variance in gains versus losses. Activity for loss.gain survived SVC in dmPFC/
pre-SMA (9 17 46, Z = 3.94, 103vox). For each cluster is shown: the three
constituent peaks with the highest Z-scores; the number of voxels at P,0.005
(uncorrected); and the P-value of the cluster after FWE correction across the
whole brain. (ACC = Anterior Cingulate Cortex; IFG = Inferior Frontal Gyrus;
OFC = orbitofrontal cortex; SMA = Supplementary Motor Area).
doi:10.1371/journal.pone.0083454.t001
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subjects. The relationship between this aspect of risk (skewness),

and valence is important as the prevailing view in psychologically-

informed economics is that risk and valence have a specific

relationship, in which individuals are risk-averse with gains and

risk-seeking with loss outcomes [27,28]. Contrary to this we

observed that individuals chose the risky option more often with

gains than with losses, which precisely replicates our previous

findings in a similar paradigm with unskewed gambles [1].

Specifically regarding the relationship between the influences of

skewness and valence on choice behaviour, there has not to our

knowledge been a previous characterisation of how the influence

of skewness (e.g. positive and negative skew) is affected by an

orthogonal manipulation of valence. Supporting the idea that

these may be distinct influences, however, we note that a study

assaying attractiveness ratings of gambles showed such ratings

were dramatically altered by adding a loss to a skewed gamble with

gains (i.e. it became a mixed gamble), suggesting such a gamble

may be rendered qualitatively different [11].

Skew-related activity was distinct from that related to valence

(Fig. 5b). Previous studies of skewness have used either only gains

or mixed gambles [3,6,7]. That risk and valence may exert their

influence on choice independently is consistent with mounting

evidence that choice is the product of multiple interacting value

and decision systems, which may for example reflected in both our

current and previous data [1] by distinct behavioural effects and

neural substrates associated with risk and valence.

Finally, we note that our data also speak to a debate in the

literature between two main competing accounts for recent

neuroscientific studies examining the neural basis of risky

economic choice: that ‘‘summary statistics’’ describe the distribu-

tion of possible outcomes from a risky choice [9,29]; or that

subjective value (SV) is determined by the shape of a utility

function, with risk-preference emerging as a by-product of that

shape [30]. Here consistent with a ‘‘summary statistic’’ account we

find neural activity related to skew and variance, whilst in contrast

to these robust data, there was not equally clear evidence for

encoding of SV. However, we note that absence of evidence is not

evidence of absence. Further, an important potential reason is

provided in a recent study showing that SV representations of

more complex multi-attribute stimuli are distributed, and so

detectable using multivariate but not standard mass univariate

analysis [31].

In conclusion, risk exerts a powerful influence on value-based

decision-making and our data help parse the different dimensions

of risk. The influence of skewness on choice can be dissociated

from other aspects of risk both in terms choice behaviour and its

neural representation. Furthermore, our data show that the

influence of skewness can be dissociated from the influence of

valence on choice. These data provide evidence that distinct

aspects of value-based stimuli exert their influence through a

choice architecture wherein multiple interacting systems contrib-

ute to choice.

Supporting Information

Table S1 fMRI results for 2 valence (gain, loss) by 2
choice (risky.sure) GLM. Replicating the 262 analysis used

in our previous study that used unskewed lotteries (Wright et al.,

2012) revealed similar results across and between subjects. Panel
a) across subjects: shows all activity surviving cluster level

correction across the whole brain (P,0.05 FWE corrected;

threshold of P,0.005 used to define the clusters) for our GLM

with a 2 valence (gain, loss) by 2 choice (risky, sure) factorial

design, with variance and skewness as parametric modulators. We

report all activity for all main effects and contrasts in the factorial

design, and for positive and negative correlations with the

parametric modulators and for the interaction of the parametric

modulators in gains versus losses. Note also activity for the contrast

of loss.gain survived SVC in left AI (236 23 1 Z = 4.01, 64vox)

and right AI (36 23 7 Z = 3.78, 45vox). Panel b) between
subjects: shows activity in this GLM for the second level

covariate for risk (PropRiskall) on activity for risky.sure; and the

Table 2. fMRI results between subjects.

Region L/R x y z Z #vox p

ImpSkew (neg. correl.) on interaction of posSkew.negSkew and risky.sure

Hippocampus L –27 –16 –20 4.6 456 ,1E-04

Supr. Temporal gyr. –57 2 –8 3.7

–57 –7 –14 3.6

OFC L/R 3 41 –17 4.2 241 0.003

15 53 –8 3.8

–3 59 –2 3.4

Postcentral gyr. L –27 –28 70 3.8 203 0.008

–15 –31 58 3.8

Precuneus –9 –40 58 3.5

Precentral gyr. R 15 –22 73 3.8 240 0.003

36 –13 64 3.8

48 –7 55 3.8

PropRiskall (neg. correl.) on risky.sure

Antr. Insula/IFG L –30 26 –11 4.3 150 0.028

–36 17 –5 4.3

–39 17 10 3.8

pre-SMA/dmPFC L/R 6 17 49 5.3 609 ,1E-06

–6 26 46 4.9

–3 35 34 4.6

Infr. Parietal lobule L –39 –52 37 5.1 909 ,1E-08

–45 –46 46 5.1

Postr. Parietal ctx. –48 –55 37 4.9

Precuneus R 9 –67 40 5.3 939 ,1E-08

Postr. Parietal ctx. 42 –64 43 5.3

Infr. Parietal lobule 39 –52 43 4.6

Mid. Frontal gyr. L –39 17 37 4.3 337 ,1E-03

IFG (p. Tri –42 26 22 4.3

IFG (p. Oper) –51 20 34 3.9

IFG (p. Oper) R 51 5 19 4.5 1095 ,1E-09

45 17 34 4.4

Mid. Frontal gyr. 42 38 31 4.4

Cerebellum R 36 –70 –44 4.4 279 ,1E-03

33 –49 –26 3.7

27 –40 –26 3.5

This table shows all activity surviving cluster level correction across the whole
brain (P,0.05 FWE corrected; threshold of P,0.005 used to define the clusters)
in the 2 valence by 2 skew type by 2 choice model, for contrasts involving: the
second level covariate for risk overall (PropRiskall) on activity for accept.reject;
the second level covariate for skew (ImpSkew) on the skew related activity seen
across subjects (interaction of skew type and choice). For each cluster is shown:
the three constituent peaks with the highest Z-scores; the number of voxels at
P,0.005 (uncorrected); and the P-value of the cluster after FWE correction
across the whole brain.
doi:10.1371/journal.pone.0083454.t002
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second level covariate for valence (ImpValence) on activity for

gain.loss. For each cluster is shown: the three constituent peaks

with the highest Z-scores; the number of voxels at P,0.005

(uncorrected); and the P-value of the cluster after FWE correction

across the whole brain.
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