
Models of Regional Habitat Quality and Connectivity for
Pumas (Puma concolor) in the Southwestern United
States
Brett G. Dickson1,2*, Gary W. Roemer3, Brad H. McRae4, Jill M. Rundall2

1 Conservation Science Partners, Inc., Truckee, California, United States of America, 2 Lab of Landscape Ecology and Conservation Biology, School of Earth Sciences and

Environmental Sustainability, Northern Arizona University, Flagstaff, Arizona, United States of America, 3 Department of Fish, Wildlife and Conservation Ecology, New

Mexico State University, Las Cruces, New Mexico, United States of America, 4 The Nature Conservancy, North America Region, Seattle, Washington, United States of

America

Abstract

The impact of landscape changes on the quality and connectivity of habitats for multiple wildlife species is of global
conservation concern. In the southwestern United States, pumas (Puma concolor) are a well distributed and wide-ranging
large carnivore that are sensitive to loss of habitat and to the disruption of pathways that connect their populations. We
used an expert-based approach to define and derive variables hypothesized to influence the quality, location, and
permeability of habitat for pumas within an area encompassing the entire states of Arizona and New Mexico. Survey results
indicated that the presence of woodland and forest cover types, rugged terrain, and canyon bottom and ridgeline
topography were expected to be important predictors of both high quality habitat and heightened permeability. As road
density, distance to water, or human population density increased, the quality and permeability of habitats were predicted
to decline. Using these results, we identified 67 high quality patches across the study area, and applied concepts from
electronic circuit theory to estimate regional patterns of connectivity among these patches. Maps of current flow among
individual pairs of patches highlighted possible pinch points along two major interstate highways. Current flow summed
across all pairs of patches highlighted areas important for keeping the entire network connected, regardless of patch size.
Cumulative current flow was highest in Arizona north of the Colorado River and around Grand Canyon National Park, and in
the Sky Islands region owing to the many small habitat patches present. Our outputs present a first approximation of
habitat quality and connectivity for dispersing pumas in the southwestern United States. Map results can be used to help
target finer-scaled analyses in support of planning efforts concerned with the maintenance of puma metapopulation
structure, as well as the protection of landscape features that facilitate the dispersal process.
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Introduction

Loss of habitat is one of the leading causes of species

endangerment, and disruptions in connectivity are expected to

increasingly heighten this risk as the Earth warms, necessitating

novel conservation strategies [1,2]. Maintaining connected habi-

tats by conserving and restoring linkage zones or corridors is

becoming one of the most common strategies for mitigating

human-caused landscape and climate change [3]. Regional

conservation planning efforts are thus needed to identify where

vital linkages are at risk of being severed or disrupted over

extensive habitat networks.

Mammalian carnivores are important as keystone species in

many ecosystems [4], but also are threatened by adverse changes

in habitat quality and connectivity globally [5]. Furthermore,

because the conservation of spatially extensive, heterogeneous

landscapes needed to support viable populations of large

carnivores would protect other species whose habitat requirements

are met within a much smaller spatial extent [6], conserving

carnivores can be an effective strategy for protecting habitat

necessary for other species [7,8]. Methods and tools that can

predict the distribution and quality of both high-quality habitat

and its connectedness are thus needed not only for carnivore

conservation, but for broader conservation objectives as well.

In Arizona and New Mexico, USA, puma (Puma concolor)

populations are well distributed and occupy most of the contiguous

habitats available to them or their prey [9]. In the southern

portions of these states, habitats able to support pumas are found

in small to medium-sized mountain ranges (i.e., ‘Sky Islands’)

embedded in a landscape matrix of desert that pumas do not

regularly occupy. Varying levels of dispersal may connect these

subpopulations, with the quality of movement pathways linking

them being influenced by a diverse set of natural and artificial

landscape features [10]. Like other large carnivores, pumas are

sensitive to loss of habitat and disruption of the pathways that

connect their populations [11–13]. Thus, the viability of puma

populations inhabiting these isolated mountain ranges is very likely

dependent upon maintaining connections among them [9,14].
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We present an approach for modeling of habitat quality and

connectivity for pumas in Arizona and New Mexico. We chose to

model pumas because they are a good surrogate for species

occupying the more rugged and wooded vegetation communities

in the southwestern United States. Pumas need large areas to

maintain viable populations and they use a broad range of habitats

when dispersing out of their natal range [10]. Across the

southwestern U.S., these habitats are becoming further fragment-

ed or isolated by urbanization and other forms of human

development [15], such as transportation corridors [16,17], border

security infrastructure [18], and energy development [19]. Puma

populations are of concern to many conservation and resource

management stakeholders interested in conserving wide-ranging

species and the remaining landscapes they inhabit. In Arizona and

New Mexico, pumas are managed by state wildlife agencies as a

game animal, and their population dynamics are adversely

impacted by sport harvest [20,21].

Our objectives were to 1) collaborate with regional experts to

determine the variables most likely to influence puma habitat

quality, location, and permeability to movement; 2) use this

information to develop spatially explicit models and maps of

habitat quality and patch location; and 3) extend current

connectivity modeling approaches, based on circuit theory, to

identify areas important for maintaining connectivity both for

direct dispersal between neighboring pairs of habitat patches and

for keeping the entire network of habitat patches connected.

Importantly, we aimed to produce models that could be used as a

priori hypotheses about regional connectivity for pumas and tested

with independent data sets or applied to other regions and taxa.

Materials and Methods

Study Area
We modeled puma habitat and connectivity across Arizona and

New Mexico, an area of approximately 611,300 km2 (Fig. 1). This

area encompasses prominent landscape features such as the Grand

Canyon, the Coconino and Mogollon Plateaus, the Sangre de

Cristo Mountains, several other large, typically forested mountain

ranges, the Rio Grande River Valley and a diversity of lowland

vegetation types capable of supporting the movement and space-

use requisites of pumas and their primary prey, mule deer

(Odocoileus hemionus; [9]). Topography in these mountain ranges is

rugged and elevations range from 25 m in the southwestern corner

of Arizona to 4,012 m at the top of Wheeler Peak in northern New

Mexico (mean elevation = 1,863, 61SD = 1,084). Over 50% of the

study area is in public ownership, including iconic national parks

like Grand Canyon National Park, large military installations,

other federally owned lands, lands owned by Native American

tribes and the states of Arizona and New Mexico, interspersed

with private lands. As of 2011, three incorporated cities (Phoenix,

Tucson, and Albuquerque) had human populations between

500,000–1,500,000.

Integrating Expert Knowledge
Existing empirical data on puma habitat use and dispersal were

insufficient to estimate habitat quality and connectivity at the scale

of our analysis or improve upon a comprehensive base of regional

knowledge [22]. We thus developed models of habitat quality and

connectivity that incorporated knowledge from five individuals

with considerable expertise on the ecology of pumas in the study

region (Text S1). We elicited and integrated their knowledge using

a multi-criteria framework and an iterative three-step process of

variable specification, model building, and model review (see

[23,24]; Text S1, Figure S1). In the first step, each expert was

tasked with specifying up to four unique habitat variables that they

believed were most likely to influence habitat quality and

permeability (or conductance, as derived below) for pumas in

the Southwest. Often, multiple experts selected similar (potentially

correlated) variables and so we synthesized this information with

their review and approval [23]. This first step resulted in the

description of seven habitat variables that fell into three broad

categories: land cover, terrain, and anthropogenic features. In the

second step, described in detail below, we asked each expert to

provide a score for each class within a given habitat variable (e.g.,

‘forest’ land cover type, ‘ridgeline’ topographic position), and also

assign a weight to each of the seven variables. As a third step, each

expert was encouraged to modify or refine preliminary or final

model outputs, if necessary.

Habitat Variables
We used expert knowledge and a GIS (ArcGISH v10.0, Esri,

Redlands, CA, USA) to determine and derive seven habitat

variables from multiple data layers available for our study area,

including a 10-km buffer to accommodate analytical edge effects.

Each of the data layers was resampled from its native resolution

(typically, 30 m) or format (e.g., vector) to a resolution of 900-m

grid cell size prior to analyses using moving window functions in

the GIS (e.g., to calculate the average value for a given cell within

a 30630 m-cell neighborhood). The seven habitat variables were

divided into three broad categories: land cover, terrain and

anthropogenic features. Many of these or similar variables have

previously been reported in the literature as important factors

influencing puma habitat quality and movement.

Land cover. We used spatial data on existing ecological

systems derived by the Interagency Landfire Project (www.

landfire.gov; [25]) to characterize 12 dominant land cover types

(new habitat variable = COVTYPE; Table 1). These 12 land cover

types included all of the dominant land cover types previously used

to elucidate patterns of movement and vegetation selection by

pumas, for example, in southern California [16,26] and Arizona

[17].

Terrain. Throughout their range, pumas use a complex

mosaic of terrain features to facilitate and conceal their predatory

and movement behaviors (see [9]). We used U.S. Geological

Survey National Elevation Data (NED) and the Spatial Analyst

extension to ArcGISH to measure elevation, slope (in degrees), and

terrain ruggedness (in degrees). We computed terrain ruggedness

(RUGGED) as the standard deviation of slope within each 900-m

cell. After Dickson and Beier [27], we also used elevation and slope

estimates from the NED to derive a Topographic Position Index

(TPI) that discriminated between four major classes of terrain:

canyon bottom, gentle slope, steep slope, and ridgeline.

Anthropogenic features. Numerous road types, including

freeways, have been found to influence the movement [16,28] and

genetic structure of pumas and other large, vagile carnivores [29].

Proximity to perennial water sources and areas densely populated

by humans also are known affect the movement behavior of pumas

[26,28,30]. We estimated the density (km/km2, 10-km radius) of

all road types (ROADS) using U.S. Census Bureau TIGER/Line

filesH (2012; http://www.census.gov/geo/maps-data/data/tiger-

line.html) and a simple density calculation function in ArcGIS. We

identified major highways, including freeways and other high-

speed (posted speed limit $88.5 km/hr) paved roads with $4

lanes, large canals or ditches, and large lakes or reservoirs using

both the National Transportation Atlas Database (2011;

http:www.bts.gov/programs/geographic_information_services) and

the National Hydrography Dataset (NHD, 2008; http://nhd.usgs.

gov), and added these features to the BARRIERS habitat variable.

Connectivity for Pumas in the Southwest
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Therefore, we used the NHD to compute the distance (in meters) to

all major perennial water features (e.g., lakes, rivers, springs) on the

study area (WATER). We included WATER in the anthropogenic

feature classification because many of the water features on the study

area have been modified or impacted by humans. Human

population density (HUMANS, individuals/block) was estimated

from data available from the U.S. Census Bureau (2010; http://

www.census.gov/geo/maps-data/data/tiger.html).

Quantifying Habitat Quality and Large Habitat Patches
We developed an expert-based model of habitat quality for

pumas using the seven habitat variables described above. On a

continuous scale of 0–1000, each expert scored the relative

likelihood that each class of habitat variable could support or

sustain the day-to-day behaviors of an individual puma with an

established home range (Table S1). Scores of 1000 indicated ‘most

likely’ and scores of 0 indicated ‘not capable’. As an initial guide,

we used a quantile classification to divide the distribution of cell

values for the variables (i.e., layers) RUGGED, ROADS,

WATER, and HUMANS into 10 classes of quality ranging from

a score = 100 (lowest) to 1000 (highest).

We used a modification to the GIS-based Weighted Linear

Combination (WLC) procedure [31] to first average the scores

assigned by experts to each habitat class and to weight and

combine habitat variables into a final data layer that depicted

habitat quality. Next, individual experts assigned a relative rank or

‘importance value’ (on a continuous scale of 0 to 1000) to each of

the seven habitat variables (Table S2). We then computed a ‘swing

weight’ (sensu [31]) for each variable by dividing its importance

value by the sum of all importance values. This weighting

approach directly incorporates trade-offs among variables and the

differences in their value ranges [31]. Swing weights are derived by

asking an expert to compare a relative change, or swing, from the

lowest to highest quality class of a given habitat variable to a

similar change in quality between classes within another habitat

variable, and score the importance of all variables accordingly. We

next created a preliminary habitat quality layer by calculating the

average importance value from among all experts, computing a

new swing weight for each layer, and then multiplying this value

by the average, expert-defined habitat quality score at each cell.

We then added the products for each of the final layers together.

Finally, we reclassified these new values using four quartile breaks

in the data distribution, where the 75th percentile represented the

highest quality habitat. We used this more parsimonious

classification (1 = low and 4 = high) to generate our final habitat

quality model.

To characterize large, high-quality habitat patches capable of

supporting the minimum prey and cover requirements for

dispersing pumas, we first used a circular moving window and

focal sum operation in the GIS to identify contiguous areas of the

highest quality habitat that were within a 5-km radius of each 900-

m cell on the study area. We used this distance because it was

similar to the radius of the average circular home range derived

from home range estimates for 30 female pumas in the San Andres

Mountains of southern New Mexico [9]. The resulting map of

high quality habitat patches was then provided to each expert for

review and modification if they thought necessary.

Quantifying Habitat Permeability and Connectivity
We estimated how permeable different landscape features were

to puma movement by first asking experts to score the relative

likelihood of each class of habitat variable to permit the movement

of an individual dispersing puma through the dominant charac-

teristics of that class (see Text S1, Table S1). We again used a

quantile classification method to initially divide the distribution of

cell values for the RUGGED, ROADS, WATER, and HUMANS

layers into 10 quality classes varying from 100 to 1000. We then

assigned expert-defined importance values and calculated weights

for each of the final seven habitat variables using the WLC

procedure (Table S2). We derived our final permeability layer by

Figure 1. Map of study area used to estimate regional connectivity for pumas. The study area encompassed all of Arizona and New Mexico,
USA, or approximately 611,300 km2. Background maps were produced using data obtained from the U.S. Geological Survey’s Earth Resources
Observation and Science Center.
doi:10.1371/journal.pone.0081898.g001
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computing the average swing weight among all experts and

multiplying this value by the average expert-defined permeability

at each cell and then added the final layers together. Prior to

implementing a connectivity model, we allowed the average,

expert-defined quality score for ‘developed’ areas in the COV-

TYPE layer to supersede (i.e., ‘trump’) all other values in the final

permeability layer. Similarly, we merged the scores for the

BARRIERS layer with the final permeability layer and allowed

these values to supersede all underlying values, including

developed areas.

To estimate connectivity for pumas, we applied concepts from

electronic circuit theory using Circuitscape software (v3.5, www.

circuitscape.org). The software reads a raster map of conductance

(reflecting how permeable each cell is to movement) and replaces

cells connected by dispersal with nodes connected by resistors [32].

When current is injected into a source patch and allowed to flow to

a destination patch, current values at each intervening cell can be

interpreted in terms of the probability that a random walker would

pass through the cell if it started at the source and moved until it

reached the destination [32]. Higher densities of current between

habitat patches indicate areas through which successful dispersers

are more likely to move. Greater connectivity among populations

or habitat patches is predicted when a larger number of connected

pathways are available. Locations where current densities are high

indicate ‘pinch points’, i.e. areas that act as bottlenecks to

movement or where alternative pathways are not available. Pinch-

points can be the result of both natural and human-made

landscape features, and may represent conservation priorities

because their loss can disproportionately disrupt connectivity.

Our application of circuit theory used current flow among high-

quality habitat patches to identify important areas for maintaining

connectivity both for movements among habitat patch pairs and

for maintaining connectivity across the entire network of habitat

patches in the study area. To do this we separately mapped

Table 1. Expert-defined habitat variables (data layer name)
and associated classes, and average (61SD) habitat quality
and permeability scores used to estimate connectivity for
pumas in Arizona and New Mexico.

Habitat variable Quality Permeability

Land cover (COVTYPE)

Open water 0.0 (0.0) 25.0 (28.9)

Developed 70.0 (49.7) 113.8 (66.5)

Barren 61.3 (109.3) 208.8 (139.8)

Agriculture 268.8 (128.1) 418.8 (140.5)

Woodland 912.5 (103.1) 962.5 (47.9)

Forest 851.3 (170.8) 951.3 (54.8)

Shrub 700.0 (70.7) 848.8 (160.7)

Desert scrub 577.5 (349.8) 752.5 (222.9)

Chaparral 671.3 (266.4) 746.3 (270.0)

Shrub-steppe 450.0 (229.1) 883.3 (125.8)

Grassland 286.3 (146.4) 607.5 (253.4)

Riparian 670.0 (263.2) 917.5 (165.0)

Terrain ruggedness (degrees; RUGGED)

0.00–0.47 100.0 (0.0) 100.0 (0.0)

0.48–0.93 200.0 (0.0) 200.0 (0.0)

0.94–1.63 300.0 (0.0) 300.0 (0.0)

1.64–2.57 400.0 (0.0) 400.0 (0.0)

2.58–3.62 500.0 (0.0) 500.0 (0.0)

3.63–4.78 600.0 (0.0) 600.0 (0.0)

4.79–5.95 700.0 (0.0) 700.0 (0.0)

5.96–7.00 750.0 (57.7) 775.0 (50.0)

7.01–8.17 775.0 (150.0) 850.0 (100.0)

8.18–29.76 800.0 (245.0) 850.0 (238.0)

Large barriers (BARRIERS)

Major highways 2.5 (5.0) 62.5 (92.4)

Large canals and ditches 80.0 (98.0) 148.8 (84.7)

Lakes and reservoirs 0.0 (0.0) 17.5 (22.2)

Topographic position index (TPI)

Canyon bottom 855.0 (290.0) 955.0 (90.0)

Gentle slope 586.3 (118.0) 801.3 (234.9)

Steep slope 732.5 (92.5) 726.3 (337.3)

Ridgeline 755.0 (126.9) 902.5 (81.8)

Road density (km/km2; ROADS)

0.00–0.30 1000.0 (0.0) 1000.0 (0.0)

0.31–0.45 900.0 (0.0) 925.0 (50.0)

0.46–0.57 800.0 (0.0) 850.0 (100.0)

0.58–0.68 700.0 (0.0) 775.0 (150.0)

0.69–0.79 600.0 (0.0) 600.0 (0.0)

0.80–0.90 500.0 (0.0) 500.0 (0.0)

0.91–1.10 400.0 (0.0) 400.0 (0.0)

1.20–1.30 300.0 (0.0) 300.0 (0.0)

1.40–1.70 200.0 (0.0) 200.0 (0.0)

1.80–9.60 100.0 (0.0) 100.0 (0.0)

Distance to water (meters; WATER)

0.0–2950 875.0 (250.0) 700.0 (355.9)

2950–5150 825.0 (221.7) 650.0 (300.0)

Table 1. Cont.

Habitat variable Quality Permeability

5160–7360 775.0 (206.2) 600.0 (244.9)

7370–9930 725.0 (206.2) 550.0 (191.5)

9940–12900 675.0 (221.7) 500.0 (141.4)

13000–16200 500.0 (0.0) 450.0 (100.0)

16300–20200 400.0 (0.0) 375.0 (50.0)

20300–25700 300.0 (0.0) 300.0 (0.0)

25800–34900 200.0 (0.0) 200.0 (0.0)

35000–93800 100.0 (0.0) 100.0 (0.0)

Human population density (individs/block; HUMANS)

0.0 1000.0 (0.0) 1000.0 (0.0)

1–614 900.0 (0.0) 925.0 (50.0)

615–1230 825.0 (50.0) 850.0 (100.0)

1240–1840 725.0 (50.0) 725.0 (50.0)

1850–2460 575.0 (50.0) 625.0 (50.0)

2470–3070 525.0 (50.0) 525.0 (50.0)

3080–3680 475.0 (150.0) 425.0 (50.0)

3690–4300 275.0 (50.0) 300.0 (0.0)

4310–6140 175.0 (50.0) 200.0 (0.0)

6150–156556 75.0 (50.0) 75.0 (50.0)

doi:10.1371/journal.pone.0081898.t001
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current flow between neighboring habitat patches and among all

patch pairs in the network. In each case we allowed 1 Amp of

current to flow between each patch pair, using our expert-defined

permeability layer as the conductance raster [32]. For neighboring

patch pairs, we mosaicked current flow into a single map showing

maximum flow between any patch pair; current flow between core

areas in close proximity to one another dominates in this case.

Modeling current flow using this method of maximum pairs is

useful for identifying movement ‘pinch points’ between specific

patch pairs, irrespective of their importance in the larger network

of patches [32]. For analyses across the entire habitat network, we

added current flow between all pairs of habitat patches to produce

a map of cumulative current flow among all possible pairs.

Modeling cumulative current flow provides a quantitative means

of evaluating the importance of both patches and intervening areas

in the matrix for maintaining connectivity of the entire network of

habitat patches in the study area. The latter can be considered an

evaluation of centrality [33,34], highlighting patches and dispersal

areas that are essential to the maintenance of connectivity among

all patches in a landscape.

In addition to showing which individual pixels are important for

network connectivity, we used the cumulative current map to

derive two metrics of centrality specific to habitat patches. First, we

summed current passing through all pixels within each patch as it

traveled between other pairs of patches in the network. This gave

an index of the importance of each patch in providing connectivity

among all remaining patch pairs, i.e., its importance as a stepping-

stone for keeping the network connected. Second, we divided these

values by patch area to produce an area-weighted centrality score.

This indicated the average importance of pixels within each patch,

which can highlight patches that contribute more to network

connectedness than would be expected based on their size alone.

Results

Habitat Quality and Permeability
Among experts, scores for both habitat quality and permeability

assigned to dominant land cover types were reasonably consistent

(as indicated by the SD of the scores; Table 1). Experts scored

woodland and forest as the most important types, followed by

riparian and shrub-dominated cover types. Cover types with the

lowest scores were those typically associated with human activity,

including developed and agricultural areas. In general, as terrain

ruggedness increased, so did its perceived importance as a feature

of high habitat quality and permeability. Both canyon bottoms and

ridgelines were topographic positions important for defining high

habitat quality and permeability. As road density, distance to

water, or human population density increased, there was

substantial agreement that habitat quality and permeability

declined in a linear fashion. Experts also agreed that major

highways and large water bodies were extremely poor attributes of

habitat and effective barriers to puma dispersal, and that large

canals and ditches were somewhat less important barriers.

For defining relatively high habitat quality and permeability,

experts agreed that COVTYPE was the most important variable

and it received the largest swing weight (0.28 and 0.31 for quality

and permeability, respectively; Table 2). The RUGGED variable

also was deemed important, with quality and permeability swing

weights of 0.23 and 0.22, respectively. WATER was identified as

the next most important variable for defining habitat quality

(swing weight = 0.16), although TPI was identified as more

important for defining permeability (0.18). These results indicate

that habitat quality and permeability were not equivalent metrics.

Cell values for our final habitat quality layer ranged from

153.1–789.3 (mean = 514.9, SD = 112.5; Fig. 2). Cell values for the

final habitat permeability (or conductance) layer ranged from

17.5–865.1 (mean = 626.7, SD = 132.5; Fig. 3). Using the habitat

quality layer, we identified 67 high quality patches across the study

area that ranged from 100.4–68,365.6 km2 (total

area = 161,855.0 km2, mean = 2,415.8, SD = 9,450.9). To mini-

mize computation time, we did not include habitat patches

,100 km2. The largest contiguous patch (#85 in Fig. 2) occurred

in the center of the study area and included large expanses of

forest and woodland habitats in the more rugged portions of the

Mogollon Plateau. This patch was also contiguous with Arizona’s

Galiuro and Winchester Mountains to the south, and the San

Francisco Mountains and Black Range to the east into southwest-

ern New Mexico. Many other prominent mountain ranges were

encompassed by large habitat patches, including the Hualalapai

(92) and Aquarius (93) Mountains in northern Arizona, Santa

Catalina (120) and Chiricahua (127) Mountains in southern

Arizona, Sacramento Mountains (114) in south-central New

Mexico, and portions of the Sangre de Cristo mountain complex

in northern New Mexico (13).

Habitat Connectivity
Our map of maximum current flow between patches highlight-

ed possible pinch points for connectivity for animals moving

directly between patch pairs (Fig. 4). We observed pinch points

along the Interstate 40 transportation corridor (from west to east)

Table 2. Average (61SD) of the expert-defined importance values and swing weights for the habitat variables (i.e., data layers)
used to estimate habitat quality and permeability for dispersing pumas in Arizona and New Mexico.

Quality Permeability

Habitat variable1 Importance value Swing weight Importance value Swing weight

COVTYPE 950.0 (100.0) 0.277 1000.0 (0.0) 0.305

RUGGED 800.0 (182.6) 0.234 733.3 (208.2) 0.223

BARRIERS 312.5 (131.5) 0.091 133.3 (104.1) 0.041

TPI 475.0 (263.0) 0.139 600.0 (173.2) 0.183

ROADS 250.0 (100.0) 0.073 233.3 (57.7) 0.071

WATER 562.5 (197.4) 0.164 450.0 (218.0) 0.137

HUMANS 75.0 (50.0) 0.022 133.3 (57.7) 0.041

1Variable abbreviations defined in Table 1.
doi:10.1371/journal.pone.0081898.t002
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between patches 84 and 92, 90 and 93, 85 and 97, and 103 and

107. Similarly, along the Interstate 25 or Rio Grande corridor,

pinch points may be present (from north to south) between patches

110 and 111, 119 and 85, and 119 and 124.

Our map of cumulative current flow (Fig. 5) shows the sum of

currents when all patch pairs are iteratively connected, and

highlights areas with high centrality, i.e. areas important for

keeping the entire network of patches connected. Cumulative

current flow was highest in Arizona north of the Colorado River

and around Grand Canyon National Park, and in the southeastern

corner of Arizona in the Sky Islands region (Fig. 5, Table S3). In

Arizona, current flow also was relatively high in west-central areas

of the state (see Fig. 1) and across the northeastern corner of the

state (Navajo Nation lands). Compared to Arizona, current flow

Figure 2. Map of habitat quality and high quality habitat patches for pumas. Estimates of habitat quality were derived using expert-elicited
information and seven habitat variables. High quality habitat patches are uniquely numbered for reference. Background maps were produced using
data obtained from the U.S. Geological Survey’s Earth Resources Observation and Science Center.
doi:10.1371/journal.pone.0081898.g002

Figure 3. Map of mean habitat conductance for pumas. Estimates of habitat conductance were derived using expert-elicited information and
seven habitat variables. High quality habitat patches are uniquely numbered for reference. Background maps were produced using data obtained
from the U.S. Geological Survey’s Earth Resources Observation and Science Center.
doi:10.1371/journal.pone.0081898.g003
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across New Mexico was relatively low, because fewer discrete

habitat patches were mapped there. Patterns of high flow were

present along the Arizona-New Mexico state line to the north and

south. In both cumulative and maximum current flow maps, we

observed a ‘halo’ effect around many small patches reflecting high

current flow around their perimeter.

Our maps of habitat patch centrality (Fig. 6) revealed numerous

areas that may be important for keeping the overall network of

habitat patches connected. Estimates of cumulative current flow

highlighted those patches most important for maintaining

relatively high current flow between other patches (Fig. 6A).

Area-weighted estimates of centrality revealed patches that

provided more connectivity value across the network than would

Figure 4. Model of maximum current flow used to estimate connectivity for pumas. Maps were displayed using a histogram equalize
stretch. High quality habitat patches are uniquely numbered for reference. Background maps were produced using data obtained from the U.S.
Geological Survey’s Earth Resources Observation and Science Center.
doi:10.1371/journal.pone.0081898.g004

Figure 5. Model of cumulative current flow used to estimate connectivity for pumas across the entire network of habitat patches.
Maps were displayed using a histogram equalize stretch. Background maps were produced using data obtained from the U.S. Geological Survey’s
Earth Resources Observation and Science Center.
doi:10.1371/journal.pone.0081898.g005
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Figure 6. Models of habitat patch centrality. A) Centrality scores derived from summing total current flow across all pixels in each patch as it
passes between all other patch pairs. B) Area-weighted centrality scores obtained by dividing scores in panel (A) by patch area. Background maps
were produced using data obtained from the U.S. Geological Survey’s Earth Resources Observation and Science Center.
doi:10.1371/journal.pone.0081898.g006

Connectivity for Pumas in the Southwest

PLOS ONE | www.plosone.org 8 December 2013 | Volume 8 | Issue 12 | e81898



be expected by their size alone (Fig. 6B). Multiple large patches in

the central portion of the study area (85, 93, 95) and relatively

small patches in the northwest (6, 14, 15, 17, 25) and southeast

corners of Arizona (e.g., 120, 127) were most important to

maintaining overall connectivity, irrespective of the centrality

estimate used. Patches in southwestern Arizona (112, 116, 117)

and eastern New Mexico (98, 99, 114, 118, 131) were more

peripheral and exhibited low centrality, indicating that the

removal of any of these particular patches would disrupt overall

network connectivity to a lesser degree here than elsewhere.

Nevertheless, some patches–particularly in southwestern Arizona

and northern Arizona and northern New Mexico–have low

centrality scores because they are peripheral to our study area, but

likely provide important stepping-stones to habitat patches in

Mexico, Utah, and Colorado, respectively.

Discussion

Our models and maps present a first approximation of habitat

quality and connectivity for dispersing pumas in the Southwest

region. Several factors contribute to the patterns we observed in

our models. For example, model-based estimates of high-quality

habitat patches indicated that these areas typically were in

relatively remote and rugged terrain and dominated by woodland,

forest, chaparral, or riparian land cover types. These outcomes are

not surprising since pumas and their prey prefer to occupy

topographically complex natural landscapes that are less influ-

enced by humans [9,15], including areas at the wildland-urban

interface [30,35]. In southern California, telemetered pumas used

a similar set of habitats, preferring woodlands, scrublands and

riparian areas over grassland or more human-disturbed areas, and

were found to use higher elevations more often than lower

elevations [26], supporting our expert-based model of how pumas

may disperse through landscapes of the Southwest.

Maps of current flow between neighboring patch pairs using the

method of maximum pairs are useful for identifying important

portions of linkage zones between particular sets of habitat

patches, removing potentially confounding effects of network

configuration. For example, there were important pinch points

along the Rio Grande, where local habitat features facilitate east-

west movement.

The cumulative current flow model simultaneously highlights

constrained portions of linkage zones and areas important for

maintaining a connected network of habitat patches across the

entire study region (Fig. 5). For example, current flow between the

large habitat patch that includes the Mogollon Rim (patch 85) and

the Sacramento Mountains (114) (Fig. 4) illustrates how interme-

diate habitat patches facilitate connectivity between these two

distant habitat patches. Here, current flow was broadly distributed,

owing in part to the large surface area of these two habitat patches,

and thus the presence of multiple potential movement routes

between them. However, in particular, the smaller patches

encompassing the Oscura (113), San Andres (115), Caballo

(119), and Sierra de Las Uvas Mountain regions (124) appear to

provide important stepping-stone habitat between the larger

Mogollon Rim and Sacramento Mountains patches. The large

distance separating the Mogollon Rim and Sacramento Moun-

tains suggests that the San Andres and its smaller neighboring

patches are important ‘stepping-stones’, either for individual

dispersing pumas or for inter-generational gene flow between the

two larger habitat patches [10].

The ‘halo’ effect of high current flow around some small patches

that we observed is a common artifact in circuit modeling. The

small surface area of these patches results in higher modeled

movement probabilities because there are fewer areas to enter and

exit the patches. Although maintaining access to patches is

important, these areas could be identified by inspection, and

should not be mistaken for pinch points, which are much more

difficult to identify without modeling.

Model Interpretation and Observations of Puma
Dispersal

Our above assessment of how pumas are predicted to use the

region between the Mogollon Rim and the Sacramento Mountains

can be partially evaluated using observations from a previous study

that documented dispersal events of pumas inhabiting the San

Andres Mountains (115) of southern New Mexico. Independent

pumas (n = 40) born in the San Andres Mountains rarely dispersed

distances .200 km and the majority dispersed in a north-south

direction along the spine of the mountain range settling within

high-quality habitat [10]. Twenty-one females settled only 1.4

home range diameters from their natal range. However, several

pumas (n = 11) dispersed from the San Andres Mountains to points

east and west. Five individuals traveled west and two of these

crossed both the Rio Grande and Highway 25 to settle in the large

central patch (85) encompassing the Mogollon Rim. The region to

the west of the San Andres Mountains has relatively high current

flow, with suitable patches (119 and 124) that could act as

stepping-stones to the much larger and contiguous Mogollon Rim.

Indeed, some pumas actually dispersed to and settled in these

smaller habitat patches [10]. But six pumas traveled east across the

Tularosa Basin, a desert basin of relatively low predicted

conductance, to settle within both the Sacramento (114) and

Guadalupe Mountains (131). During these dispersal events, pumas

moved in a straight line and crossed 45–65 km of desert in ,7

days [10].

These observations point to both the strengths and weaknesses

of our modeling approach for conservation planning. Our model

shows the importance of stepping-stone habitats for pumas moving

westward from the San Andres Mountains. However, our maps

show relatively low levels of movement through any particular

portion of the Tularosa basin. This should not be taken to imply

that this area isn’t important for movement. On the contrary, the

large surface area of the San Andres and Sacramento Mountains

and relatively uniform conductance values between them mean

that current, and thus predicted movement probabilities, are

spread out across this basin. Interestingly, large mountain ranges

within the southern portions of both states are very visible across

expanses of desert. In the case of the San Andres-Sacramento

linkage, pumas would be able to see one mountain range from the

other, and may simply be taking the shortest route. Long-distance

perception is not accounted for in models like ours, but is an

important factor in dispersal [36]. Nonetheless, our models predict

substantial movement across the basin, just that this movement

would be spread out rather than concentrated in small areas. Our

models also predict important movement routes from the San

Andres Mountains to the north and then east and south, which

would maximize use of high-quality habitat by allowing pumas to

move along the axes of various mountain ranges.

Detailed assessments of puma dispersal patterns are needed to

more fully understand the breadth of habitats that pumas may use

during dispersal. Understanding the motivation behind such

events will further strengthen the use of connectivity maps, such

as ours, as tools for conservation planning [37]. For instance,

dispersing pumas may travel for brief periods in different

directions, killing prey and establishing temporary home ranges

(THR) before they finally settle. The ultimate location that they

settle relative to where they were born is usually not as simple as
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the straight-line distance between two points. For example, a

female puma dispersed from the Oquirrh Mountains, Utah to the

White River Plateau in Colorado, a straight line distance of

357 km, one of the longest recorded dispersal distances for a

female puma [38]. However, this female actually travelled over

1,300 km during her dispersal, having crossed one interstate

highway and several other federal and state highways, and

successfully negotiated four different rivers and established at least

three different THRs [38].

Network Centrality and Large-scale Disturbance
Areas of high cumulative flow indicate zones with high

centrality, i.e., areas important for connecting many pairs of

high-quality habitat patches, the loss of which can result in

multiple habitat patches in the network becoming disconnected

([34]; e.g., the Sky Islands in southeastern Arizona, or the complex

of patches in northwestern Arizona). Our maps summarizing

centrality values for habitat patches (Fig. 6) further highlight the

role each habitat patch plays in keeping the network connected.

Patches with high area-corrected centrality scores (Fig. 6B) could

be good conservation investments because they play a stronger

role in network connectivity than would be expected by their size

alone, and because their small area means they may be

particularly vulnerable to loss. Recall that all habitat patch pairs

were modeled using 1 Amp of current between them, so that large

and small patches were treated as equally important. This

modeling choice emphasizes keeping small patches connected to

the network, but could be altered by allowing more current to flow

from larger (presumably more important) habitat patches.

Regardless of how patches are weighted, these analyses of network

centrality can yield important insights into how the loss of high-

quality habitat patches can affect overall network connectedness.

Our models can help identify high-quality patches and forecast

impacts to connectivity when such patches are lost owing to

catastrophic events. For example, large-scale disturbances, includ-

ing wildfire and insect outbreak, have increased in magnitude and

severity across the western U.S. [39,40] and could impact or

eliminate key habitat areas. Moreover, increasing drought is

expected to spur an increase in fire activity and insect outbreaks

that will negatively impact the quality and distribution of forests

and woodlands [41]. In the Southwest, exceptionally large

wildfires, such as the 2011 Wallow Fire (217,741 ha) in eastern

Arizona and the 2012 Whitewater-Baldy Complex Fire

(120,534 ha) in western New Mexico, negatively impacted

extensive areas of high-quality habitat for pumas, their prey, and

other species of conservation concern (e.g., [42]). Each of these

fires was the largest in state history and burned extensive areas of

the Mogollon Plateau (85). Also in 2011, the Horseshoe Two Fire

(90,226 ha) burned large portions of the Chiricahua Mountains

(127) in southeastern Arizona. This area comprises the largest

high-quality habitat patch in the ecologically important Sky

Islands region, which connects genetically distinct subpopulations

of pumas [14]. Such changes in forest and woodland structure and

distribution will most likely impede landscape connectivity and

conservation efforts seeking to sustain habitat for pumas and other

species over extensive areas [43].

Puma Metapopulation Structure in the Southwest
An analysis of the genetic structure of pumas within Arizona,

Colorado, New Mexico, and Utah revealed complex metapopu-

lation structure, with a relatively clear genetic discontinuity

occurring between regions that constitute the southern Rocky

Mountains versus regions further south characterized as the Sky

Islands [14]. Within the Sky Islands region, more complex genetic

structure was evident with recognized subpopulations in south-

eastern Arizona that were distinct from those in southern New

Mexico. In addition, populations of pumas in central portions of

Arizona and New Mexico represented a transition between

southern populations and those in northern Arizona and New

Mexico, which were genetically more similar to subpopulations in

Colorado and Utah. These latter subpopulations were part of the

larger core population inhabiting the southern Rocky Mountains.

Our habitat models, in general, supported this hierarchical level of

genetic structure with low genetic differentiation among sample

locations within single habitat patches predicted by our models

relative to sample locations between habitat patches [14].

Sustaining puma populations in the Southwest will depend, in

part, on the maintenance of the current metapopulation structure,

which is a consequence of a network of proximate high-quality

habitat patches that support dispersal and gene flow. Some of

these patches are very large and contiguous, whereas other patches

are small and incapable of supporting viable populations [10,14].

Although pumas are capable of dispersing over great distances

(.1,000 km; [38,44]), these events are rare and may be

symptomatic of patterns of ongoing habitat change or resource

management in the West. Protecting or increasing habitat

connectedness will be key to maintaining a viable metapopulation

in the changing landscapes characterizing the Southwest region

[9,14].

Conclusions

Successful puma conservation will hinge on land management

practices that conserve the integrity of large habitat patches, but

also protect the small, high-quality habitat patches that can sustain

small puma populations or act as stepping stones which facilitate

dispersal. Our identification of high-quality habitat patches and

estimates of habitat connectivity can be used to generate

hypotheses about the connective value of different habitat

components, identify critical pinch points or linkages for animal

movement, target the collection of independent data, and inform

regional conservation planning efforts at spatial scales that are

relevant to key ecological processes such as dispersal [37,45].

Indeed, these processes will be facilitated by conservation,

management, or restoration activities occurring at scales that are

congruent with the life history and habitat requisites of wide-

ranging wildlife species, including pumas. Furthermore, unlike

most other techniques for characterizing landscape connectivity,

our approach permits the quantitative and simultaneous evalua-

tion of multiple alternative linkages, which can be used to develop

more comprehensive conservation planning strategies. Since our

results reflect expert-defined inputs derived at a coarse spatial

resolution and do not capture many of the landscape features (e.g.,

cliff areas) that might preclude localized movements, project-level

planning efforts that draw on our results should do so with caution.

Approaches that include more in-depth assessments of dispersal

and associated fine-scale patterns of habitat use by pumas, as well

as more detailed analyses linking genetic relatedness among

subpopulations with measures of connectivity, are needed to

validate and refine landscape-scale models of habitat quality and

connectivity in order for such models to be confidently used to

plan for conservation efforts in the region.
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