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Abstract

A direct sum form is proposed for constructing a composite game from two 2|2 games, prisoner’s dilemma and snowdrift
game. This kind of direct sum form game is called a multiple roles game. The replicator dynamics of the multiple roles game
with will-mixed populations is explored. The dynamical behaviors on square lattice are investigated by numerical
simulation. It is found that the dynamical behaviors of population on square lattice depend on the mixing proportion of the
two simple games. Mixing SD activities to pure PD population inhibits the proportion of cooperators in PD, and mixing PD
activities to pure SD population stimulates the proportion of cooperators in SD. Besides spatial reciprocity, our results show
that there are roles reciprocities between different types of individuals.

Citation: Ma C, Cao W, Liu W, Gui R, Jia Y (2013) Direct Sum Matrix Game with Prisoner’s Dilemma and Snowdrift Game. PLoS ONE 8(12): e81855. doi:10.1371/
journal.pone.0081855
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Introduction

As mathematical framework, evolutionary game theory has

been used to model evolutions in social, economical and biological

systems widely [1–3]. One of the fundamental problems in this

theory is the evolution and maintenance of cooperation among

selfish individuals [4–8]. Two prominent mathematical metaphors

have attracted most attention in theoretical and experimental

studies of cooperation, the prisoner’s dilemma and the snowdrift

games [9–11]. In both games, each player decides whether to

cooperate or defect. In the prisoner’s dilemma(PD), cooperation of

the players results to the highest payoff which is equally shared

among the two players, yet individual defectors will do better if the

opponent decides to cooperate. Since the selfish players want to

maximize their own income and they both decide to defect. None

of them gets a profit and instead of equally sharing the payoff

received by mutual cooperation, they end up almost empty-

handed. The snowdrift(SD) game has different payoffs matrix

compare with the PD. It is an interesting alternative for the study

of cooperation, and individuals in such game can gain access to

benefits for the pair at one individual cost. Cooperators have to

bear the costs whereas defectors are not. Both games represent

social dilemmas [12], in which defectors are prone to exploit

cooperators, and have an evolutionary advantage over cooperators

in populations. But cooperation is widespread in the real world

and required for many levels of biological organization ranging

from genes to groups of animals. Cooperation is also the decisive

organizing principle of human societies. Therefore, the underlying

mechanisms of cooperation are much needed and have been

investigated extensively in different contexts, such as kin selection

[13], direct reciprocity [4,9,14–16], indirect reciprocity [17–19],

group selection [20–22] and network reciprocity [23,24], which

are summarized as five rules [25]. The network reciprocity could

also be regarded as a generalization of spatial reciprocity.

To study the dynamical behaviors of a spatial game, the

following points should be considered: the spatial structure on

which the game runs, the interactive ways of individuals, the

updating and mutation rules. The most common spatial structure

is the square lattice [23], in which the cooperators can form

clusters to protect themselves against the exploitation by defectors.

Small-world networks, scale-free graphs and evolving networks

may also serve as the spatial structures of a game [26]. By adopting

coevolutionary rules, coevolutionary games can rearrange network

structures [27]. For instance, Chen et al. [28] have proposed a

coevolutionary rule in spatial public goods games. The interactive

ways are determined by payoff functions, which are known as

payoff matrices in matrix games, and the scope of opponents, such

as Von Neumann and Moore neighborhood in square lattice,

pairwise interaction, group interaction, etc. Strategy updating and

mutation rules may also affect evolutionary dynamics. Some

examples include the birth-death and imitation rule [29], the

proportional imitation rule [30], the reinforcement learning

adoption rule [31], or the Fermi rule [32]. Wang et al. [33] have

recently considered an adaptive strategy-adoption rule in which

the focal player evaluates its strategy by comparing the average

payoff of each strategy in the neighborhood. They have shown

that the survivability of cooperators has a significant increment in

contrast with that of pairwise strategy updating. Based on win-

stay-lose-shift rule, Liu et al. [34] introduced a win-stay-lose-learn

strategy updating rule in spatial prisoner’s dilemma game, where

the focal player attempts to update her strategy only when her

payoff is less than her aspiration.

Most previous works about PD and SD game have been

referred to the consideration of the individual interaction being
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one fold, which means that all interactions adopt either PD or SD

payoff matrix [32–35]. That is all individuals participate in the

same kind of game. However, the situation that individuals

involved in multiple activities is happened frequently in economic

and social activities or biological behaviors. In the context of game

theory, individuals participate in multiple games and act different

roles in these games. Such games can be called multiple roles

game(MRG).

In the present work, a simple MRG model with PD and SG

payoff matrix is constructed. In the modeling approach section, we

describe the model for multiple roles games with prisoner’s

dilemma and snowdrift game. In the results section, the replicator

dynamics of the multiple roles game with will-mixed populations is

explored, and the dynamical behaviors on square lattice are

calculated in a numerical way over the parameter space. In the last

section, conclusions are presented and the potential clues to other

general cases are predicated.

Modeling Approach

To elaborate the idea of MRG, let’s focus on two-strategy

games. The two strategies can be denoted as cooperation and

defection, abbreviated as C and D, respectively. The payoff matrix

has the form

C D

C

D

R S

T P

 !
ð1Þ

Here, a player with C strategy obtains profit R from another C
player, S from a D player. Similarly, a D player obtains T from a

C player, P from another D player. The Prisoner’s dilemma(PD)

game starts on the condition as following:

TwRwPwS: ð2Þ

The relationship RwP implies that mutual cooperation is superior

to mutual defection, while the relationships TwR and PwS imply

that defection is the dominant strategy regardless of opponent’s

strategy. The SD game has a different condition as shown below:

TwRwSwP: ð3Þ

In contrast to PD, the best strategy now depends on the

opponent’s strategy. The relationship TwR implies that cooper-

ation is better if the opponent defects, while SwP implies that

defection is better if the opponent cooperates.

The general payoff matrix form(1) has too many parameters to

be analyzed. To prevent this kind of situation, the payoff matrix

form with two parameters is given for two-strategy game as

following [36,37],

C D

C

D

1 S

T 0

 !
ð4Þ

with {1vSv1 and 0vTv2. If Tw1w0wS, (4) indicates PD

payoff matrix, and if Tw1wSw0, it indicates SD payoff matrix.

If a MRG model with PD and SD is constructed with the payoff

matrix (4), it would have four parameters which will lead to

complexity of analysis. Therefore, it is necessary to construct single

parameter payoff matrices of PD and SD. One can rescale the

payoff matrix (4) to single parameter forms [10,11,35,38] as shown

in Eq.(5)

MPD~
1 0

1zu u

� �
ð5Þ

for the PD game, and

MSD~
1 1{v

1zv 0

� �
ð6Þ

for the SD game. Both u and v are constrained to the interval ½0,1�.
Obviously, (5) and (6) satisfy the corresponding inequalities (2) and

(3) respectively.

Now consider a population where each individual has two

identities: prisoner for PD game and driver for SD game. Each

individual participates in two games simultaneously. When two

individuals interplay, the process is divided into two steps. In the

first step, they have to determine what kind of game they will play,

and in the second step, they play the selected game according to

their own strategy. Let us assume that in a pairwise interplay they

choose PD game with probability p, SD game with probability

1{p. In this way, a simply MRG model is constructed(Fig. 1). The

left panel of Fig. 1 shows that there are two channels of interaction

between the individual A and B, the PD channel with probability p

and the SD channel with probability 1{p. The right panel of

Fig. 1 shows the details of the payoff matrix of MRG. Here we

denote strategies with capital letters C and D in PD game, and

lowercase letters c and d in SD game. Formally, an extended

payoff matrix MEx can be obtained by direct sum for the MRG,

MEx:MPD+MSD~
MPD 0

0 MSD

� �
ð7Þ

Since it is impossible that an individual who opts for PD game

interacts with the individual who has made a choice of SD game

with c or d strategy, we express these cases with two sub-matrices 0
in (7).

To construct a spatial model of MRG, let’s place each

individual on one cell in a two-dimensional L|L square lattice

with periodic boundary conditions being used. There are no

empty cells on lattice. An individual interacts with its Moore

neighborhoods, and its total payoff is the sum of payoffs obtained

from its all neighbors. The population is asynchronously updated

by the rule known as the replicator rule or proportional imitation rule

[30,36,39]. Randomly selecting a focal individual i, let pi denotes

its total payoff, si its category, or its strategy set. Individual i

updates its strategy set by comparing its total payoff pi to the total

payoff pj of a randomly selected neighbor j. The focal individual i

adopts j’s strategy set sj with a probability Pij proportional to the

payoff difference, provided that pivpj . So the probability Pij is

given by

Pij:P(sj?si)~
(pj{pi)=W, pivpj ,

0, pi§pj ,

�
ð8Þ

where W denotes a normalization constant to ensure Pij[½0,1�.
Here

Direct Sum Matrix Game
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W~

k(1zv), p~0

k½1zmax(u,v)�, 0vpv1,

k(1zu), p~1,

8><
>: ð9Þ

where k~8 represents the number of i’s Moore neighbors. After

updating its strategy set, the payoff of the focal individual i with

that of its all neighbors are reset to zero. Note that the current

MRG model does not take into account mutations in updating

strategy sets, and individuals propagate every strategy of its each

role to the next generation perfectly.

Results

Replicator dynamics of the multiple roles game
According to the strategies individuals adopt, they can be

divided into four categories, which can be recorded as Cc, Cd, Dc,

Dd . With this convention, Cd means that the individual adopts

strategy of cooperation in PD games, and defection in SD games,

and the other three categories are similar to Cd. In the replicator

dynamics, x1, x2, x3, x4 represent the fractions of Cc, Cd, Dc, Dd
respectively. Without arising confusions, sometimes Cc, Cd, Dc,

Dd also represent the fractions of the corresponding types of the

individuals. The payoff matrix for the four strategies is:

A~

1 pz(1{p)(1{v) 1{p (1{p)(1{v)

pz(1{p)(1zv) p (1{p)(1zv) 0

p(1zu)z(1{p) p(1zu)z(1{p)(1{v) puz(1{p) puz(1{p)(1{v)

p(1zu)z(1{p)(1zv) p(1zu) puz(1{p)(1zv) pu

0
BBBBBB@

1
CCCCCCA

ð10Þ

The deterministic evolutionary game dynamics are given by the

replicator equation [40,41] _xxi~xi (Ax)i{xT Axð Þ. Here

x~(x1,x2,x3,x4)T , and
P

xi~1. Let _xxi~0, it is not difficult to

get eight equilibrium points: (1,0,0,0), (0,1,0,0), (0,0,1,0),

(0,0,0,1), (1{v,v,0,0), (0,0,1{v,v), (1{ p
1{p

u{v,0,0, p
1{p

uzv),

(0,v{ p
1{p

u,1{vz p
1{p

u,0). Apparently, only the last two are

related to the parameter p. Consideration of the constraint

0ƒxiƒ1, the seventh and eighth are only valid as they meet

criterion 0ƒpuz(1{p)vƒ1{p and 0ƒ(1{p)v{puƒ1{p,

respectively. It shows that the mixed probability p of PD and

SD can influence the number of the equilibrium points.

Effect of the mixed probability p on population structure
Simulation runs on a 51|51 lattice with four categories

individuals initial randomly uniform distributing over it equiprob-

ably. To ensure a correct convergence, 11000 time steps are

employed [36], where one time step means each individual

updates its strategies one time averagely. Preliminary simulation

results shows that, for p from 0 to 1 step 0:05, the two-dimensional

u{v parameter plane can be divided into four areas roughly as

shown in Fig. 2. As expected, individuals tend to cooperate for

smaller u or v values in both games, to defect for larger u or v
values. As a result, Cc individuals locate mainly in left bottom

region on u{v plane, Cd in left up region, Dc in right bottom

region, and Dd in right up region. For more details, we set the

parameter u at the interval ½0,0:2� with step 0:01, v at ½0,1� with

step 0:05, and for p from 0 to 1 step 0:05. For each p, we introduce

average fractions of Cc, Cd, Dc, Dd over the region u[½0,0:2� and

v[½0,1� in the u{v phase plane. These global indexes fall in the

range ½0,1�. Fig. 3 shows the simulation results of the influence of p
on the average fractions of the four categories of individuals. The

left endpoints of the curves correspond to the case p~0, which

Figure 1. Multiple roles game(MRG) model with PD and SD. There are two interaction channels between individual A and B. The channel PD
has a probability p to be selected and the channel SD has a probability 1{p to be selected.
doi:10.1371/journal.pone.0081855.g001

Figure 3. The average fractions over u{v parameter plane of
Cc, Cd, Dc, Dd in dependence on p. For each p, the simulations run
on 51|51 square lattice with (u,v) in discrete u{v parameter plane.
The initial average fractions of the four types are all 0:25.
doi:10.1371/journal.pone.0081855.g003

Figure 2. Schematic presentation of u{v parameter plane.
Simulation runs with the parameters as u½0,1� step 0:05, v½0,1� step 0:05.
doi:10.1371/journal.pone.0081855.g002

ð10Þ
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indicate the population structure with pure SD game. The right

endpoints of the curves correspond to the case p~1, which

indicate the population structure with pure PD game. Comparing

with these reference endpoints the average fractions of Dc and Dd

form two convex curves, and the average fractions of Cc and Cd

form two concave curves. It is quite obvious that from the global

perspective, mixing SD and PD games will stimulate Dc and Dd,

and inhibit Cc and Cd individuals.

For comparison with the pure PD and SD games, let PDC

represents the average fraction of players with C strategy in PD

games, which equals to CczCd, and SDc represents the average

fraction of players with c strategy in SD games, which equals to

CczDc. The average fractions of PDC and SDc are given in

Fig. 4 as functions of p. The SDc curve increases with the

increasing mixed probability p, which indicates cooperators of SD

increase as p increases. It means that mixing PD game in SD

population can stimulate cooperate fraction in SD. The average

fraction of PDc forms a concave curve and stills bottoming out in

the area p~0:2 to 0:4. From the view of PD, mixing SD game in

PD population tends to inhibit the cooperate C strategy in PD

game. The extent of inhibition reaches a maximum at p~0:2 to

0:4. The population fractions distributing in the phase plane can

reveal more details of the evolutionary dynamics. Fig. 5 shows the

fraction of SDc distributing in u{v parameter plane. As a frame

of reference, Fig. 5A(p~0:0) represents the case of pure SD

population, in which the SDc individuals are mainly distributed in

the low value zone of v, or the bottom of u{v plane, and have no

association with the parameter u. Fig. 5B,C,D(p~0:3,0:6,0:9
respectively) show that with the increase of p, the SDc region

expands slowly to the zone of the larger v value. This is in

consistency with the SDc curve in Fig. 4. Fig. 6 shows the the

fraction of PDC distributing in u{v plane. As a frame of

reference, Fig. 6A(p~1:0) represents the case of pure PD

population, in which the PDC individuals are mainly distributed

in the low value zone of u, or the left of u{v plane, and have no

Figure 4. The average fractions of CczCd as PD C, CczDc as
SD c, and CdzDc in dependence on p. For each p, the simulations
run on 51|51 square lattice with (u,v) in discrete u{v parameter
plane. The initial average fractions of the four types are all 0:25.
doi:10.1371/journal.pone.0081855.g004

Figure 5. The fractions of SDc~CczDc individuals in u{v parameter plane with p = 0.0(pure SD population), 0.3, 0.6, 0.9. The initial
average fractions of Cc, Cd , Dc, Dd are all 0:25 and the individuals are randomly distributed on lattices evenly in the beginning.
doi:10.1371/journal.pone.0081855.g005

Figure 6. The fractions of PDC~CczCd individuals in u{v parameter plane with p~1:0(pure PD population), 0:7, 0:4, 0:1. The initial
fractions of Cc, Cd , Dc, Dd are all 0:25 and the individuals are randomly distributed on lattices evenly in the beginning.
doi:10.1371/journal.pone.0081855.g006
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association with the parameter v. Fig. 6B,C(p~0:7,0:4 respec-

tively) show that with the decrease of p, the PDC region

compresses to the zone of the smaller u value inhomogeneously.

But one should note that for p~0:1(Fig. 6 D), the PDC region has

an anomalous expansion comparing with that of p~0:4(Fig. 6 C).

This kind of anomalous expansion is consistent with the curve

PDC in Fig. 4 which decreases first and then increases with p from

1:0 to 0. To explore the origin of the PDC anomalous expansion

at lower p values, it should be noted that PDC~CczCd. The

fractions of Cc and Cd in u{v parameter plane are shown in

Fig. 7 A–F for several different p values. From Fig. 7 A,D we know

that the anomalous expansion of PDC for p~0:1 is originated

from that of Cd.

It is well known that if there is only one kind of game in

population, such as PD or SD game, there exists effect of spatial

reciprocity in lattice space [23,24]. But if an individual in lattice

space is drawn into multiple games, its different strategies in each

game may lead up to the situation: what one loses on the swings,

she gets back on the roundabouts. In the current situation, it

becomes that what one loses as a prisoner in PD, she gets back as a

driver in SD, or vice verse. This phenomenon can be called as roles

reciprocity. This effect superimposes on that of spatial reciprocity to

Figure 7. The fractions of Cc (the first row), Cd (the second row) and Dc (the third row) individuals in u{v parameter plane. For the
first column p = 0.1; the second column p = 0.4;the third column p = 0.7.
doi:10.1371/journal.pone.0081855.g007
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influence the fractions of individuals on payoff matrix parameter

space u{v plane.

In the PD and SD MRG case, from comparing the fractions of

Cd and Dc (Fig. 7 D–F, G–I) in u{v parameter plane, it is found

that the regions of Cd and Dc extend to the side of each other.

This phenomenon is a typical demonstration of roles reciprocity.

Roles reciprocity strengthens the survival ability of Cd and Dc

players. Although individuals with strategies Cd or Dc have no

maximal fractions in four categories(Fig. 3), they have more

tolerance in unfavorable parameters(Fig. 4 CdzDc curve) in

appropriate parameter intervals of p, u and v.

To illustrate the effect of roles reciprocity, we cancel the

interaction between the Cd and Dc individuals for simulation with

p~0:1. Comparing with roles reciprocity(the case of existing

interaction between the Cd and Dc), the average fractions of Cd

and Dc descend in the absence of interaction between them(Fig. 8).

In u{v parameter plane, the effect of roles reciprocity become

ever more evident(Fig. 9). Without the roles reciprocity, the cross

domain of Cd and Dc vanished completely(Fig. 9 B). It can be say

that Cd and Dc individuals establish a ecological chain in a small

parameter region with about u[½0,0:06� and v[½0:3,0:7� at p~0:1.

The fact that the region is too small reflects the frangibility of that

toy ecosystem.

Discussion

In the real world, it is common that an agent acts as multiple

identities. It can be say that the agents participate in multiple

games and have multiple roles, and it can be called multiple roles

game, or MRG. To imitate these cases, a evolutionary game

model is introduced, in which each agent has two identities, one

for PD game and another for SD game. A parameter p is

introduced to indicate the probability to select PD game for each

pair interaction. It shows that the mixed probability p of PD and

SD can influence the number of the equilibrium points in the

deterministic evolutionary game dynamics. In the spatial MRG,

the agents are placed on patches in a two-dimensional lattice with

periodic boundary conditions being used. The number simulation

shows that mixing SD and PD games will stimulate Dc and Dd,

and inhibit Cc and Cd individuals from the global perspective.

Comparison with the pure PD or SD games shows that SD

cooperators ratio(SDc~CczDc) increases as p increase, and PD

cooperators ratio(PDC~CczCd ) is inhibited for p[(0,1).

The population fraction distributions in the u{v phase plane

reveals that besides spatial reciprocity, there exist roles reciprocity,

which means for some kind of agents their multiple identities will

have help them to obtain benefits in population. In the MRG

model with PD and SD games, because of the roles reciprocity, Cd
and Dc individuals form a ecological chain in appropriate

parameter region. These toy ecosystems are fragile on account

of too small of the appropriate parameter areas.

To configure our multiple roles game model, we introduced

direct sum form to construct the payoff matrix from simple game’s

payoff matrix. This method gives a way to construct complex

MRG model from simple sub games. In game theory experiments,

participators often influence by various factors. Or in biology, a

group may have more than one function. If one need to construct

a game theory frame in these cases, the MRG modeling method

could be an option to consider.

Figure 9. Illustration of the effect of roles reciprocity of Cd and Dc with p~0:1 in u{v parameter plane. A) The fraction of CdzDc with
the interaction between Cd and Dc. The cross domain of Cd and Dc obviously exists. B) The fraction of CdzDc without the interaction between Cd
and Dc. The cross domain of Cd and Dc vanishes completely.
doi:10.1371/journal.pone.0081855.g009

Figure 8. Illustration of the effect of roles reciprocity of Cd and
Dc with p~0:1. Without the interaction between Cd and Dc, their
average fractions descend obviously.
doi:10.1371/journal.pone.0081855.g008
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