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Abstract

A single mutation can alter cellular and global homeostatic mechanisms and give rise to multiple clinical diseases. We
hypothesized that these disease mechanisms could be identified using low minor allele frequency (MAF,0.1) non-
synonymous SNPs (nsSNPs) associated with ‘‘mechanistic phenotypes’’, comprised of collections of related diagnoses. We
studied two mechanistic phenotypes: (1) thrombosis, evaluated in a population of 1,655 African Americans; and (2) four
groupings of cancer diagnoses, evaluated in 3,009 white European Americans. We tested associations between nsSNPs
represented on GWAS platforms and mechanistic phenotypes ascertained from electronic medical records (EMRs), and
sought enrichment in functional ontologies across the top-ranked associations. We used a two-step analytic approach
whereby nsSNPs were first sorted by the strength of their association with a phenotype. We tested associations using two
reverse genetic models and standard additive and recessive models. In the second step, we employed a hypothesis-free
ontological enrichment analysis using the sorted nsSNPs to identify functional mechanisms underlying the diagnoses
comprising the mechanistic phenotypes. The thrombosis phenotype was solely associated with ontologies related to blood
coagulation (Fisher’s p = 0.0001, FDR p = 0.03), driven by the F5, P2RY12 and F2RL2 genes. For the cancer phenotypes, the
reverse genetics models were enriched in DNA repair functions (p = 261025, FDR p = 0.03) (POLG/FANCI, SLX4/FANCP,
XRCC1, BRCA1, FANCA, CHD1L) while the additive model showed enrichment related to chromatid segregation (p = 461026,
FDR p = 0.005) (KIF25, PINX1). We were able to replicate nsSNP associations for POLG/FANCI, BRCA1, FANCA and CHD1L in
independent data sets. Mechanism-oriented phenotyping using collections of EMR-derived diagnoses can elucidate
fundamental disease mechanisms.
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Introduction

A single mutation can alter cellular and global homeostatic

mechanisms and give rise to multiple clinical diseases, as seen in

coagulopathies and cancer syndromes [1–3]. This genetic pleiot-

ropy is not captured by current forward genetic approaches, such

as genome wide association studies (GWAS) for specific diseases,

which typically narrow case definitions to reduce genetic

heterogeneity and improve the signal-to-noise ratio [4]. By

evaluating only a small portion of a variant’s phenotypic spectrum,
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these approaches may underestimate true genetic effect sizes.

Quantitative approaches to address genetic pleiotropy typically

utilize either data reduction methods [5–7] or post-hoc evaluation

of association statistics derived from individual phenotypes [8].

These approaches, however, either require correlated traits or are

limited to a relatively few traits [9]. Hence, they are not well-suited

for complex phenotypes such as cancer where tumor multiplicity

within individuals is rare and the phenotypic spectrum is broad.

An alternative analytic approach is a reverse genetics model,

which characterizes the phenotypic consequences of a known

genetic mutation [10]. However, current implementations such as

Phenome-Wide Association Study (PheWAS), which serially tests

for associations between common polymorphisms and hundreds of

clinical disease entities [11], also rely on discrete, pre-specified

phenotypes.

To leverage genetic pleiotropy for single nucleotide polymor-

phism (SNP) discovery, we propose an analytical approach

employing ‘‘mechanistic phenotypes’’. We define a mechanistic

phenotype as the collection of all clinical diseases that arise from

the perturbation of a discrete cellular mechanism. Unlike current

approaches to modeling genetic pleiotropy, all constituent diseases

comprising a mechanistic phenotype are considered equivalent,

even though they may be clinically disparate. By assuming a

common underlying cellular mechanism among the diseases, a

mechanistic phenotype incorporates a broad disease spectrum into

a single phenotype definition, which may increase the power to

detect a true functional association with any underlying genetic

variants, if the variant interrupts a cellular mechanism common to

the phenotypes. A test of this idea requires datasets that encompass

many potentially mechanistically-related diagnoses, an attribute

characteristic of electronic medical record (EMR) systems [11].

We hypothesized that SNPs truly associated with mechanistic

phenotypes disrupt basic cellular or physiological mechanisms and

that these mechanisms would be delineated by identifying

functional commonalities among genes containing SNPs with the

strongest associations. We tested this hypothesis with two distinct

disease processes, thrombosis and tumorigenesis, and defined

mechanistic phenotypes comprised of collections of thrombosis or

cancer-related diagnoses. We identified associations between low

minor allele frequency (MAF) non-synonymous SNP (nsSNP)

variants and mechanistic phenotypes derived from diagnoses

extracted from EMR data. We analyzed low frequency nsSNP

variants since they may contribute substantially to genetic

heritability and can have large effect sizes, thereby enhancing

the effectiveness of our approach [12–14]. We employed a two-

step discovery approach. In the first step, nsSNPs were first sorted

by the strength of their association with the mechanistic

phenotypes, as measured by association p-values. In the second

step, the most strongly associated nsSNPs were tested for

enrichment in cellular ontologies. We compared four association

approaches: standard recessive and additive forward genetics

models and two reverse genetics models. The reverse genetics

models perform association testing using subsets of constituent

diseases that meet pre-defined selection criteria. These models

analyzed only homozygotes, as we hypothesized that the effects of

a nsSNP would be strongest among minor allele homozygotes, and

this effect would be best detected when contrasted with common

allele homozygotes. We report that a hypothesis-free ontological

enrichment discovery approach showed that hemostatic mecha-

nisms were specifically associated with the thrombosis phenotype

and mechanisms underlying genomic stability (DNA repair and

chromatid segregation) were exclusively associated with cancer.

These results demonstrate that mechanistic phenotypes using low

frequency nsSNPs can identify underlying disease processes and

functionally enriched sets of candidate genes.

Materials and Methods

Ethics Statement
The genetic materials at Vanderbilt were accrued through

leftover blood collected through routine clinical testing. The

Vanderbilt BioVU resource operates as nonhuman subjects

research according to the provisions of Code of Federal Regulations

45, part 46, as described previously [15]. Individuals at other

eMERGE sites were consented as part of the DNA biobank at

each site [16]. This study was approved by the Institutional

Review Board at each site (Group Health Cooperative, University

of Washington, Marshfield Clinic, Mayo Clinic, Northwestern

University, Vanderbilt University and Geisinger Health System).

Study population
3,009 white and 1,655 African-American (AA) subjects who had

previously been genotyped at Vanderbilt University Medical

Center (VUMC) were used in the thrombosis and cancer analyses,

respectively. Subjects were drawn from VUMC’s BioVU resource,

a de-identified collection of patients whose DNA was extracted

from discarded blood and linked to phenotypes through a de-

identified electronic medical record [15]. The subjects belonged to

two curated cohorts with pre-existing GWAS data: the Vanderbilt

Genome Electronic medical Records (VGER) project (n = 1,217)

within the electronic Medical Records and Genomics (eMERGE)

network [16]; and an ongoing study (Vanderbilt Electronic

Systems for Pharmacogenomic Assessment; VESPA) examining

the genomics of drug response phenotypes (n = 3,447). Race

assignment was determined using STRUCTURE [17], with

whites and AAs defined as a .90% probability of being in the

CEU or YRI clusters, respectively, using a HapMap population as

the reference.

SNP Selection
Genotype data were acquired on the Illumina 1M-Duo (n = 433

nsSNPs), Infinium Exome BeadChip (n = 83 nsSNPs) and

Omni1_QUAD (n = 350 nsSNPs) platforms for AA subjects; and

the Omni1_QUAD platform for white subjects. Each dataset was

separately cleaned. Quality control was performed on the Exome

BeadChip data by VANGARD (Vanderbilt Technologies for

Advanced Genomics Analysis and Research Design) using a 2

stage process involving Genome studio and PLINK. The samples

used in this study were analyzed in conjunction with over 20,000

other BeadChip samples. In Genome Studio, SNPs were clustered

and to ensure correctness, manual reclustering was performed

based on quality control measurements such as GenTrain Score,

Cluster Separation, Call Freq scores. Samples were then evaluated

for heterozygous consistency rate between duplicated samples,

heterozygous consistency rate between HAPMAP samples, their

1000 Genome genotyping calls and genotype consistency between

duplicated SNPs on the SNP chip. All samples were evaluated for

gender mismatches, SNPs failing concordance with HapMap,

Mendelian errors, duplicate identification and exclusion of subjects

more closely related than half-siblings. SNPs and samples with a

call rate ,98% were excluded. nsSNPs with a MAF less than 10%

in both white and African-American races and with .9

(thrombosis in AAs) or .10 (cancer in whites) homozygotes for

the minor allele were selected. This MAF threshold was selected in

order to select nsSNPs with relatively low frequencies and with

sufficient minor allele homozygotes for analyses based on the

number of samples available for analysis. For whites, 833 nsSNPs

Mechanistic Phenotypes
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in 748 distinct genes where identified. For AAs, 433 nsSNPs (404

genes) met the selection criteria. Six and seven nsSNPs in whites

and AAs, respectively, had a Hardy-Weinberg p,0.001. The

mean MAF in whites was 7.6% (range 3.7–10%) and 8.5% (range

5.2 to 9.9%) in AAs. A description of the nsSNPs analyzed and

exclusions is shown in Tables S1, S2, S3 in File S1.

Phenotype creation
Clinical diagnoses and problems were extracted from the

VUMC Synthetic Derivative, a de-identified image of the

Vanderbilt EMR [15]. Diagnoses were derived from ICD-9 codes

and physician-maintained problem lists. Problem lists were

manually reviewed and diagnoses were mapped to the most

closely matching ICD-9 code. A total of 673 clinical non-benign

cancer codes and 117 codes related to blood vessel-occlusive

disease (thrombosis) were identified. These codes were aggregated

into 191 and 21 groups of related cancer and thrombosis codes,

respectively (see Tables S4 and S5 in File S1 for groupings).

A conceptual model of mechanistic phenotypes is shown in

Figure S1. A thrombosis mechanistic phenotype was defined using

all 21 thrombosis groupings. Five cancer mechanistic phenotypes

were defined by assigning the 191 aggregated coding groups to one

or more mechanistic phenotype groupings based on common

clinical or epidemiological features: [ALL] – all cancer codes,

[HEM] – all codes for hematological malignancies (rationale:

cancers with a common cellular origin); [CA] – all diagnosis codes

Figure 1. Overview of the nsSNP association approaches. Panel (a) describes key features of the SNP association approaches used. Panel (b)
shows, for a single hypothetical SNP, how assignment of affection status for homozygotes for the minor allele (HZMAs) varies by the approaches. The
table lists cancer codes present among the HZMAs, the number of HZMAs that have the cancer code and the Fisher’s p-value comparing the
proportion of affected HZMAs with the cancer to the proportion in the common allele homozygotes. For this example, all of the listed cancers are
assumed to be constituents of the mechanistic phenotype. For the standard genetic models, all subjects with any of the cancers are classified as
cases. In contrast, the 2 reverse genetics approaches only analyze subsets of these subjects with cancers meeting pre-specified criteria, as designated
by the brackets.
doi:10.1371/journal.pone.0081503.g001
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for primary, non-hematological malignancies, excluding skin

cancers (rationale: tumors that require specific mechanisms such

as angiogenesis); [SKN] –codes related to melanoma, basal cell

carcinoma and squamous cell carcinoma (rationale: tumors that

arise due to unique exposures such as UV radiation); [MET] – all

codes for metastatic/secondary cancers (rationale: tumors with

mechanisms critical for metastasis such extravasation).

SNP association models
Four analytical approaches (standard recessive or additive

genetic models; and 2 reverse genetics approaches) were used to

quantify associations between SNPs and the mechanistic pheno-

types (Figure 1).

Additive and recessive models. For each mechanistic

phenotype, cases were those subjects having a diagnosis that was

a constituent of the mechanistic phenotype (Tables S4 and S5 in

File S1). Controls were those without a constituent diagnosis. For

each SNP and mechanistic phenotype, association p-values were

generated using multivariable logistic regression employing an

additive or recessive genetic model and adjusting for gender, age

and dataset from which the subjects were derived. None of the top

five principal components (PC) from each population was

associated with a mechanistic phenotype and PCs were not

included in the statistical models. QQ plots for the additive models

testing the associations between all SNPs on the genotyping

platforms and the mechanistic phenotypes did not show a pattern

of genome-wide inflation (see Figure S2 and Figure S3). Only

SNPs with an odds-ratio.1 were used in enrichment analyses, as

the goal of these analyses was to identify low-frequency variants

associated with an increased risk of the phenotype.

Reverse genetics models. In general, these approaches

differ from the recessive genetic model in that only a subset of the

constituent diagnoses for a mechanistic phenotype are used to

compute association p-values. In addition, only homozygotes for

the common and minor alleles were analyzed, as nsSNPs with an

additive mode of action would be expected to have higher rates of

affected heterozygotes, which would attenuate the association

between the nsSNP and the phenotype for these models.

Approach 1 (.1 affected): This approach computed association

p-values for a SNP based only on constituent diagnoses of the

mechanistic phenotype that occurred more than once among the

homozygotes for the minor allele. For instance, if 10 diagnoses

were present among the homozygotes, but only 5 occurred in

more than 1 subject, only those 5 diagnoses were evaluated. For

each SNP, the number of homozygotes that have any of the

multiply-occurring diagnosis was tallied. A p-value representing

the likelihood of observing a tally equal or greater than this tally

was computed using a permutation-based approach. Specifically,

for each SNP, the genotypes were permuted (i.e. the genotypes

were randomly reassigned among the subjects) 10,000 times.

Permuting genotypes has the net effect of preserving the overall

numbers of subjects (and MAF) for a given SNP genotype.

Permutations were stratified by study, age and gender. For each

permutation, a new tally was computed for the newly-assigned

minor allele homozygotes based on the diagnoses that occurred

more than once among these subjects. The association p-value is

the proportion of the permutations with tallies equaling or

exceeding the original data. A p-value was computed for each

mechanistic phenotype and SNP.

Approach 2 (.1 affected and Fisher’s p,0.1): This approach

was identical to approach 1, with the exception only multiply-

occurring constituent diagnoses that had a univariate Fisher’s

Exact p-value,0.1 (testing the association of the diagnosis

between the minor allele and common allele homozygotes) were

used to compute the tallies. The Fisher’s p-values were not

adjusted for multiple testing as their function was to ascertain

whether a given diagnosis was represented among minor allele

homozygotes at rates higher than would be expected by chance,

based on the frequency among the common allele homozygotes.

The relatively-high p-value threshold of 0.1 was selected to

exclude those constituent diagnoses that were present among

minor allele homozygotes at levels generally expected by chance.

Based on analyses of permuted cancer data sets, this threshold

excluded ,67% of all constituent diagnoses.

Simulation studies
Simulation studies were conducted to estimate the expected

number of false positives (type I error) associated with the reverse

genetics approaches. Randomized sets of SNPs with the same

MAF distribution as the SNPs in the thrombosis data set were

generated by permuting all genes in that data set 1,000 times,

giving n = 433,000 randomized SNP genotypes. Similarly, SNP

genotypes were permuted 500 times in the cancer data set, giving

416,500 randomized SNPs. The association p-value for each

permuted SNP and the thrombosis or all cancer [ALL]

mechanistic phenotypes, respectively, was computed using the

two reverse genetics methods. Type 1 error rates for cut-offs

between 0.1 and 0.0001 are the proportion of permuted SNPs with

association p-values falling below these cut-offs.

To characterize how the reverse genetics models would perform

in the presence of a disease-causing SNP, 10,000 random samples

of 13 phenotyped subjects were drawn from the thrombosis data

Table 1. Population characteristics.

Thrombosis
study

Cancer
study

Total subjects (n) 1655 3009

No. males (%) 596 (36.0) 1699 (56.5)

No. females (%) 1059 (64.0) 1310 (43.5)

Mean (SD) age 52.3 (17.7) 51.4 (18.7)

Thrombosis diagnoses: n (%)

All thrombosis phenotypes 454 (27.4)

Long-term anticoagulation 179 (10.8)

Stroke 165 (10.0)

Acute myocardial infarction 149 (9.0)

Venous thrombosis 116 (7.0)

Thrombotic pulmonary disease 47 (2.8)

Other disorders1 44 (2.7)

Arterial thrombosis 36 (2.2)

Spontaneous abortion 31 (1.9)

Cancer diagnoses: n (%)

All cancers 1276 (42.4)

Non-hematological, primary (CA) 1076 (35.8)

Secondary/metastases (MET) 362 (12.0)

Hematological (HEM) 371 (12.3)

Skin (SKN) 109 (3.6)

(1) Includes: Defibrination syndrome (n = 16), Primary hypercoagulable state
(n = 13), Budd-Chiari syndrome (n = 3), Thrombophlebitis migrans (n = 1), other
congenital deficiencies (n = 2), congenital factor IX disorder (n = 1), other
coagulation defects (n = 6), congenital factor VIII disorder (n = 3).
doi:10.1371/journal.pone.0081503.t001
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set. The number of subjects selected was the median number of

minor allele homozygotes for the 433 nsSNPs analyzed in this data

set. Four scenarios representing possible ways that a SNP might

cause additional cases were simulated. For each scenario, 5 of the

13 subjects were assigned to be affected with a constituent

diagnosis from the thrombosis mechanistic phenotype (Table S4 in

File S1). While these 5 subjects did not have the newly assigned

diagnosis, they may have had another constituent diagnosis. New

diagnosis assignment was made for four scenarios: 1) each of the 5

subjects was assigned a constituent diagnosis randomly selected

from the list of diagnoses; 2) each of the 5 subjects was assigned a

diagnosis selected with probability equal to the frequency of the

diagnosis in the data set; 3) each of the 5 subjects was assigned a

diagnosis already present among the 13 subjects; and 4) each of the

5 subjects was assigned the same diagnosis, selected randomly

from the list of diagnoses. Under the first 3 scenarios, it is possible

that each of the 5 subjects was assigned a different diagnosis. P-

values for each reverse genetics model were computed, as

Figure 2. ROC analyses for simulation studies. Analyses are based on 10,000 random samples of 13 phenotyped subjects drawn from the
thrombosis data set. ROC curves show sensitivity and specificities based on association p-values when one to five subjects were assigned to be
affected with a constituent disease, as compared to association p-values associated with no additional cases. Panels (a) and (b) show ROC curves
based on p-value associations for the recessive and reverse genetics models (with .2 affected subjects per constituent phenotype), respectively,
when five subjects were assigned a random constituent disease. Each line corresponds to the number of additional subjects assigned a disease.
Panels (c) and (d) represent the same models, respectively, for subjects assigned a disease already present among the 13 subjects in the random
sample. Panel (e) summarizes AUC values from ROC curves for the recessive, reverse genetics with .2 affected subject (RG1) and reverse genetics
with .2 affected and p,0.1 (RG2) models under the four simulations conditions tested. The number of the x-axis refers to the number of additional
subjects assigned an affection status for each simulation scenario.
doi:10.1371/journal.pone.0081503.g002
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described above. Receiver-operator curve (ROC) and area under

the curve (AUC) analyses were used to compare the relative

sensitivity and specificity of the reverse genetics models in

distinguishing SNPs with additional cases to SNPs without

additional cases. As a reference, a model which computed p-value

based on counts all affected subjects was also tested. This model

was similar to a recessive genetic model, with the exception that p-

values were estimated by permutation.

Ontological enrichment
To test the primary hypothesis that nsSNPs most strongly

associated with the mechanistic phenotype (i.e. nsSNPs with the

lowest p-values) have common functionalities, the top-ranked

SNPs were evaluated for ontological enrichment. All Biological

Process (BP) ontologies for each gene within each data set were

downloaded using the DAVID software program [18] and are

found in Tables S6 and S7 in File S1 (n = 1856 and n = 2623

distinct ontologies for the thrombosis and cancer sets, respectively).

Enrichment p-values were computed by sequentially selecting and

testing incremental numbers of the top-ranked genes from a list of

genes sorted by the association p-values between the nsSNP in the

gene and the mechanistic phenotype. All genes containing nsSNPs

with an association p,0.05 were sequentially tested. In addition,

the top 50 genes in the top nsSNPs from GWAS analyses of

thrombosis genes in AAs and the all cancer [ALL] phenotype in

whites using all SNPs were also tested for enrichment. A Fisher’s

exact test was used to test for ontological enrichment between the

top-ranked selected genes and all other genes. For each ontology,

the lowest Fisher’s p-value from the sequential tests was identified.

A low Fisher’s p-value would indicate that functionally related

genes were relatively more strongly associated with the phenotype.

These p-values were adjusted for multiple testing using a

Benjamini-Hochberg (B–H) FDR correction based on all ontol-

ogies present among the genes. Only those ontologies with a B–H

FDR p,0.05 and with more than 1 associated gene were

considered significantly associated. For comparisons between

models, some results tables show enrichment results for ontologies

that did not meet the criteria for significant enrichment.

Testing cancer associations in external datasets
SNPs associated with DNA repair ontologies were evaluated in

2 independent data sets. The first contained 3,928 additional self-

reported white subjects genotyped on the Illumina Omni1_-

QUAD as part of the VESPA (Vanderbilt Electronic Systems for

Pharmacogenomic Assessment) study. The second data set came

from five sites participating in the eMERGE-I&II consortium

(Marshfield Clinic, Northwestern University, Mayo Clinic, Group

Health Research Institute, Geisinger Health System) and con-

tained 14,049 self-reported white subjects who underwent

genotyping using the Illumina Human660W-Quadv1_A or

HumanOmniExpress-12v1.0 platforms [19]. Age, gender, self-

reported race, decade of most recent diagnosis and ICD-9 codes

were available for each subject. For the recessive model, each

homozygous minor allele carrier, 20 controls homozygous for the

common allele were selected, matched on age of diagnosis, gender

and eMERGE site. Only those SNPs that had . = 10 minor allele

homozygotes were analyzed. Exact logistic regression was used to

test the associations between each SNP and phenotype. For the

additive model, all subjects were analyzed. A p,0.05 was

considered statistically significant.

Data analysis
All quality control analyses were performed using PLINK

v1.07 [20]. P-values for the additive and recessive genetic models

were also computed using PLINK. All other analyses were

performed using SAS v9.3 (SAS Institute, Cary, NC). Biological

Process (BP) ontologies were downloaded using the Database for

Annotation, Visualization and Integrated Discovery (DAVID)

v6.7 tool set [18].

Results

Simulation Studies
We tested two reverse genetics models that computed associ-

ation p-values for a mechanistic phenotype based on features of

the constituent diagnoses comprising the phenotype (see Methods

and Figure 1). Phenotype data for the simulation studies was

derived from a set of 1,655 AA subjects for the thrombosis

mechanistic phenotype and from 3,009 whites for the all cancer

[ALL] mechanistic phenotype (Table 1). Type I error rates were

computed to ascertain the expected distribution of p-values from

the models under the null hypothesis. In general, empirical type 1

error rates approximated the association p-values (for instance, the

type 1 error rate for a SNP with a p,0.001 was 0.0011 and 0.0016

in the thrombosis data set for the two models, respectively

[Table S8 in File S1].

Simulation analyses were also used to characterize how the

reverse genetics models would perform under different scenarios in

which an SNP caused thrombotic disease. ROC analyses were

used to compare the sensitivity and specificity of the models when

one to five additional subjects among random samples of 13

phenotyped subjects were assigned to be affected with a

thrombotic disease. A recessive genetic model performed signif-

icantly better than the reverse genetics models at discriminating

SNPs that caused additional cases of a random constituent disease

(AUC of 0.83 versus 0.63 and 0.62 respectively, with 3 additional

cases,) (Figures 2a, b, 2e and Figure A in Figure S4). Similar

results were observed when a SNP caused additional cases with a

risk proportional to the frequency of the constituent disease in the

dataset, though the reverse genetics models performed somewhat

better (AUC of 0.83 versus 0.75 and 0.66, respectively) (Figure 2e

and Figures A, B, C in Figure S5). In contrast, the reverse genetics

models performed better when a SNP gave rise to multiple cases of

Figure 3. Double-stranded DNA repair pathway. Genes identified
in the analyses are shown in red. When DNA is damaged, damage
sensors promote recruitment and assembly of a repair complex
comprised of Fanconi Anemia (FA) genes, BRCA1 and other proteins
to the site of damage.
doi:10.1371/journal.pone.0081503.g003
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constituent diseases (AUC of 0.86 versus 0.91 and 0.88,

respectively) (Figure 2c, d, 2e and Figure B in Figure S4). In

general, the reverse genetics model that computed association p-

values using only those constituent diagnoses from the mechanistic

phenotype that occurred more than once in the minor allele

homozygotes performed better than model that computed p-values

based on constituent diagnoses with a Fisher’s p,0.1. The

exception was for SNPs simulated to add additional cases that had

a single, common diagnoses, where the latter model performed

modestly better than all other models (0.85 versus 0.90,

respectively) (Figure 2e and Figures D, E, F in Figure S5). In

summary, these simulation studies demonstrate that the perfor-

mance of the models varied based on the pattern of the constituent

diseases comprising the mechanistic phenotype. The reverse

genetic models performed best when the SNP demonstrated a

degree of specificity for one or more constituent phenotypes. In

contrast, these models performed poorly when a SNP caused

additional cases of less frequently occurring constituent diseases.

Identification of thrombosis ontologies in African
Americans

We next tested these models in the AA thrombosis data set using

433 nsSNPs (404 genes) selected solely for MAF,0.1 and

represented on common GWAS platforms. The distribution of

p-values from association analyses between the nsSNPs and both

reverse genetics models did not fall out of the range of expectation

based on simulation studies of type 1 error rates (Table S8 and

Tables S9 and S10 in File S1 for the association p-values for each

nsSNP). Hence, candidate nsSNPs could not be identified on the

basis of being statistical outliers. We next tested whether the

nsSNPs most strongly associated the thrombosis phenotype had

common functionalities based on ontological enrichment. While

both models showed the strongest enrichment in ontologies related

to blood coagulation, only the reverse genetics model that selected

for .2 diagnoses demonstrated enrichment that beat FDR

thresholds (Table 2, Tables S11 and S12 in File S1). The enriched

ontologies were related to blood coagulation (Fisher’s exact

p = 0.0001), driven by coagulation factor F5 [21], platelet receptor

P2RY12 [22] and the thrombin cofactor F2RL2 [23]. We used the

same approach using standard recessive and additive models. The

recessive model showed enrichment in coagulation ontologies, but

these did not beat FDR thresholds (Table 2, Tables S13 and S14

in File S1). In contrast, the additive model was not significantly

enriched in any ontology (Tables S15 and S16 in File S1). A

GWAS of all SNPs on the genotyping platforms using an additive

model did not show any associations with genome-wide signifi-

cance (Figure S2). When we took all missense nsSNPs from the full

GWAS and looked for ontological enrichment among the top 50

Table 3. Enriched ontologies for genes associated with the cancer phenotypes in whites.

Model/GO
code GO Term

P-value
thres
hold1

Genes below
thres hold2

Genes with
ontology3

Fisher’s
exact
p-value

FDR
p-value Genes

Reverse Genetics Model (.2 affected subjects)

GO:0006281 DNA repair 0.0098 27 60 0.00002 0.03 FANCA, FANCI, BRCA1, SLX4, CHD1L,
XRCC1

GO:0033554 stress response 0.0098 27 7 0.00003 0.03 FANCA, FANCI, PPP1R15B, BRCA1, SLX4,
CHD1L, XRCC1

GO:0006974 DNA damage
response

0.0098 27 6 0.00003 0.03 FANCA, FANCI, BRCA1, SLX4, CHD1L,
XRCC1

Reverse Genetics Model 2 (.2 affected subjects and Fisher p,0.1)

GO:0006281 DNA repair 0.0098 27 6 0.00002 0.045 FANCA, FANCI, BRCA1, SLX4, CHD1L,
XRCC1

GO:0006974 DNA damage
response

0.0098 27 6 0.00003 0.045 FANCA, FANCI, BRCA1, SLX4, CHD1L,
XRCC1

Additive Model

GO:0000070 mitotic sister
chromatid
segregation

0.0003 2 2 0.000004 0.004 KIF25, PINX1

GO:0007059 chromosome
segregation

0.0003 2 2 0.00004 0.03 KIF25, PINX1

GO:0000279 M phase 0.001 4 3 0.00005 0.03 KIF25, PINX1, FANCA

GO:0022403 cell cycle phase 0.001 4 3 0.00008 0.03 KIF25, PINX1, FANCA

GO:0000087 M phase of
mitotic cell cycle

0.0003 2 2 0.00013 0.04 KIF25, PINX1

GO:0000280 nuclear division 0.0003 2 2 0.00013 0.04 KIF25, PINX1

GO:0007067 mitosis 0.0003 2 2 0.00013 0.04 KIF25, PINX1

GO:0048285 organelle fission 0.0003 2 2 0.00016 0.04 KIF25, PINX1

GO:0022402 cell cycle process 0.0010 4 3 0.00017 0.04 KIF25, PINX1, FANCA

All ontologies with an FDR p,0.05 are shown.
(1) The association p-value cut-off that gave the strongest enrichment.
(2) Number of genes with p-values below the p-value cut-off.
(3) Number of genes with the ontology.
doi:10.1371/journal.pone.0081503.t003
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genes, there were no significantly enriched ontologies (see

Tables S17 and S18 in File S1 for the genes examined and

enrichment analyses). The top ontologies, while not related to

blood coagulation, were driven in the coagulation factor F2/

thrombin.

To ascertain whether a single constituent coagulation pheno-

type was driving the associations, we tested whether the significant

ontological enrichment observed using the reverse genetics model

persisted when the most frequently-occurring diagnoses were

omitted from the phenotype. When anti-coagulation use, strokes

or venous thrombosis were excluded, no significantly-enriched

ontologies were identified. In contrast, when myocardial infarction

(MI) was excluded, the same pattern of ontological enrichment was

observed but with slightly stronger enrichment p-values.

In sum, these analyses show that the mechanistic phenotype of

vessel-occlusive disease was associated with genes related to blood

coagulation.

Table 4. Association results for enriched DNA repair genes in whites.

Recessive Model Additive Model

Phenotype
Reverse genetics
P-value

Reverse
genetics
P-value OR 95%CI P OR 95%CI P

BRCA1/rs1799950

ALL 0.13 0.091 2.6 (0.8–8.7) 0.12 1.1 (0.9–1.4) 0.31

CA 1 1 0.8 (0.3–2.8) 0.79 1.1 (0.9–1.4) 0.36

** HEM 0.009 0.008 4.9 (1.5–15.8) 0.008 1.1 (0.8–1.6) 0.38

MET 1 1 n/a n/a 1.00 1.1 (0.8–1.5) 0.46

SKN 1 1 2.3 (0.3–18.4) 0.42 0.7 (0.4–1.4) 0.30

CHD1L/rs2275249

ALL 0.31 0.17 0.9 (0.4–2.2) 0.85 1.1 (0.9–1.3) 0.50

CA 0.26 0.14 1.0 (0.4–2.4) 0.97 1.0 (0.8–1.2) 0.95

HEM 0.68 1 0.6 (0.1–2.7) 0.54 1.2 (0.9–1.6) 0.20

**MET 0.01 0.006 3.3 (1.3–8.2) 0.01 1.2 (0.9–1.6) 0.17

SKNSMB 1 1 1.3 (0.2–10.1) 0.78 1.0 (0.6–1.6) 0.98

FANCA/rs17233497

ALL 0.19 0.036 1.6 (0.7–3.6) 0.22 1.1 (0.9–1.3) 0.19

CA 0.38 0.19 1.3 (0.6–3.0) 0.46 1.2 (1.0–1.4) 0.11

HEM 0.35 0.30 1.4 (0.5–4.1) 0.57 0.9 (0.7–1.2) 0.57

MET 0.22 0.11 1.4 (0.5–4.2) 0.54 1.0 (0.8–1.4) 0.85

**SKN 8.00E-04 8.00E-04 6.7 (2.5–18.3) 1.8E-04 1.9 (1.3–2.7) 0.001

FANCI/POLG/rs3087374

ALL 0.20 0.06 1.1 (0.5–2.4) 0.90 1.0 (0.9–1.3) 0.65

CA 0.05 0.03 1.4 (0.6–3.2) 0.42 1.1 (0.9–1.3) 0.50

HEM 0.36 0.21 1.4 (0.5–4.3) 0.52 1.0 (0.7–1.3) 0.75

**MET 0.003 0.002 4.0 (1.6–9.6) 0.002 1.4 (1.0–1.8) 0.02

SKNSMB 1 1 1.3 (0.2–10.0) 0.78 1.1 (0.7–1.8) 0.70

SLX4/rs3810813

ALL 0.048 0.03 3.3 (1.0–10.9) 0.047 1.1 (0.9–1.4) 0.42

**CA 0.01 0.005 4.4 (1.3–14.4) 0.01 1.1 (0.9–1.4) 0.43

HEM 1 1 n/a n/a 1.00 1.0 (0.7–1.4) 0.86

MET 1 1 1.5 (0.3–7.1) 0.60 1.1 (0.8–1.5) 0.64

SKNSMB 1 1 n/a n/a 1.00 0.8 (0.4–1.5) 0.41

XRCC1/rs1799782

ALL 0.36 0.20 2.8 (1.0–8.3) 0.06 1.0 (0.8–1.3) 0.75

CA 0.27 0.16 2.1 (0.8–5.9) 0.15 1.0 (0.8–1.3) 0.82

HEM 0.35 0.30 1.8 (0.5–6.5) 0.38 1.0 (0.7–1.4) 0.97

MET 0.33 1 1.9 (0.5–6.9) 0.33 1.0 (0.7–1.4) 0.87

**SKN 0.01 0.01 7.3 (2.0–26.5) 0.002 1.2 (0.7–2.0) 0.56

**Denotes the mechanistic phenotype driving the DNA repair enrichment.
The value ‘n/a’ indicates there were no affected minor allele homozygotes for the phenotype.
doi:10.1371/journal.pone.0081503.t004
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Mechanisms of tumorigenesis in whites
We next tested this approach with tumorigenesis, a highly

mechanistically heterogeneous disease process [24]. We employed

a larger population of 3,009 men and women of European

ancestry (Table 1) and used 833 nsSNPs (748 genes). We first

tested a single mechanistic phenotype comprised of all cancer

diagnosis and treatment codes (see Tables S19, S20, S21, S22 in

File S1 for associations between all nsSNPs and all cancer [ALL]

mechanistic phenotype). However, no significantly enriched

functionalities were identified (Tables S23, S22, S23, S24, S25,

S26 in File S1). We hypothesized that this could be due to the

extensive mechanistic heterogeneity underlying cellular transfor-

mation [24]. Consequently, we defined four mechanistic pheno-

types representing different groupings of cancers in an effort to

define aggregate phenotypes with sufficient cellular and mecha-

nistic homogeneity to identify meaningful biological SNP associ-

ations (see Methods). In order to identify mechanisms common to

all tumors, after computing association statistics for each of the

four mechanistic phenotypes, p-values were pooled and analyzed

for enrichment.

Both reverse genetics models were significantly enriched in

functionalities related to DNA damage response and repair

(p = 261025 in both models) (Table 3 and Tables S27 and 28 in

File S1). The enrichment was driven by the (BRCA1, CHD1L [25],

FANCA, POLG/FANCI, SLX4/FANCP [26], XRCC1 [27]) [28,29]

genes, a number of which participate in double-stranded DNA

repair (Figure 3). In contrast, no significantly enriched ontologies

were associated with the recessive model (Table S29 in File S1).

The additive model did not show enrichment in DNA repair

ontologies, but was significantly enriched in ontologies related to

chromosome segregation during mitosis (p = 3.661026) (Table 3

and Table S30 in File S1), driven by the genes KIF25 [30], PINX1

[31] and FANCA. A full GWAS using an additive model did not

show any associations with genome-wide significant findings for

any of the cancer mechanistic phenotypes (Figure S3). When we

tested for enriched ontologies among the top 50 genes containing

missense nsSNPs from the GWAS of the all cancer [ALL]

phenotype, the top-ranked ontologies were related to DNA

damage sensing and repair, but they were not statistically

significant after adjusting for multiple testing (see Tables S31

and S32 in File S1 for the genes examined and enrichment

analyses). The genes driving the top ontologies (BRCA2 and ATM),

while both involved in double-stranded DNA repair, were not the

same as those associated with the reverse genetics models.

We performed sensitivity analyses using the reverse genetics

models by sequentially excluding one of the mechanistic pheno-

types and performing the enrichment analysis. Only when the

solid tumor (CA) phenotype was excluded did the significant

enrichment in DNA repair ontologies persist. No ontologies were

enriched when the HEM, MET and SKN phenotypes were

excluded.

The association results between the nsSNPs in DNA repair

genes and each cancer mechanistic phenotype for the 4 association

models tested are summarized in Table 4. The significant

associations from the additive model only matched the recessive

and reverse genetics model for the FANCA and FANCI/POLG

nsSNPs. In order to ascertain whether the DNA repair genes

driving enrichment would demonstrate reproducible associations,

we tested these nsSNPs using EMR-derived data from two

independent data sets. The demographic characteristics for the

replicate populations are shown in Table S33 in File S1. Sufficient

subjects (. = 10 minor allele homozygotes) were available for the

SNPs in five of the six genes. There were significant associations

for POLG/FANCI (MET mechanistic phenotype, odds ratio

[OR] = 2.4, p = 0.005) and for CHD1L (MET phenotype,

OR = 4.1, p = 0.009) with a model comparing homozygotes and

FANCA (SKN phenotype, OR = 1.7, p = 0.006) with an additive

model (Table 5). Significant associations were only observed in the

original mechanistic phenotype associated with the nsSNP, with

the exception of BRCA1 which was not associated with the HEM

phenotype originally identified, but was associated with all cancers

(OR = 8.1, p = 0.04), as 9 of the 10 homozygotes for this allele in

the VESPA replication data set had a cancer diagnosis (Table 5).

Discussion

In the present study, we evaluated the validity and utility of

‘‘mechanistic phenotypes’’ to identify cellular mechanisms under-

lying pathological thrombosis and tumorigenesis. We defined

aggregate phenotypes comprised of EMR-derived diagnoses and

treatments with potentially common underlying pathophysiolog-

ical mechanisms. These phenotypes were utilized in conjunction

with standard forward genetics statistical models and two reverse

genetics models. The strength of the associations between the

nsSNPs we evaluated and the mechanistic phenotypes were not

stronger than would be expected by chance. Hence, we could not

identify candidate nsSNPs on the basis of statistical outliers. To

ascertain the biological relevance of the mechanistic phenotypes,

we assessed whether the top-ranked nsSNPs had common

functions consistent with the underlying biology of the phenotypes.

We found that heritable variation in genes could elucidate with

high specificity the most biologically-plausible physiological and

cellular mechanisms underlying the diseases comprising our

mechanistic phenotypes. Specifically, the thrombosis phenotype

was only associated with hemostatic ontologies in AAs while the

cancer phenotype was exclusively associated with chromosomal

mechanisms related to DNA repair and chromosome segregation

in whites. We found significant cancer associations for four of five

DNA repair genes evaluated in independent data sets.

We hypothesized that mechanistic phenotypes could identify

cellular mechanisms associated with a phenotype by identifying

genes with functional commonalities. Support for this idea was

recently demonstrated with a panel of 5 psychiatric diseases [32].

We first explored this approach using a heterogeneous collection

of diseases arising due to occlusion of blood vessels. We found that

the most enriched functionalities associated with this phenotype

where consistent with a biologically-plausible disease mechanism,

namely variation in platelet and coagulation factors. A sensitivity

analysis of this phenotype showed that excluding myocardial

infarction from the phenotype definition modestly improved the

performance of this phenotype, suggesting that this disease may

not be driven by the same mechanisms as the other constituent

diseases.

In contrast to the thrombosis phenotype, when we grouped all

cancers into a single phenotype, we did not observe significant

enrichment in gene functionalities. Only when we divided cancers

into distinct subgroups and then performed a pooled analysis of

these subgroups did we find common functionalities. A major and

largely exclusive pathologic mechanism underlying tumorigenesis

is genomic instability [33] which facilitates the acquisition of the

mutations required for uncontrolled growth and metastasis.

Consistent with this known biology, our data suggest that genetic

variation predisposing to genomic instability secondary to aberrant

DNA repair and chromosomal segregation is associated with

tumorigenesis. While a number of the genes associated with DNA

repair were constituents of the common Fanconi Anemia/double-

stranded DNA repair pathway [34], the individual genes were

associated with distinct groupings of tumors, even in replication
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Table 5. Association of DNA repair genes in independent data sets.

Logistic regression comparing HZs1 Additive Model

Phenotype OR 95% CI p-value OR 95% CI P

eMERGE

FANCA/rs172334972

ALL 1.7 (0.7–4.0) 0.30 1.2 (0.9–1.4) 0.15

CA 1.5 (0.6–3.7) 0.42 1.1 (0.9–1.4) 0.32

HEM 2.0 (0.1–15.2) 0.84 1.2 (0.7–2.3) 0.51

MET 1.1 (0.02–7.1) 1.00 0.8 (0.5–1.5) 0.58

**SKN 4.1 (0.9–13.3) 0.06 1.7 (1.2–2.5) 0.006

FANCI/POLG/rs3087374

ALL 1.4 (0.92–2.0) 0.13 1.0 (0.9–1.1) 0.82

CA 1.4 (0.9–2.1) 0.10 1.0 (0.9–1.1) 0.88

HEM 1.4 (0.6–3.5) 0.41 1.0 (0.8–1.2) 0.84

**MET 2.4 (1.3–4.4) 0.01 1.2 (1.0–1.4) 0.06

SKN 1.2 (0.4–3.8) 0.79 1.1 (0.9–1.4) 0.42

VESPA

BRCA1/rs1799950

ALL 8.1 (1.1–360.6) 0.04 1.0 (0.8–1.2) 0.96

CA 4.5 (0.9–44.4) 0.08 0.9 (0.8–1.1) 0.45

**HEM 0.7 (0.1–5.5) 1.00 1.1 (0.8–1.5) 0.42

MET 1.2 (0.1–6.5) 1.00 1.0 (0.8–1.3) 0.85

SKN 1.3 (0.2–6.1) 0.94 1.3 (0.9–2.0) 0.16

CHD1L/rs2275249

ALL 2.3 (0.9–6.4) 0.09 0.9 (0.8–1.2) 0.62

CA 2.0 (0.8–5.0) 0.17 0.9 (0.7–1.2) 0.49

HEM 0.8 (0.2–2.9) 1.00 0.7 (0.5–1.0) 0.05

**MET 4.1 (1.4–10.8) 0.01 1.2 (0.9–1.6) 0.20

SKN 1.7 (0.6–4.5) 0.37 1.5 (1.0–2.2) 0.06

FANCA/rs17233497

ALL 1.3 (0.6–2.9) 0.59 1.0 (0.8–1.1) 0.74

CA 1.3 (0.6–2.8) 0.67 1.0 (0.8–1.2) 0.94

HEM 1.7 (0.5–4.3) 0.40 1.0 (0.8–1.3) 0.85

MET 0.5 (0.1–1.7) 0.36 0.9 (0.7–1.1) 0.43

**SKN 1.4 (0.2–5.8) 0.92 0.8 (0.6–1.2) 0.35

FANCI/POLG/rs3087374

ALL 0.9 (0.4–2.1) 0.90 0.9 (0.8–1.0) 0.15

CA 0.6 (0.2–1.5) 0.35 0.9 (0.8–1.1) 0.35

HEM 3.5 (1.3–8.7) 0.01 0.9 (0.7–1.2) 0.42

**MET 0.8 (0.2–2.4) 0.89 1.0 (0.8–1.3) 0.83

SKN n/a n/a n/a 0.8 (0.5–1.2) 0.21

SLX4/rs3810813

ALL 2.6 (0.5–16.1) 0.27 1.0 (0.8–1.2) 0.88

**CA 1.3 (0.3–5.9) 0.90 0.9 (0.8–1.1) 0.44

HEM 0.9 (0.02–7.5) 1.00 1.0 (0.7–1.3) 0.99

MET 1.5 (0.2–8.2) 0.86 0.9 (0.7–1.2) 0.59

SKN n/a n/a n/a 0.6 (0.3–1.0) 0.07

(1) This model compared minor allele homozygotes to matched common allele homozygotes.
(2) Genotype data for this nsSNP was only available for one eMERGE site (n = 3,092 subjects).
doi:10.1371/journal.pone.0081503.t005
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analyses. This would suggest that these genes exhibit tumor-type

specificity and that a global cancer mechanistic phenotype may be

too broad. BRCA1, however, stands in contrast to this notion, as it

associated with both solid tumors and hematological tumors.

Hence, further studies of a broad cancer mechanistic phenotype

are needed to better clarify this issue.

Clinical disease taxonomies typically partition disease on the

basis of anatomy, symptoms and clinico-pathological findings,

rather than disease mechanisms [35]. GWAS studies that are

based on these taxonomies may fail to identify significant

biological mechanisms underlying a broad class of diseases because

the effect size between a SNP and a single disease may be small.

For instance, a SNP variant in a gene may be 100% penetrant for

tumorigenesis (a disease mechanism), but may give rise to any of

30 different type of cancers, making the SNP appear poorly

penetrant with respect to a given cancer. In this scenario, the

relative risk between this SNP and a given cancer would be

expected to be low, making an association difficult to identify by

single-phenotype GWAS, even with large sample sizes. A

mechanistic phenotype, as utilized in these analyses, represents

an effort to map a clinical disease taxonomy to a mechanistic

taxonomy by grouping diseases with common features. Hence, it

represents a biologically-motivated approach to address the

challenge of addressing type II pleiotropy, whereby a single

molecular mechanism gives rise to multiple morphological

expressions [36]. An optimal mechanistic phenotype, defined to

have high sensitivity and specificity for a disease mechanism,

would be expected to have increased power to detect the effect of a

SNP variant, as compared to an individual constituent phenotype.

It would also be expected to be minimally affected by the apparent

variable penetrance of a given constituent phenotype. As the

sensitivity analyses for our phenotypes have demonstrated, our

mechanistic phenotypes are likely not optimally defined and will

need continued refinement. However, these phenotypes are able to

elucidate relevant biology, providing proof-of-concept for aggre-

gative phenotyping approaches.

We explored two reverse genetics approaches to identify SNP-

phenotype associations. For both the thrombosis analyses in AAs

and cancer analyses in whites, the reverse genetics models were

able to identify genes with common functionalities with higher

specificity than a recessive genetic model. Based on the

simulation analyses, these models are expected to show better

enrichment when a SNP causes multiple cases of several

constituent phenotypes or when a SNP causes multiple cases of

a single phenotype. For the thrombosis mechanistic phenotype,

this better performance, in conjunction with the fact that

excluding any of the most frequent constituent diagnoses (except

myocardial infarction) caused the models to fail to identify

enriched ontologies, would suggest that the nsSNPs are causing

multiple cases of the constituent diagnoses. One reason for the

better performance of these models in the cancer data set is that

the cancer groupings were chosen empirically based on common

etiologies and environmental exposures, but may not represent

optimal pathophysiological groupings. By focusing association

testing on tumors over-represented among the minor allele

homozygotes, the reverse genetics models may overcome some

phenotype misspecification which can improve performance. The

first reverse genetics model considered only those cancers that

occurred in at least two homozygotes for the minor allele. The

rationale for this restriction is that many known cancer-associated

genes, even those involved in very basic cellular mechanisms

such as BRCA2, demonstrate cancer-type specificity [28]. This

model may be most useful when considering low frequency

nsSNPs with relatively few minor allele homozygotes (as was the

case with this study) as nsSNPs with large numbers of minor

allele homozygotes are apt to have most tumors represented at

least twice by chance. We also used a model that analyzed only

those constituent cancers associated with a nsSNP with a Fisher’s

p,0.1. This model effectively takes a pheWAS-style analysis and

determines whether there is an excess of mechanistically related

diseases with a p-value below a pre-specified threshold. The

relatively high p-value threshold was intentionally selected to

remove diagnoses that were very likely present at levels expected

by chance, but still included diagnoses that had sub-significant

measures of association. Multiple sub-significant associations

would be expected for highly pleiotropic nsSNPs. If this Fisher’s

p-value threshold were set to 161028, this model would be

equivalent to a standard PheWAS model that identifies

individual SNP-phenotype associations that reach genome-wide

significance. In sum, the advantage of a reverse genetics

approach with mechanistic phenotypes is that it can facilitate

identifying genotype and phenotype associations even if the

mechanistic phenotype may not be defined with optimal

specificity for a given SNP. In this context, the mechanistic

phenotype restricts the choice of phenotypes considered in a

reverse genetics analysis to those that may have a common

cellular basis.

There are several limitations to this study. We utilized a

convenience sample of subjects and relied on EMR data that were

not accrued for research purposes. Hence, the extent and quality

of phenotype ascertainment is variable. This would tend to cause

non-differential misclassification of phenotypes which would be

expected to attenuate any real associations. This limitation was

likely more marked in our replication cancer cohorts since

phenotypes were extracted solely from billing code data which

represent an even more limited set of phenotypic data. Despite

these limitations, we were still able to replicate associations in

cancer analyses in whites. A limitation of these analyses was that

there was no attempt to replicate the associations for genes

enriched in ontologies related to blood coagulation. Our

mechanism-discovery approach was also limited by the represen-

tation of ontologies in publicly available databases [37]. Hence,

while other genes were identified that could suggest additional

mechanisms of tumorigenesis [24,38] such as evasion of immune

surveillance (TAP2 [39]), our approach may not have highlighted

these processes because they were either poorly represented in the

ontology databases or they did not pass the multiple-testing

statistical thresholds. A challenge of a reverse genetics approach

when used in conjunction with mechanistic phenotypes is that

permutation testing is required to generate the null hypothesis and

p-values, which can be computationally intensive. This is required

because the phenotype represents an ‘‘optimized’’ set of diagnoses

that was determined based on the observed diagnoses present

among the minor allele homozygotes. In order to avoid estimating

inappropriately low p-values (due to a ‘‘Winner’s Curse’’ selection

bias), the control group has to undergo the same optimization

process. Hence, permutation testing is needed to estimate the null

distribution associated with the optimization process.

In summary, we describe a mechanism-oriented phenotyping

approach employing reverse genetics to identifying gene-pheno-

type associations using low frequency nsSNP variants. We applied

this approach to two disease processes, thrombosis in AAs and

tumorigenesis in whites, and identified cellular mechanisms and

candidate genes associated with each process. This study

demonstrates that these approaches can be used to leverage

EMR data to assign functionality to genes and SNPs and provide

new insights into genetic associations and disease risk.
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Supporting Information

Figure S1 A mechanism-oriented phenotypic model.
Variations in a gene may disrupt physiological or cellular

mechanisms, causing a myriad of clinical phenotypes. For

example, a mutation in BRCA2 may manifest as breast cancer,

ovarian cancer or prostate cancer; or in F5 as deep vein

thrombosis, spontaneous abortions or pulmonary emboli. A

mechanistic phenotype represents the collection of all potential

clinical phenotypes that arise due to disruption of the cellular

mechanism.

(PDF)

Figure S2 QQ plot for an additive model between the
thrombosis mechanistic phenotype and all overlapping
SNPs on merged 1M-Duo and Omni1_QUAD genotyping
platforms in African Americans. The analysis includes all

SNPs with a MAF.0.01 and HWE p-value.0.001.

(PDF)

Figure S3 QQ plots for an additive model between the
cancer mechanistic phenotypes and all SNPs on the
Omni1_QUAD genotyping platforms in Whites. Panel (a)

all cancers [ALL]; panel (b) solid tumors [CA]; panel (c)

hematological tumors [HEM]; panel (d) Metastatic tumors

[MET]; and panel (e) skin cancers [SKN]. Plots include all SNPs

with a MAF.0.01 and HWE p-value.0.001.

(PDF)

Figure S4 ROC analyses for simulation studies for a
reverse genetics model (.2 affected and Fisher’s p,0.1).
Analyses are based on 10,000 random samples of 13 subjects

drawn from the thrombosis data set. ROC curves show sensitivity

and specificities based on association p-values when one to five

subjects were assigned to be affected with a constituent disease, as

compared to association p-value with no additional subjects. Panel

(a) is from simulations where subjects assigned a random disease

and panel (b) is from simulations where subjects are assigned a

disease already present among subjects in the random sample.

(PDF)

Figure S5 ROC analyses for simulation studies. Panels

(a-c) are for simulations where additional affected subjects were

assigned a disease with likelihood proportional to the prevalence of

the disease among the thrombosis constituent phenotypes and

panels (d–f) are for simulations where all five additional subjects

are assigned to have the same disease, randomly selected. ROC

curves are for a recessive model (panels (a) and (c)), a reverse

genetics model (.2 affected) (panels (b) and (d)) and a reverse

genetics (.2 affected and Fisher’s p,0.1) (panels (c) and (e)).

(PDF)

File S1 Table S1. Characteristics of the nsSNPs ana-
lyzed in the thrombosis study in AAs. Table S2.
Characteristics of the nsSNPs analyzed in the cancer
study in whites. Table S3. SNP selection and exclusion
statistics. Table S4. Constituent phenotype ICD-9
grouping for the thrombosis mechanistic phenotype.
Each row contains a diagnosis cluster and the ICD-9 codes

mapped to that cluster. These groupings are similar to the Clinical

Classification System for diagnosis codes, but some of the problem

headings in the original classification system were subdivided into

smaller groups of related ICD-9 codes. Table S5. ICD-9 and
cancer mechanistic phenotype groupings. Each row

contains a diagnosis cluster and the ICD-9 codes mapped to that

cluster. These groupings are similar to the Clinical Classification

System for diagnosis codes, but some of the problem headings in

the original classification system were subdivided into smaller

groups of related ICD-9 codes. Also shown are the mechanistic

phenotypes (meta-groupings) that the diagnosis cluster was

assigned to. Table S6. List of all functional ontologies
associated with genes in the thrombosis data set. Table
S7. List of all functional ontologies associated with genes
in the cancer data set. Table S8. Type I error rates from
simulations using the thrombosis data set. Type I error

rates for the thrombosis phenotype are based on 1,000

randomizations of the 433 SNPs in the thrombosis data set. Type

I error rates for the cancer data set are based on 500

randomizations of 833 SNPs in the cancer data set. For both

reverse genetics models, the type 1 error represents the proportion

of with p-values below the indicated threshold. Table S9.
Association p-values between the thrombosis mechanis-
tic phenotype and nsSNPs using a reverse genetics
model (. = 2 affected subjects). Table S10. Association
p-values between the thrombosis mechanistic phenotype
and nsSNPs using a reverse genetics model (. = 2
affected subjects and Fisher p,0.1). Table S11. Results
for ontological analyses of genes with nsSNPs associated
with the thrombosis mechanistic phenotype using the
reverse genetics model (. = 2 affected subjects). The

upper portion of the table shows are all functional ontologies

associated with 2 or more genes. The ‘‘P-value threshold’’ column

is the association p-value cut-off that gave the strongest

enrichment. The ‘‘Genes below threshold’’ column is number of

genes with p-values below this threshold. The ‘‘Genes with

ontology’’ column is the number of genes that are assigned the

ontology. The second table (below) shows the specific genes

associated with each ontology. Table S12. Results for
ontological analyses of genes with nsSNPs associated
with the thrombosis mechanistic phenotype using the
reverse genetics model (. = 2 affected subjects and
Fisher’s p,0.1). The upper portion of the table shows are all

functional ontologies associated with 2 or more genes. The ‘‘P-

value threshold’’ column is the association p-value cut-off that gave

the strongest enrichment. The ‘‘Genes below threshold’’ column is

number of genes with p-values below this threshold. The ‘‘Genes

with ontology’’ column is the number of genes that are assigned

the ontology. The second table (below) shows the specific genes

associated with each ontology. Table S13. Association p-
values between the thrombosis mechanistic phenotype
and nsSNPs using a recessive genetic model. (OR = odds

ratio; SE = standard error; L95 and U95 are the upper and lower

bounds of the 95% confidence interval). Table S14. Results for
ontological analyses of genes with nsSNPs associated
with the thrombosis mechanistic phenotype for the
recessive model. The upper portion of the table shows are all

functional ontologies associated with 2 or more genes. Only those

genes containing a nsSNP with an OR.1 were used in

enrichment analyses. The ‘‘P-value threshold’’ column is the

association p-value cut-off that gave the strongest enrichment. The

‘‘Genes below threshold’’ column is number of genes with p-values

below this threshold. The ‘‘Genes with ontology’’ column is the

number of genes that are assigned the ontology. The second table

(below) shows the specific genes associated with each ontology.

Table S15. Association p-values between the thrombosis
mechanistic phenotype and nsSNPs using an additive
genetic model. (OR = odds ratio; SE = standard error; L95 and

U95 are the upper and lower bounds of the 95% confidence

interval). Table S16. Results for ontological analyses of
genes with nsSNPs associated with the thrombosis
mechanistic phenotype for the additive model. The upper
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portion of the table shows are all functional ontologies associated

with 2 or more genes. Only those genes containing a nsSNP with

an OR.1 were used in enrichment analyses. The ‘‘P-value

threshold’’ column is the association p-value cut-off that gave the

strongest enrichment. The ‘‘Genes below threshold’’ column is

number of genes with p-values below this threshold. The ‘‘Genes

with ontology’’ column is the number of genes that are assigned

the ontology. The second table (below) shows the specific genes

associated with each ontology. Table S17. Top ranked
nsSNPs from a GWAS of the thrombosis mechanistic
phenotype in AAs. The GWAS was conducted using an additive

model and adjusted for gender, age and genotyping platform. The

GWAS was conducted on the intersection of nsSNPs on the

Illumina 1M-Duo and Omni1_QUAD platforms. There were

8,913 nsSNPs (n = 5,391 genes) with a MAF.0.01 and

HWE.0.001. Shown are the nsSNP associations for the top 50

genes with the strongest associations. (OR = odds ratio; SE = s-

tandard error; L95 and U95 are the upper and lower bounds of

the 95% confidence interval). Table S18. Results for
ontological analyses of genes using the top 50 genes
containing nsSNPs associated with an additive model.
See supplemental table 17 for the list of genes tested. The upper

portion of the table shows are all functional ontologies associated

with 2 or more genes. Only those genes containing a nsSNP with

an OR.1 were used in enrichment analyses. The ‘‘P-value

threshold’’ column is the association p-value cut-off that gave the

strongest enrichment. The ‘‘Genes below threshold’’ column is

number of genes with p-values below this threshold. The ‘‘Genes

with ontology’’ column is the number of genes that are assigned

the ontology. The second table (below) shows the specific genes

associated with each ontology. Table S19. nsSNP association
p-values between the cancer mechanistic phenotypes
and nsSNPs using a reverse genetics model (. = 2
affected subjects). Table S20. nsSNP association p-values

between the cancer mechanistic phenotypes and nsSNPs using a

reverse genetics model (. = 2 affected subjects and Fisher p,0.1).

Table S21. nsSNP association p-values between the
cancer mechanistic phenotypes and nsSNPs using a
recessive genetic model. (OR = odds ratio; SE = standard

error; L95 and U95 are the upper and lower bounds of the 95%

confidence interval). Table S22. nsSNP association p-values
between the cancer mechanistic phenotypes and nsSNPs
using an additive genetic model. (OR = odds ratio; SE = s-

tandard error; L95 and U95 are the upper and lower bounds of

the 95% confidence interval). Table S23. Results for
ontological analyses of genes with nsSNPs associated
with the all cancers [ALL] cancer mechanistic phenotype
using the reverse genetics model (. = 2 affected sub-
jects). The upper portion of the table shows are all functional

ontologies associated with 2 or more genes. The ‘‘P-value

threshold’’ column is the association p-value cut-off that gave

the strongest enrichment. The ‘‘Genes below threshold’’ column is

number of genes with p-values below this threshold. The ‘‘Genes

with ontology’’ column is the number of genes that are assigned

the ontology. The second table (below) shows the specific genes

associated with each ontology. Table S24. Results for
ontological analyses of genes with nsSNPs associated
with the all cancers [ALL] cancers mechanistic pheno-
type using the reverse genetics model (. = 2 affected
subjects and Fisher’s p,0.1). The upper portion of the table

shows are all functional ontologies associated with 2 or more

genes. The ‘‘P-value threshold’’ column is the association p-value

cut-off that gave the strongest enrichment. The ‘‘Genes below

threshold’’ column is number of genes with p-values below this

threshold. The ‘‘Genes with ontology’’ column is the number of

genes that are assigned the ontology. The second table (below)

shows the specific genes associated with each ontology. Table
S25. Results for ontological analyses of genes with
nsSNPs associated with the with the all cancers [ALL]
cancers mechanistic phenotype for the recessive model.
The upper portion of the table shows are all functional ontologies

associated with 2 or more genes. Only those genes containing a

nsSNP with an OR.1 were used in enrichment analyses. The ‘‘P-

value threshold’’ column is the association p-value cut-off that gave

the strongest enrichment. The ‘‘Genes below threshold’’ column is

number of genes with p-values below this threshold. The ‘‘Genes

with ontology’’ column is the number of genes that are assigned

the ontology. The second table (below) shows the specific genes

associated with each ontology. Table S26. Results for
ontological analyses of genes with nsSNPs associated
with the with the all cancers [ALL] cancers mechanistic
phenotype for the additive model. The upper portion of the

table shows are all functional ontologies associated with 2 or more

genes. Only those genes containing a nsSNP with an OR.1 were

used in enrichment analyses. The ‘‘P-value threshold’’ column is

the association p-value cut-off that gave the strongest enrichment.

The ‘‘Genes below threshold’’ column is number of genes with p-

values below this threshold. The ‘‘Genes with ontology’’ column is

the number of genes that are assigned the ontology. The second

table (below) shows the specific genes associated with each

ontology. Table S27. Results for ontological analyses of
genes with nsSNPs associated with the cancer mecha-
nistic phenotypes (CA, HEM, MET or SKN) using the
reverse genetics model (. = 2 affected subjects). The

upper portion of the table shows are all functional ontologies

associated with 2 or more genes. The ‘‘P-value threshold’’ column

is the association p-value cut-off that gave the strongest

enrichment. The ‘‘Genes below threshold’’ column is number of

genes with p-values below this threshold. The ‘‘Genes with

ontology’’ column is the number of genes that are assigned the

ontology. The second table (below) shows the specific genes

associated with each ontology. Table S28. Results for
ontological analyses of genes with nsSNPs associated
with the cancer mechanistic phenotypes (CA, HEM,
MET or SKN) using the reverse genetics model (. = 2
affected subjects and Fisher’s p,0.1). The upper portion of

the table shows are all functional ontologies associated with 2 or

more genes. The ‘‘P-value threshold’’ column is the association p-

value cut-off that gave the strongest enrichment. The ‘‘Genes

below threshold’’ column is number of genes with p-values below

this threshold. The ‘‘Genes with ontology’’ column is the number

of genes that are assigned the ontology. The second table (below)

shows the specific genes associated with each ontology. Table
S29. Results for ontological analyses of genes with
nsSNPs associated with the with the cancer mechanistic
phenotypes (CA, HEM, MET or SKN) for the recessive
model. The upper portion of the table shows are all functional

ontologies associated with 2 or more genes. Only those genes

containing a nsSNP with an OR.1 were used in enrichment

analyses. The ‘‘P-value threshold’’ column is the association p-

value cut-off that gave the strongest enrichment. The ‘‘Genes

below threshold’’ column is number of genes with p-values below

this threshold. The ‘‘Genes with ontology’’ column is the number

of genes that are assigned the ontology. The second table (below)

shows the specific genes associated with each ontology. Table
S30. Results for ontological analyses of genes with
nsSNPs associated with the with the cancer mechanistic
phenotypes (CA, HEM, MET or SKN) for the additive
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model. The upper portion of the table shows are all functional

ontologies associated with 2 or more genes. Only those genes

containing a nsSNP with an OR.1 were used in enrichment

analyses. The ‘‘P-value threshold’’ column is the association p-

value cut-off that gave the strongest enrichment. The ‘‘Genes

below threshold’’ column is number of genes with p-values below

this threshold. The ‘‘Genes with ontology’’ column is the number

of genes that are assigned the ontology. The second table (below)

shows the specific genes associated with each ontology. Table
S31. Top ranked nsSNPs from a GWAS of the ‘‘all cancer’

[ALL] mechanistic phenotype in whites. The GWAS was

conducted using an additive model and adjusted for gender and

age. There were 16,378 nsSNPs (n = 7,896 genes) with a

MAF.0.01 and HWE.0.001 evaluated. Shown are the nsSNP

associations for the top 50 genes with the strongest associations.

(OR = odds ratio; SE = standard error; L95 and U95 are the upper

and lower bounds of the 95% confidence interval). Table S32.
Results for ontological analyses of genes using the top 50
genes containing nsSNPs associated with an additive
model. See Table S31 for the list of genes tested. The upper

portion of the table shows are all functional ontologies associated

with 2 or more genes. Only those genes containing a nsSNP with

an OR.1 were used in enrichment analyses. The ‘‘P-value

threshold’’ column is the association p-value cut-off that gave the

strongest enrichment. The ‘‘Genes below threshold’’ column is

number of genes with p-values below this threshold. The ‘‘Genes

with ontology’’ column is the number of genes that are assigned

the ontology. The second table (below) shows the specific genes

associated with each ontology. Table S33. Demographic
characteristics of the subjects in the eMERGE and
VESPA replication sets.

(XLSX)
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