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Abstract

The detection of rare mutants using next generation sequencing has considerable potential for diagnostic
applications. Detecting circulating tumor DNA is the foremost application of this approach. The major obstacle to its
use is the high read error rate of next-generation sequencers. Rather than increasing the accuracy of final
sequences, we detected rare mutations using a semiconductor sequencer and a set of anomaly detection criteria
based on a statistical model of the read error rate at each error position. Statistical models were deduced from
sequence data from normal samples. We detected epidermal growth factor receptor (EGFR) mutations in the plasma
DNA of lung cancer patients. Single-pass deep sequencing (>100,000 reads) was able to detect one activating
mutant allele in 10,000 normal alleles. We confirmed the method using 22 prospective and 155 retrospective
samples, mostly consisting of DNA purified from plasma. A temporal analysis suggested potential applications for
disease management and for therapeutic decision making to select epidermal growth factor receptor tyrosine kinase
inhibitors (EGFR-TKI).
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Introduction

For some molecular targeted drugs against cancer, the
examination of genomic changes in target genes has become a
diagnostic routine and is indispensable for treatment decisions.
For example, the strong effects of epidermal growth factor
receptor tyrosine kinase inhibitors (EGFR-TKIs; i.e., gefitinib
and erlotinib) on non-small-cell lung cancer (NSCLC) are
correlated with activating somatic mutations in EGFR [1,2].
Patients who are administered these drugs are currently
selected based on the presence of these activating mutations.
The identification of the mutations is based on biopsy samples;
the procedure is invasive and often difficult to perform. A non-
invasive diagnostic procedure is desirable.

Cell-free DNA in the blood consists of DNA derived from
cancer tissues and has been studied for non-invasive
diagnostic procedures [3]. This DNA, termed circulating tumor
DNA (ctDNA), is rare in blood, and its detection is a technical
challenge. A number of methods have been examined, but

most of them have limitations in sensitivity and robustness.
BEAMing (beads, emulsion, amplification and magnetics) [4] is
most likely the most sensitive method. In BEAMing, PCR
products amplified from a single molecule are fixed to a single
magnetic bead using emulsion PCR. The mutation site is
labeled with a fluorescent probe or primer extension, and the
mutated allele is quantitatively detected by counting the
fluorescently labeled beads. BEAMing successfully quantified
APC and KRAS mutations in the ctDNA of colorectal cancer
patients [5,6] and EGFR mutations in the ctDNA of lung cancer
patients [7]. In spite of its high sensitivity and quantification
ability, BEAMing has not gained in popularity because it is a
laborious technology and requires oligonucleotides for each
mutation position.

Because BEAMing and next-generation sequencers, i.e.,
massively parallel sequencers, use the same or a very similar
template preparation technique, it is possible to apply next-
generation sequencers for the same purpose. There have been
several studies on the deep sequencing of cell-free DNA [8,9].
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These studies suggested the possibility of the approach but
lacked critical evaluation of the detection systems. In particular,
they did not address the problem of multiple testing, which is
inherent to diagnostic applications.

In this report, we established a method of detecting EGFR
mutations in ctDNA in the peripheral blood of lung cancer
patients using single-pass deep sequencing of amplified EGFR
fragments. The recent development of a semiconductor
sequencer (Ion Torrent PGM) [10] has addressed the
shortcomings of other currently available sequencers (i.e., a
long runtime for a single assay and high operating costs) and is
applicable for diagnostic purposes. We applied anomaly
detection [11,12] and determined a set of detection criteria
based on a statistical model of the read error rate at each error
position. The method quantitatively detected EGFR mutations
in cell-free DNA at a level comparable to BEAMing, promising
non-invasive diagnostics that complement biopsy.

Results

Principle of detection
Deep sequencing of a PCR-amplified fragment containing a

mutation site can be conducted to detect and quantitate
mutated alleles among the vast amounts of normal alleles
derived from host tissues. The major problem associated with
this approach is the frequency of errors introduced during
sequencing and PCR amplification. The key issue here is the
setting and accurate evaluation of detection limits. When the
frequency of a base change at a target locus is higher than a
predetermined read error rate (RER), we may judge the
change to be due to the presence of a mutant sequence. That
is, anomalies that fall significantly outside of the RER
distribution are regarded as mutations. The RER is defined as
the error rate calculated from final sequence data, including
errors in both the sequencing and PCR steps. In anomaly
detection [11,12], as in hypothesis testing, false positives are
controlled based on a statistical model. In our case, the
statistical model of the RER can be constructed from sequence
data from the target regions of a sufficient number of normal
individuals carrying no mutations.

If read errors occur under a probability distribution, the
number of reads required to achieve a certain detection limit
can be estimated. Figure 1a shows the relationship between
the mutation detection limit, read depth, and RER at a
significance level of p=2x10-5 for each individual detection
without multiplicity correction, assuming that read errors occur
following a Poisson distribution. The data illustrated in Figure
1a are supplied in Table S1. With an increasing read depth and
decreasing RER, the detection limit decreases. In a previous
study by our group [7], the detection limit for rare mutant alleles
when using BEAMing [4] was 1 in 10,000 (0.01%). Because a
plasma DNA assay sample contains approximately 5,000
molecules, this detection limit is reasonable. This goal can be
achieved with 100,000 reads when the RER is below 0.01%.

Read error of the EGFR target region
For EGFR-TKI treatment, an activating EGFR mutation is

indicative of treatment efficacy [1,2]. Patients to be

administered these drugs are currently selected based on the
presence of these activating mutations. In addition to activating
EGFR mutations, a resistant EGFR mutation known as T790M
appears in approximately half of patients subjected to EGFR-
TKI treatment [13,14]. Thus, three activating mutations, i.e., a
deletion in EGFR exon 19 and L858R and L861Q in EGFR
exon 21, as well as the T790M resistant mutation in EGFR
exon 20 were selected as target loci.

We determined the RERs in a 169 base region around the
target loci consisting by performing deep sequencing of DNA
samples from normal individuals. We used an Ion Torrent PGM
[10] sequencer for this work. Single-pass sequencing was
performed, and the number of reads ranged from 44,400 to
373,000, averaging 162,000. We employed three types of DNA
samples: 19 plasma DNA samples with amounts comparable to
patients’ samples, 16 leucocyte (white blood cell, WBC) DNA
samples with amounts that were 10 or 50 times the size of a
patient’s sample, and 13 WBC DNA samples with amounts that
were one-tenth the size of a patient’s sample. We divided
substitution errors into four patterns, corresponding to
conversion to A, C, G, or T. Thus, there were 507 possible
types of substitutions (169 base positions x 3 patterns) in the
target region. A substitution RER is graphically shown in Figure
1b, excluding the conversion from G to A at position 2,361 due
to a frequent SNP. The substitution RERs are not uniform, nor
are they independent from each other, and high RERs are
associated with specific base positions. In addition, one
substitution pattern is dominant at each base position. An
insertion/deletion RER is graphically shown in Figure 1c. We
did not distinguish between deletion and insertion errors, as
insertions are often recognized as deletions and vice versa by
the sequence alignment software. The insertion/deletion RER
is generally higher than the substitution RER. A tendency
similar to that of substitution is observed, in that high insertion/
deletion RERs are associated with specific base positions.
Figure 1d presents the distribution of the RERs. There were
substantial differences between the substitution and insertion/
deletion RERs. In 410 out of the possible 506 types of
substitution (81.0%), the RER was lower than 0.01%. In
contrast, out of the 169 types of insertions/deletion, the RER
was lower than 0.01% in only 79 (46.7%). These results agreed
with previously reported observations from the PGM platform
[15]. The data illustrated in Figures 1b and 1c are supplied in
Tables S2 and S3, respectively.

Due to high insertion/deletion read errors, we employed a
specific method to detect the exon 19 deletion mutations. We
prepared eight template exon 19 sequences with
representative deletions and screened the deletion sequences
by matching them with the template sequences. This method
was quite effective for screening out read errors; no sequences
with deletion read errors were found among the 48 samples
tested.

Statistical models of read error rates and criteria for
anomaly detection

We then examined statistical models of read error. In a
Poisson distribution model, the average and variance of the
number of incidences are expected to be the same and are
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determined by the intensity parameter lambda. Here, instead of
using the RER, the read error incidence was presented as the
incidence in 100,000 reads, and its average and variance at
each base position were calculated. The relationships between
the average and variance are shown in Figure 2a and Figure
S1 in File S1 for the substitution and insertion/deletion read
errors, respectively. In both cases, the variance becomes
greater than the average in a considerable proportion of the
cases. In these cases, application of the Poisson distribution
would lead to increased numbers of false positives. This
phenomenon, termed “overdispersion”, is common in biological

studies, and in such cases, a negative binomial distribution is
applied [16]. Overdispersion is due to fluctuations of the
intensity parameter, and it is rational to assume that the
intensity parameter follows a gamma distribution. Under this
scenario, the incidence number theoretically follows a negative
binomial distribution. In Figure 2b, the increase in the threshold
for substitution from a Poisson to a negative binomial
distribution is plotted against the variance/average ratio of the
read error for the substitution types whose variance/average
ratio ranged from 1 to 2. When the ratio exceeded
approximately 1.2-1.4, there were substantial increases in

Figure 1.  Read error of Ion Torrent PGM in the EGFR target region.  a, Relationship between the read error rate, read depth,
and detection limit for mutations when the significance level is p=2x10-5. Horizontal axis, read depth; vertical axis, detection limit (%).
From top to bottom, each line indicates a read error rate (RER) of 1%, 0.2%, 0.05%, or 0.01%. b, Three-dimensional representation
of substitution RER. x-axis, base positions of EGFR exons 19–21. From left to right, the arrowheads indicate the positions of
T790M, L858R, and L861Q. y-axis, 48 DNA samples from normal individuals. From front to back, conversions to A (green), C
(yellow), G (magenta), or T (blue) are aligned for each sample. z-axis, RER (%). c, Three-dimensional representation of the
insertion/deletion error. x-axis, base positions of EGFR exons 19–21. The bar indicates the position of the exon 19 deletion. y-axis,
48 DNA samples from normal individuals. Blue, plasma DNA; light blue, WBC DNA (large amount); dark blue, WBC DNA (small
amount). z-axis, RER (%). d, Distribution of the RER. White column, substitution error; gray column, insertion/deletion error.
Horizontal axis, range of RER (%); vertical axis, incidence (%).
doi: 10.1371/journal.pone.0081468.g001
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threshold. Thus, we constructed our statistical model of each
substitution under the following criteria.

1 When the average read error in 100,000 reads was less than
1, a Poisson distribution with λ set to 1 was applied (169 types
of substitutions).

2 When the average was greater than 1 and the variance/
average ratio of the read error was less than 1.2, a Poisson
distribution was applied (15 types of substitutions).

3 When the average was greater than 1 and the variance/
average ratio of the read error was greater than 1.2, a negative
binomial distribution was applied (323 types of substitutions).

The exon 19 deletion and L858R belonged to the first
category, while the L861Q and T790M mutation sites belonged
to the second and the third categories, respectively. The
detection limits for the exon 19 deletion and the L858R, L861Q,
and T790M substitution mutations at a significance level of
p=2x10-5 were less than 0.01% and less than 0.01%, 0.01%,
and 0.05%, respectively. In the following analysis, we used

Figure 2.  Characteristics of the mutation detection system.  a, Relationship between the average and variance of the
substitution error presented as the number per 100,000 reads. Horizontal axis, average; vertical axis, variance. The red line
indicates where the average and variance are equal. b, Difference between thresholds calculated according to a negative binomial
distribution and a Poisson distribution. The threshold is the minimum number of base changes in 100,000 reads meeting the level of
statistical significance (p-0.01). Horizontal axis, variance/average ratio of the substitution read error; vertical axis, difference
between thresholds. The types of substitutions whose variance/average ratio ranged from 1 to 2 are plotted. c, Accuracy of
quantitation. Each data point represents the average of three assays. Horizontal axis, fraction of mutant alleles in artificial products;
vertical axis, fraction of mutant alleles estimated from deep sequencing. d, Reproducibility of quantitation. Horizontal axis, base
change rate in the first trial; vertical axis, base change rate in the second trial.
doi: 10.1371/journal.pone.0081468.g002
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p=2x10-5 as the significance threshold for each single
detection, without considering a multiplicity correction,
expecting one false positive in 50,000 samples.

The outline of the method is 1) amplification of EGFR
fragments with exon-specific primers from plasma DNA; 2)
deep sequencing of EGFR fragments with PGM (>100,000
reads / fragment), combining the PCR products; 3) matching
the output sequences with EGFR template sequences; 4)
detection of deletions and substitutions, and conversion of
number of events into that in 100,000 reads; and 5) evaluation
of the base changes with the anomaly detection criteria. In
anomaly detection, the base changes are judged as mutations,
when the number of events in 100,000 reads is equal to or
exceeds the threshold value (exon 19 deletion, 7; L858R, 7;
L861Q, 12; T790M, 60). A schematic representation is shown
in Figure S2 in File S1.

Quantitativity and reproducibility
First, we examined the method’s quantification ability. We

prepared test samples including various fractions of PCR
products of mutated EGFR fragments. There was a very good
linearity (r=0.998) between the inoculated amounts of the PCR
products and the observed mutant-to-normal allele ratios
deduced from deep sequencing (Figure 2c). We then examined
the reproducibility of the method using plasma samples from
lung cancer patients whose primary lesions were confirmed to
carry activating mutations. The fractions of the mutant alleles
measured in two trials are plotted in Figure 2d. A high
concordance (r=0.989) was observed, except in samples that
contained small amounts of the mutant alleles, corresponding
to an approximately 0.3% fraction of the alleles present or less.
In these cases, the initial phase of PCR amplification was likely
to be unsuccessful due to the low numbers of mutant
templates, estimated at 15 copies or less. Thus, the limit of
quantitation was approximately 0.3%.

Validation with samples from lung cancer patients
We further evaluated our method using lung cancer biopsy

specimens, sampling plasma DNA and the primary lesion
simultaneously as part of a prospective study. The results for
the samples from 22 patients showed 86% concordance (95%
confidence interval, 66 - 95), 78% (44 - 93) sensitivity, and 92%
(66 - 98) specificity, setting the tissue biopsy as the standard.
These results are promising with respect to the development of
a diagnostic tool to complement lung cancer biopsy.

We then analyzed a total of 155 samples: 144 samples from
plasma, eight from cerebrospinal fluid, and one each from
urine, pleural effusion, and bronchial alveolar lavage. As for
plasma samples, two or more samples were obtained from 32
patients at different time points of the disease courses. All of
the obtained data are shown in Table S4. Clinical data of the
patients including stage, histology, treatment, and status of
resistance to EGFR-TKI are also listed in this Table. Among
the 33 patients associated with a primary lesion containing the
exon 19 deletion, this mutation was found in at least one of the
plasma samples from 24 patients (72.7%). Of the 23 patients
for which the primary lesions exhibited the L858R or L861Q
substitutions, these mutations were found in at least one of the

plasma samples from 18 patients (78.2%). A double mutation
(simultaneous detection of the exon 19 deletion and L858R)
was observed in 12 plasma samples, although double
mutations are not frequent in biopsy samples. Discrepancies
between the activation mutation types identified in biopsy and
plasma DNA samples were observed in five plasma samples.
T790M was found in 13 out of 57 plasma samples (22.8%)
from patients with EGFR-TKI resistance, and in 7 out of 87
plasma samples (8.0%) without EGFR-TKI resistance.

Temporal changes of EGFR mutation levels during the
disease course

A considerable number of samples were collected from the
same patient at different time points in the disease course.
Temporal changes of EGFR mutation levels in plasma DNA
from patients with three or more samples are schematically
shown in Figure 3. Due to the relatively short sampling period,
samples were obtained from only part of the disease course in
most cases. We focused on two transitions: transition due to
EGFR-TKI treatment initiation and that after acquiring EGFR-
TKI resistance. Data before the treatment initiation was
obtained in six cases. A significant decrease in the activation of
mutation levels with the treatment was seen in all cases
(p=1.7x10-4). Clearance of ctDNA by the treatment initiation is a
general phenomenon.

Data were obtained both before and after acquiring EGFR-
TKI resistance in seven cases. After acquiring resistance, the
activation of mutation level was increased in five patients (218,
226, 259, 61, 66), decreased in one patient (44), and increased
with delay in another patient (178). Increase of activation of
mutations may correlate with disease progression. Despite the
clear correlation between T790M and the EGFR-TKI-resistance
status in the above validation study, dynamics of T790M during
the disease course was not as clear as that of activation of
mutations; T790M often appeared before acquiring resistance.

Three patients are described in more detail. Patient 226 was
treated with gefitinib as first line chemotherapy. The gefitinib
treatment was stopped several times due to adverse effects. A
radiological response (partial response, PR) was observed
from month 1 to month 9, and disease progression was
observed in month 10. Prior to gefitinib treatment, the fraction
of the mutant allele was very high (>50%), but after only one
week of this treatment, the fraction of the mutant allele
decreased to 0.3%, prior to any radiological changes (Figure
S3a in File S1). T790M appeared at 10 months when disease
progression began. Patient 243 also exhibited a skewed
decrease in the mutant allele fraction at the initiation of gefitinib
treatment (Figure S3b in File S1). This patient was treated with
surgery and adjuvant chemotherapy (CDDP plus VNR)
previously, and then subjected to gefitinib. Patient 41
presented with progression of neoplastic meningitis, and was
subjected to combined erlotinib-pemetrexed therapy. Previous
treatments were CDDP plus gemicitabine, gefitinib, and
erlotinib. A minor radiological response was observed from
months one to four, and disease progression occurred
subsequently. There was a skewed decrease in the mutant
allele fraction at the beginning of the therapy, and the increase
upon disease progression was only slight (Figure S3c in File
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Figure 3.  Temporal changes of EGFR mutations in plasma DNA from patients with three or more samples.  Each dot
represents a time point of sampling. The diagram is not precise representation of time scale, and only the order of dots is valid
information. Figures represent EGFR mutations in 10,000 sequence reads: black, exon 19 deletion; blue, L858R; red, T790M. Only
figures exceeding the thresholds are shown. “Mutation type” indicates that in the biopsy samples.
doi: 10.1371/journal.pone.0081468.g003
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S1). It should be noted that the respose of ctDNA to EGFR-TKI
treatment initiation was rapid in all three cases (patient 229,
one week; 243, two weeks; 41, one month).

Mutation detection in the entire target region
We explored the possibility of identifying substitution

mutations in the entire target EGFR region corresponding to
503 types of substitutions, excluding L858R, L861Q, and
T790M. Because the significance level was set at p=2x10-5 for
each detection, false positives were expected to appear once
in 100 samples. In reality, a median of three substitutions were
found per sample. The distribution of the number of
substitutions per sample is shown in Figure 4a. Based on the
experience gained from the biopsy samples, most of these
substitutions were likely to be false positives. A considerable
fraction of the different types of substitutions presented no false
positives (56.2%, Figure 4b), and the statistical models were of
practical use with these types of substitutions. For others, the
parameter estimation from the data from 48 normal individuals
was not sufficiently conservative for the exclusion of false
positives.

Discussion

Rare mutation detection of target loci through the deep
sequencing of plasma cell-free DNA has a comparable
sensitivity to BEAMing. The specificity is also acceptable
because the EGFR mutation types in biopsy and plasma
samples exhibited a high concordance. Thus, rare mutation
detection with deep sequencing has now reached a sufficient
level to proceed to confirmation through a prospective study.
The method could be applied to a limited number of target loci
at any base position; using the pair-end method or sequencing
from the opposite direction would increase the accuracy of high
error rate positions, increasing sensitivity and specificity to
acceptable levels.

However, it is difficult to extend mutation detection to a larger
region. The incidence of false positives is not acceptable for
diagnostic applications. Parameter estimation with increased
numbers of normal samples and/or more conservative
estimation methods, such as Bayesian inference, might
decrease false positives. We used mutation-free DNA from
normal individuals for the survey of read error, but mutation
detection was performed with plasma DNA from lung cancer
patients. A possible cause of the inadequate thresholds may be
the difference in DNA quality. The recent discovery of
artifactual mutations introduced during experimental processes
[17] suggests the possibility of still undiscovered causes of
artifacts using plasma samples.

Our procedure is optimized for our objectives and social
environment, but there is room for technical improvement. In
addition to the paired-end method [9], methods to produce
error-free sequences through the repeated sequencing of
templates from a single molecule [18,19] might be applicable to
enhance accuracy. We employed small amounts of plasma
DNA for PCR amplification due to the ethical standards of our
hospital and relevant regional hospitals. However, in a different
social environment, using an increased amount of plasma DNA

may improve the reproducibility of the detection of low-level
mutations.

In addition to being applied for the non-invasive diagnosis of
EGFR mutations, as shown in the above temporal analyses,
this method is also informative for elucidating the dynamics of
mutant alleles during the course of the disease. In particular, it
should be noted that a skewed decrease in the mutant allele
fraction preceded radiological changes, which will likely be
useful for the prediction of drug efficacy.

Biopsies of advanced cases and repeated biopsies are
technically demanding, and replacement with a non-invasive
method would be beneficial. In this context, monitoring T790M
with our method would have substantial benefits for patient
management. For example, detecting the T790M mutation in
blood samples would be useful for patient selection for
treatment with new EGFR-TKIs for lung cancers that are
resistant to gefitinib and erlotinib [20].

Figure 4.  Substitutions introduced in output sequences of
the 155 retrospective samples.  a, Distribution of the number
of different types of substitutions judged as mutations per
sample. Horizontal axis, number of the types of substitutions;
vertical axis, number of samples. b, Distribution of the number
of samples with a substitution type judged as a mutation.
Horizontal axis, the number of samples with a substitution type
judged as a mutation; vertical axis, number of the types of
substitutions.
doi: 10.1371/journal.pone.0081468.g004
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Recent two studies suggest other possibilities of ctDNA
analysis. Dawson et al. followed the dynamics of ctDNA in
metastatic breast cancer patients using mutations in TP53
and/or PIK3CA, and found its merit for monitoring disease
progression [21]. Use of common mutations may enable its
application to a wide variety of tumors. On the contrary, our
research focus is more specific, i.e., mutation detection for
therapeutic decision making, although our method can also be
applied for their purpose. Murtaza et al. performed exome
sequencing using plasma DNA from cancer patients [22],
Analysis of cancer genomes at any stage of the disease course
might uncover genetic changes leading to disease progression
or drug resistance. Analysis of ctDNA will have a profound
value in scientific and diagnostic aspects of cancer research.

Materials and Methods

Patient characteristics
Patients with activating EGFR mutations in tumor tissues

were recruited at Osaka Medical Center for Cancer and
Cardiovascular Diseases. Pleural fluid, cerebrospinal fluid
and/or urine samples were collected from some patients. In all
of the patients, activating EGFR mutations were found in
biopsy samples using the PNA-LNA PCR clamp method [23].
The response to therapy and disease progression were mainly
evaluated from radiological data based on the RECIST criteria
[24].

DNA extraction from liquid samples
Plasma was prepared via centrifugation of 4-5 ml of EDTA-

treated blood at 800 g for 10 min at room temperature. The
plasma was transferred to a fresh tube and re-centrifuged at
15,100 g for 10 min at room temperature. After centrifugation,
the upper plasma was transferred to a fresh tube. Pleural fluid
and urine samples were centrifuged at 800 g for 10 min at
room temperature, and the supernatants were transferred to
fresh tubes. Centrifuged liquid samples were frozen at -80 °C
until DNA extraction. Cerebrospinal fluid was frozen without
centrifugation. DNA was extracted from 1.5–2.0 ml of a liquid
sample (or 5 ml of urine) using the QIAamp circulating nucleic
acid kit (Qiagen, Hilden, Germany) according to the
manufacturer’s instructions. The DNA concentration was
determined by measuring the copy number of LINE-1 [25] or
using the Qubit ssDNA Assay Kit (Life Technologies, Carlsbad,
CA, USA).

Amplicon library construction and deep sequencing
Sequencing library construction.  To amplify target

regions of the EGFR gene, PCR primer pairs were designed
with Primer3 (http://frodo.wi.mit.edu/). Primer pairs have 5-nt
indexes (to discriminate individuals) and adaptor sequences for
semiconductor-sequencing. Positions of PCR-target regions
and primer sequences are shown in Table S5. PCR
amplification was conducted in a 50 µl reaction mixture
containing plasma DNA obtained from 300 µl of plasma (10 ng
or more), 20 pmol of each primers and 1 unit of KOD -Plus-
DNA polymerase (Toyobo, Osaka, Japan). To analyze the read

error, we used genomic DNA from plasma or leukocytes from
healthy individuals as a PCR template. The cycling profile was
as follows: 2 min at 94°C for initial denaturation, followed by 40
cycles of 15 sec at 94°C for denaturation, 30 sec at 55°C for
annealing, and 50 sec at 68 °C for extension. The products
were purified using the QIAquick 96 PCR Purification Kit
(Qiagen) or the MinElute PCR Purification Kit (Qiagen), and the
DNA concentration was determined using the Quant-iT™
PicoGreen® dsDNA Assay Kit (Life Technologies) or an
ND-1000 Spectrophotometer (NanoDrop Technologies,
Montchanin, DE, USA). Subsequently, we mixed equal
volumes of the purified PCR products and diluted them to
create a template for emulsion PCR. We mixed 12 and 24
types of PCR products for use with Ion 316 and Ion 318
semiconductor chips, respectively.

Semiconductor sequencing.  Sequencing template
preparation (emulsion PCR and beads-enrichment) from
sequencing libraries was carried out using an Ion OneTouch
Template Kit (Life Technologies) and Ion OneTouch system
(Ion OneTouch Instrument and Ion OneTouch ES, Life
Technologies) according to manufacturer’s protocol. Prepared
templates were sequenced using Ion Sequencing Kit v2 and
the Personal Genome Machine (Life Technologies). Number of
nucleotide flows during sequencing was set to 200 (50 cycles).
Torrent Suite 2.2 (Life Technologies) was used for converting
raw signals into base calls, and extracting FASTQ files of
sequencing reads. Read depth for one assay mostly exceeded
100,000. Sequencing data were deposited in DDBJ Sequence
Read Archive (accession number: DRA001029).

Counting variants
Alignment of sequencing reads.  Reads in FASTQ files

were divided using 5-nt indexes for individual assignment using
in-house perl script. Short reads (<70 bases) were discarded.
Remaining reads were aligned to target sequences (exon 19,
20 and 21 of EGFR gene) with bwa (version 0.6.2) using the
bwasw mode for aligning long reads [26] and parameter setting
“-b5 -q2 -r1 -z10”.

Estimation of variant/error rate.  Using samtools (version
0.1.18) [27], the generated mapping data by bwa (SAM files)
were converted to BAM files and processed to obtain the per
base coverage (pileup files). Subsequently, we summarized the
base counts for each target base position (e.g., EGFR codons
790 and 858) using an in-house-devised perl script.
Frequencies of variants/errors (substitutions) were calculated
by dividing base counts of substitutions by all base counts on
each position. Because of a high error rate for insertions/
deletions, detection of several base-pair deletions in exon 19
was difficult. Instead, we aligned reads to eight template
sequences corresponding to major deletion types in the
COSMIC database of the Wellcome Trust Sanger Institute
(http://www.sanger.ac.uk/genetics/CGP/cosmic/), using bwa.
The nucleotide positions for these deletions in the human
genome (GRCh37/hg19) are 55242463-55242477,
55242465-55242476, 55242465-55242479,
55242466-55242480, 55242466-55242486,
55242468-55242482, 55242469-55242477, and
55242469-55242486 in chr7, and the cDNA positions
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(NM_005228) are 2233-2247, 2235-2246, 2235-2249,
2236-2250, 2236-2256, 2238-2252, 2239-2247, and 2239-2256
(position 1 refers to the A in the ATG start codon). The
frequencies of the deletion mutations were estimated by
dividing the number of reads aligned to deletion-type
sequences by the number of all reads aligned to exon 19
sequences with or without a deletion. Because incomplete
matches with deletion-type template sequences were observed
due to the diversity of deletions [28], we employed the deletion
type with the maximum number of aligned reads for the
estimation of mutation frequency.

Statistical analysis
For each nucleotide substitution pattern, parameters of

Poisson and negative binomial distribution were estimated
using the method of moments with data from 48 normal DNA
samples. Parameters lambda and r were rounded up to integer
values. Calculations based on these probability distributions
were executed using Microsoft Excel 2011 and Casio’s high
accuracy calculation service (http://www.keisan.com).
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