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Abstract

Drug resistance is a common problem in the fight against infectious diseases. Recent studies have shown conditions (which
we call antiR) that select against resistant strains. However, no specific drug administration strategies based on this property
exist yet. Here, we mathematically compare growth of resistant versus sensitive strains under different treatments (no drugs,
antibiotic, and antiR), and show how a precisely timed combination of treatments may help defeat resistant strains. Our
analysis is based on a previously developed model of infection and immunity in which a costly plasmid confers antibiotic
resistance. As expected, antibiotic treatment increases the frequency of the resistant strain, while the plasmid cost causes a
reduction of resistance in the absence of antibiotic selection. Our analysis suggests that this reduction occurs under
competition for limited resources. Based on this model, we estimate treatment schedules that would lead to a complete
elimination of both sensitive and resistant strains. In particular, we derive an analytical expression for the rate of resistance
loss, and hence for the time necessary to turn a resistant infection into sensitive (tclear). This time depends on the
experimentally measurable rates of pathogen division, growth and plasmid loss. Finally, we estimated tclear for a specific
case, using available empirical data, and found that resistance may be lost up to 15 times faster under antiR treatment when
compared to a no treatment regime. This strategy may be particularly suitable to treat chronic infection. Finally, our analysis
suggests that accounting explicitly for a resistance-decaying rate may drastically change predicted outcomes in host-
population models.
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Introduction

Drug resistance is an important problem during infection

treatment, particularly in intensive care units [1]. Cases of

resistance have been described in infections caused by different

types of pathogens, such as viruses, bacteria, fungi and protozoa

[2–5] and the increasing incidence has made resistance a major

public health issue [6]. This fact can be exemplified by, but it is not

exclusive to, infections caused by the methicillin-resistant Staphy-

lococcus aureus (MRSA), whose incidence rate has almost doubled

(city of Atlanta) or tripled (city of Baltimore) in a period of three

years, from 2002 to 2005 [6]. The relevance of those numbers is

evident when compared to infectious diseases that are caused by

other bacteria also common in the human respiratory tract and

skin, such as Streptococcus pneumonia and Haemophilus influenzae. The

number of MRSA infection cases was about twice and 30 times the

numbers for S. pneumonia and by H. influenza, respectively, in the

calendar year of 2005 and was associated with about 18000 deaths

[6]. Also, MRSA is associated with over 20% of S. aureus infections

in Europe [7]. This alarming situation highlights the need for

alternatives to reduce the incidence of resistance. Two common

potential strategies for this purpose are drug restriction and

multiple-drug therapy. However more work is required to

determine the potential effectiveness of these strategies in reducing

or fighting drug resistance and to gain a quantitative understand-

ing of their mechanisms, both at the single-host and the host-

population level.

Drug restriction consists of suspending a given class of

antibiotics for some period of time, while other classes of

antibiotics are still available for treatment. It is based on the

principle that resistance can decrease in the absence of a specific

antibiotic treatment, due to the cost of resistance [8–11]. For

example, an early clinical study at the host-population level

reported a reduction in the proportion of Vancomycin-resistant

bacteria from 47% to 15% using a Vancomycin restriction strategy

[12].

A special case of restriction is drug cycling, in which restrictions

to specific classes of drugs are alternated over some time interval.

A review on the topic identified only four references rigorously

investigating drug cycling [13]. Three of them reported cycling to

be effective in reducing the incidence of resistance and one did not

find any statistical significance. They also reported lack of standard

procedures, which makes it hard to obtain a conclusive evaluation

of policies. A parallel review was less stringent and observed that

thirteen out of fourteen studies related to drug cycling reported

positive results, such as decrease of either resistance, infection rate

or mortality rate, while only one reported purely negative results

[14]. Subsequent studies reported positive outcomes for drug

cycling [15–21]. While one case reported a combination of
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positive and negative results [21], and another discussed draw-

backs of this approach [17], all of them agreed that more research

is needed to identify useful strategies to combat resistance.

Another option to deal with drug resistance is using multi-drug

therapy. The properties of drug combinations have been studied

for more than 100 years [22–24]. The nature of drug interactions

can be classified in two main groups: synergistic and antagonistic.

An interaction is classified as synergistic (antagonistic) if the

combined use of two drugs increases (decreases) their activity, such

as growth inhibition, relative to a null expectation based on

individual drug effects [25]. In using drug combinations for

therapeutic purposes, most research until recently has been

focused on synergistic interactions [26–29]. Drug synergy reduces

the amount of drug necessary to reach the same activity,

consequently reducing costs and presumably toxicity to patients

[26]. However, new studies have shown that synergistically

interacting drugs tend to increase the emergence of drug

resistance, indicating that it would be useful to pursue the

potential role of antagonistic interactions in affecting the evolution

of resistance [26,30–32].

Resistant strains would not be so alarming if we were able to

control them. In order to do so, one would have to find conditions

(which we call antiR) in which sensitive strains are able to grow

faster than resistant ones. Under these conditions, resistant strains

would have a selective disadvantage and decrease in population

size. The antiR conditions can be applied to reduce resistance,

turning an infection susceptible to antibiotic treatment. The

effectiveness of this strategy depends on a precise timing schedule

for the application of antiR and antibiotic treatment.

The existence of antiR conditions have been demonstrated by

experimental measurements [33,34]. Chait and colleagues used

suppressive interaction to favor the growth of a wild type, sensitive

strain over the growth of a resistant one [33]. Suppressive

interactions are a special case of antagonism, and occur when the

combined effect of two drugs is weaker than the effect of each drug

individually. A suppressive drug attenuates the effect of an active

drug in the sensitive strain, but not in the one carrying the genes

for resistance to the suppressive drug. Thus, it creates a condition

that favors the growth of sensitive strains.

A second antiR mechanism is possible when resistance is

acquired through the use of efflux pumps [34]. This machinery

keeps the antibiotic outside the cell and is activated by the

presence of the antibiotic. It is an expensive process, in which the

antibiotic is actively transported against its gradient of concentra-

tion at expenditure of free energy. Modifications caused by

chemical decay may cause an antibiotic to be no longer effective,

while maintaining its capacity to activate the genes for resistance.

Under these conditions, the modified antibiotic is not effective and

the activation of the efflux pumps is not associated with any benefit

for the bacteria. Thus, it only increases the cost of carrying and

expressing the genes for resistance, favoring growth of sensitive

strains.

In spite of the growing knowledge about antibiotic resistance,

there is still not a standard way to control it. The use of drug

combinations can lead to multi-resistant strains [35–38]. Specific

strategies to turn antiR conditions into therapeutic plans have not

been proposed yet. Drug restriction is not a well-established

intervention, with limited studies available on the topic [14,36].

Moreover, the implementation of drug restriction policies beyond

a single hospital is challenging. In the case of cycling, lack of

standard procedures and arbitrary definition of cycle duration are

central issues [13,14,17], making strategies inconclusive. Mathe-

matical models could help to improve strategies. However, most

models [39–41] predict that antimicrobial cycling is not helpful in

reducing resistance while most experimental investigations suggest

benefits for cycling [14]. Such divergence encourages the search

for the principles necessary to develop accurate models and

highlights the importance of more experimental evidence.

In this paper, we use a mathematical model [42] to

quantitatively study antibiotic therapy and the effect of an anti-

resistance treatment in a single-host model (Fig. 1A-B). We

simulate a case where antibiotic treatment is not effective and

show how the application of antiR conditions could provide an

effective treatment. Using the model, we are able to estimate for

how long (time tclear) the antiR condition should be applied until

antibiotic treatment is again effective. In particular, we show that

tclear depends only on three key parameters: the pathogen division

rate, the rate of plasmid loss and the difference in growth rate

between sensitive and resistant strains. Also, we use available

experimental data to estimate tclear, providing suggestions on how

to manage drug timing in order to clear resistance from a

pathogen load. Finally, our single-host model suggests that

antibiotic resistance may be attenuated over time. We show that

the incorporation of a similar resistance attenuation term into

Figure 1. Illustration of the infection dynamics model and of a
novel strategy to fight resistance. (A) Schematic representation of
the main dynamical transitions based on the model from [42]. The
arrows represent the possible fates of the populations of sensitive and
resistant pathogen strains. Horizontal gene transfer (rate t) and plasmid
loss (rate r) are the mechanisms responsible for interconverting
between sensitive and resistant strains. The use of an antibiotic can
reduce the sensitive population, but is not effective against the
resistant one. Conversely, the cost of carrying a plasmid causes a
reduction of the resistant population in the absence of antibiotic use.
Also, both strains are susceptible to immune system killing. This model
of infection dynamics can be used to search for optimal treatments. (B)
Schematic representation of the current state of an infection and its
treatment. Regular antibiotic is effective against an infection caused by
the sensitive strain, but is not effective against an infection with high
abundance of resistant pathogens (B-top). Here we show that an
effective control of the infection can be obtained by initially treating
against the resistant strain (antiR condition) [33,34] and subsequently
applying antibiotic treatment (B-bottom).
doi:10.1371/journal.pone.0080775.g001

Antibiotic Timing Can Help Fight Resistance
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host-population models may change the current perspective on

optimal strategies to reduce incidence of antibiotic resistance.

Methods

Background
Our current work builds upon a previous model of bacterial

infection and immune response, originally proposed to identify

strategies to limit the emergence of antimicrobial-resistant

bacterial strains [42]. The pathogens are composed of sensitive

(represented by the subscript S) and resistant (represented by the

subscript R) strains. The abundance of pathogens, B = BS+BR, is

limited to a carrying capacity l?k [43–45], giving rise to a logistic

growth. The growth rate, lS or lR, is the difference between the

division (d) and the mortality (m) rate. The model also considers the

effect of the immune system, represented by the number of

phagocytes (P) and their killing rate (c), and assumes that the

populations of pathogens and phagocytes are well mixed. The

presence of the immune system effectively translates into a

threshold of pathogen abundance, above which an infection starts

[46]. The model also assumes that the genes for resistance are

carried by mobile genetic elements (referred to in what follows as

plasmids, see also Discussion). The resistance-carrying mobile

genetic elements can be transferred to a sensitive strain, due to

horizontal gene transfer, at a rate t, and be lost during replication,

with a probability r [47]. An illustration of the model and

parameters is shown in Figure 1A. Mathematically, the model is

described by the following differential equations:

dBS

dt
~lSBS 1{
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The values for the parameters used in Equation 1 are described in

Table S1 in File S1. The different conditions described in this

paper (no treatment, antibiotic treatment and antiR) are

distinguished by different values of mortality rate and are also

described in Table S1 in File S1. Throughout this work, we use a

specific fixed value for each parameter and we assume that

antibiotic treatment has equal access to each pathogen cell. These

assumptions make it easier to understand the model principles and

do not affect the conclusions of our analysis. A sensitivity analysis

shows that our results are robust to a varying range of parameters

(Text S4 in File S1 and Fig. S2).

Model intuition
The model describes an infection by predicting the dynamical

changes in the population of invasive pathogens. If the population

is low, the immune system is able to control the infection. When

the population is beyond the immune system capacity, the

infection needs to be controlled by antibiotic therapy (Fig.

S1A,B). However, an infection will not be cured if therapy is

interrupted before the pathogen load is sufficiently reduced (Fig.

S1B) or if the pathogen population is resistant to antibiotic (Fig.

S1D). Also, a time delay in antibiotic application can indicate

whether an antibiotic therapy will lead to a successful treatment

(Fig. S1C) or not (Fig. S1D). In addition, the relative killing rates of

antibiotic and immune system depend on pathogen abundance

(see Text S5 in File S1). More details about the model can be

found in the original paper [42].

Results

Treating against resistance
We used the model of Equation 1 to predict optimal strategies

for healing infections that involve strains resistant to a single

antibiotic. This is performed by estimating the outcomes of a

therapy based on the application of antiR and antibiotic treatment

with different time schedules (Fig. 1B). Antibiotic usage reduces the

population of sensitive pathogens while at the same time favoring

the resistant ones. If the abundance of the resistant population is

too high, antibiotic treatment is ineffective. We explore whether an

appropriate timing of the antiR condition [33,34] could give rise

to alternative avenues to combat resistance.

We studied the effect of an antiR treatment in the infection

dynamics and examined how it could help to fight resistant

infections. The application of an antiR treatment reduces the

abundance of resistant pathogens (Fig. 2). Interestingly, the

intensity of this resistance attenuation increases when the

abundance of sensitive pathogen is close to the carrying capacity

and indicates a change in fitness when both strains have to

compete for resources. This phenomenon suggests that competi-

tion for resources might also direct resistance attenuation under no

treatment conditions. Notably, resource competition has recently

been shown, both in terms of mathematical simulations and

experimental data, to play a major role in the duration of

inflammatory reaction caused by virulent pathogen [48]. We

simulated infection dynamics when no treatment is applied to

determine the key parameters responsible for resistance attenua-

tion. We observed that the stability of the genes for resistance

(represented by the plasmid loss rate) as well as the parameters

related to growth rate play a key role in resistance attenuation

when the sensitive population is close to carrying capacity (Fig. 3).

Our goal is to explore the potential of resistance attenuation as

an alternative treatment to fight resistant infection. For this

purpose, we simulated infection dynamics under different treat-

ment schedules (Fig. 4). Resistance attenuation can be exploited to

reduce the population of resistant pathogen to low levels, turning

antibiotic therapy effective. The higher the intensity of resistance

attenuation, the faster a resistant infection would become sensitive

to antibiotic treatment. An antiR condition increases the intensity

Figure 2. Resistance attenuation is boosted when the popula-
tion of sensitive pathogens approaches carrying capacity. This
figure shows the infection dynamics of both resistant (dashed red line)
and sensitive (solid blue line) pathogens under antiR treatment (purple
shade). The decrease in the abundance of resistant pathogen is
relatively small when the sensitive strain is far from carrying capacity
(time t,8 days), but is strengthened when the sensitive population
reaches carrying capacity. The initial abundances of sensitive and
resistant pathogens are 108 and 109 cells respectively.
doi:10.1371/journal.pone.0080775.g002
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of resistance attenuation relative to drug suspension and reduces

the time it takes for a resistant infection to become susceptible to

antibiotic treatment. Figure 4 simulates a case in which antiR

treatment leads to an effective treatment that would not be

achievable by suspending antibiotic use. This result illustrates the

potential of antiR conditions to accelerate resistance attenuation.

Surprisingly, the results of our simulations show that the

abundance of sensitive pathogen grows in parallel with the

resistant pathogen under antibiotic treatment (Fig. 4B). This

phenomenon depends on the simple assumption that the resistance

plasmid can be lost: the population of sensitive pathogens could

then spontaneously rise to high levels from a high abundance of

resistant pathogen.

The possible outcomes of treatment can be visualized by a

schematic phase plane representation (Fig. S3). Note that,

according to this schematic representation, no single treatment is

effective at treating an infection for all ranges of pathogen

populations. However, an effective treatment is possible for any

combination of pathogen populations, using a multi-treatment

therapy. The infection dynamics for a multi-treatment therapy can

be visualized by plotting the phase plane for each individual

treatment in a tri-dimensional representation (Figure 5). This

representation helps choose the correct strategy to combat

infection based on pathogen abundances. It also helps visualize

necessary conditions for an effective treatment. In particular, an

effective treatment for a full range of pathogen populations

requires that the antibiotic treatment is effective even if the

abundance of sensitive pathogen is at carrying capacity (Text S4 in

File S1 and Fig. S2). A medically relevant outcome of this analysis

is that it provides a potential explanation for the prevalence of

high-resistant infection in immunosuppressed patients [49,50] (see

Text S4 in File S1).

Estimating the time to lose resistance
An optimal treatment depends on the precise timing of the

application of antibiotic and antiR conditions. If the infection is

already sensitive, antibiotic treatment should be used from the

beginning of therapy. On the other hand, if the infection is

resistant, antiR should be applied first in order to reduce the load

of resistant pathogen. When the abundance of resistance is low

enough, the infection becomes sensitive and an effective treatment

can be achieved after antibiotic application.

The optimal strategy to combat a resistant infection will depend

on how the resistant population varies over time. For example,

assume that, at a given time t, a patient is infected by a given

population of resistant pathogen BR(t). Under antibiotic treatment,

the pathogen carrying the plasmid for resistance will increase in

frequency. However, in the absence of antibiotic selection, the cost

associated with the plasmid will cause the frequency of the resistant

strain to decrease over time (Fig. 4A,B). What is particularly

noteworthy is that under certain conditions (Fig. 4B) the resistant

population can decrease to a level that is low enough, such that the

immune system and the antibiotic are able to completely eliminate

the pathogens. As shown under no treatment or antiR condition

(Fig. 4B) and demonstrated analytically (Text S1, Equation S4 and

S5 in File S1), the decrease in abundance of resistant pathogen can

be modeled by an exponential function, providing the following

phenomenological linear equation:

log BR(t)~{a:tzlog B0 ð2Þ

where a indicates the rate at which resistance is attenuated

(resistance-decaying rate) and B0 the abundance of resistant

pathogen at a reference time. The resistance-decaying rate is

associated with the cost of resistance and its value increases under

antiR conditions.

The expression shown in Equation 2 enables an estimation of

the time to lose resistance. To compute this time, it is important to

consider the maximum abundance of resistant pathogen that

guarantees an effective antibiotic treatment (which we call h0). We

did not find an analytical solution for h0 in terms of the model

parameters, but this value can be estimated numerically and

visualized in the phase plane representation (Fig. S3B). In

addition, a suboptimal estimation of h0 satisfies the requirement

for a conservative analysis. In the most conservative scenario, this

threshold corresponds to a single resistant pathogen. From this

estimate, one can evaluate the time necessary to turn the pathogen

population sensitive to antibiotic treatment (Equation 2). In

particular, by imposing that the abundance of resistant pathogen

should be less than the threshold h0, in the form log BR,log h0, one

obtains:

Figure 3. Resistance attenuation occurs in the in the absence of
antibiotic treatment when the abundance of sensitive patho-
gen is saturated. The resistant and sensitive strains have to compete
for resources when the bacterial population approaches carrying
capacity. This competition reduces the abundance of resistant strains
due to the cost of resistance. Under this saturated conditions, both the
probability of plasmid loss (A) and the growth rate (B) affect resistance
attenuation. (A) The intensity of resistance attenuation increases with
the probability of plasmid loss (r). (B) The intensity of resistance
attenuation increases with the difference in growth rate between both
strains. In this analysis, we set up the probability of resistance loss to be
equal to zero to highlight only the effects of growth rate. The left panel
shows a case in which both sensitive and resistant strains have the
same growth rate. In this case, both strains can coexist with high
population abundance. In the right panel, we assume that a plasmid
cost reduces resistance growth rate from 2.77 to 2 day21. The
abundance of the resistant pathogen decreases over time when the
abundance of the sensitive pathogen is saturated. The intensity of
resistance attenuation is proportional to the difference in growth rate.
Unless otherwise mentioned, all parameters used in this analysis
correspond to the default values described in Table S1 in File S1 for no
treatment condition. Initial abundances of sensitive and resistant
pathogens are 108 and 109 cells respectively.
doi:10.1371/journal.pone.0080775.g003
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tclear~
log

B0
h0

� �
a

ð3Þ

Note that tclear is inversely proportional to the resistance-

decaying rate. Applying antiR conditions will increase the

resistance-decaying rate, consequently decreasing tclear (Fig. 4).

An analytical approximation derived from the model (Text S1

in File S1) can be used to estimate the resistance-decaying rate and

is summarized by the following equation:

a&dR
r

2
zDl ð4Þ

where Dl = lS - lR is the difference in growth rate of sensitive and

resistant strains. Dl<0 when no treatment is applied and it

increases under antiR conditions. The parameters dR and r are

considered intrinsic to the system [42], but strategies on how to

manipulate them might be a topic of future research. Interestingly,

the parameters described in Equation 4 coincide with the

parameters responsible for resistance attenuation observed under

in vitro measurement [51].

Resistance-decaying rate estimated from real data
The applicability of the outlined strategy to fight resistance

depends on the ability to realistically estimate the resistance-

decaying rate (Equation 4). Experimental measurements of the r
and dR parameters can be obtained using the method described in

[52], while the parameter Dl can be measured as shown in [53].

In particular, Gill et al. [52] used quantitative real time PCR to

measure plasmid counts and a mathematical model to estimate the

rate of plasmid loss and in vivo growth and death rate, yielding

estimates of r and dR. Hegreness et al. [53], conversely, used

fluorescence markers to measure differential growth rate between

resistant/sensitive strains. Starting from an even population, the

intensity of each marker measures the ratio of the abundance of

each strain, i.e.
elSt

elRt
~eDlt.

Figure 4. AntiR treatment boosts resistance attenuation and leads to total healing. Both antibiotic suspension (no treatment) and antiR
treatment can reduce the abundance of resistant pathogens. However, this reduction is greater under antiR treatment. This figures illustrates the
potential advantage of an antiR treatment in fighting a resistant infection. When no treatment is applied, the fraction of resistant population
decreases slowly (A and B, time window between 16 and 36 hours) and it is followed by an ineffective antibiotic treatment. In (B), the resistance
attenuation is faster due to treatment against resistance (antiR, purple-shaded area), and leads to an effective antibiotic treatment (t.36h). The black
dashed horizontal line marks a single cell, i.e. the level below which the infection is healed. The initial abundance of both sensitive and resistant
pathogens is 109 cells. Note that the period of antibiotic suspension preceding an antiR treatment is not necessary for an optimal therapy and is
shown in this figure only for highlighting the different slopes.
doi:10.1371/journal.pone.0080775.g004

Figure 5. Schematic representation of a phase space shows
possible paths for an effective therapy. A phase space shows the
growth direction for different size of the resistant and sensitive
populations (x and y-axes respectively) upon different types of
treatments (different planes on the z-axis). The dark shade in each
plane represents the area in which the population of pathogen has
negative growth (i.e. infection is under control). In this phase space we
display a specific trajectory representative of a therapy that successfully
controls resistant pathogens. Each treatment condition is represented
as a different plane: no treatment (bottom plane, gray), antibiotic
(middle plane, green), antiR (top plane, purple). For the bottom and top
planes, the dark shaded area coincides with the population threshold
controlled by the immune system. Note that, due to log-scale
representation, these areas look like squares. Variations in the
parameters for the immune system would cause an extension or
contraction of the dark area, without affecting major conclusions from
this analysis (see also Text S4 in File S1 and Fig. S2). The use of antibiotic
extends the range of control, allowing the cure of infections caused by
sensitive pathogens. No single treatment is able to provide cure in all
population ranges. However, this can be achieved using multiple
treatment therapy. The points (p1, …, p5) illustrate an effective path
(which is the same shown in Fig. 4B).
doi:10.1371/journal.pone.0080775.g005
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Empirical data for an antiR condition was obtained from [33].

The authors measured the ratio of doxycycline-sensitive to

doxycycline-resistance Escherichia coli after 24 hours under control

and antiR treatment, which was 1.4 and 150, respectively. From

those values, we obtain Dlctrl = 0.34d21 and DlantiR = 5.01d21,

where the index indicates, respectively, control and antiR

conditions.

Using the values of Dlctrl and DlantiR, we can compute the

resistance-decaying rate (Equation 4) and estimate tclear (Equation

3) for different values of plasmid loss rate. We estimate that

resistance attenuation, measured in terms of tclear, is boosted up to

15 times under antiR conditions when compared to control

conditions (Fig. 6). Moreover, resistance attenuation depends on

whether the variation in growth rate is caused by increasing

mortality or division rate (see Text S2 in File S1).

Incorporating resistance attenuation in host-population
models

So far, we have explored the concept of resistance attenuation,

and its consequences for treatment, based on a single-host model.

What would be the implications of introducing the resistance

attenuation concept in host-population models of infection? A

detailed mapping of the parameters of the single-host model onto

those of a host-population model is beyond the scope of the

current work. However, we will show here qualitatively how the

explicit introduction of resistance attenuation in a host-population

model can alter dramatically its predictions, e.g. the effectiveness

of drug cycling.

Consider for example the host-population model proposed by

Bonhoeffer et al. [40]. In this model, sensitive pathogens can

acquire resistance (parameter s in Equation S6 in File S1, or

Equation 3 in [40]), but there is no parameter explicitly

representing the possibility of resistance loss. Rather, in the

original model, the cost of resistance is associated with a faster

recovering rate. We performed a simulation of the Bonhoeffer et

al. model with default parameters and compared it to a modified

version that represents transitions from resistant to sensitive strains

(see Text S3 in File S1, Fig. S4, Fig. 7). Our analysis shows that

adding a term that explicitly refers to resistance attenuation can

yield a drastically different conclusion when compared to the

original model (Fig. 8), i.e. that cycling is the optimal strategy and

that cycling period can be optimized (Fig. 8D and 8H).

Discussion

Our analysis illustrates a case where a resistant infection could

be potentially cured based on the specific timing of two treatments:

antibiotic and antiR. An antiR condition can reduce the

abundance of a resistant strain by exploiting the cost of resistance.

We show that the optimal duration of the antiR administration

(tclear) depends on the resistance-decaying rate, a constant that can

be estimated from experimentally measurable parameters [33,52].

A future potential application of our time-scheduled therapy

may be to treat chronic infections, in which resistance turns

antibiotic treatment alone unsuccessful [54–56]. For example,

long-term antibiotic treatment is often ineffective in the treatment

of chronic sinusitis [56]. Strategies taking advantage of antiR

conditions could be especially useful under conditions in which tclear

is small relative to the timescale of infection progress and a

Figure 6. Resistance attenuation is influenced by the nature of antiR treatment and by the plasmid loss rate. The nature of the antiR
treatment (whether bactericidal or bacteriostatic, see Text S1 in File S1) and the rate of plasmid loss influence the dynamics of resistance attenuation.
We illustrate the resistance decaying rate (A) and tclear (B) as a function of the rate of plasmid loss and the nature of treatment. At low rates of plasmid
loss (r<0), antiR treatment increases the resistance attenuation by a factor ,15, independently of the nature of antiR treatment. Values are estimated
according to data published in [33].
doi:10.1371/journal.pone.0080775.g006

Figure 7. Schematic representation of a host population
models that includes the possibility of resistance loss. A
modified implementation of a previous host population model [40]
under a combination of two drugs a and b (Equation S6 and S7 in File
S1) takes into account the possibility of resistance loss. Hosts can be
infected by pathogens of four different types: wild type, a-resistant, b-
resistant and a,b-resistant. The numbers of individuals infected are
correspondingly represented by variables yw, ya, yb, and ya,b. The
original model [40] considered only the possibility of acquiring
resistance (black arrows). In our modified host population model,
motivated by our findings in the single host model, we assume that a
nonzero resistance-decaying rate can cause loss of resistance (red
arrows).
doi:10.1371/journal.pone.0080775.g007
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sustained drug suspension or antiR treatment would not threaten

the health of the host.

The insight derived from the present analysis is limited by the

capacity to effectively implement antiR conditions, and by the

assumptions made by the model (Equation 1). For example, an

antiR condition obtained through the use of a suppressive

interacting drug occurs only at a limited range of drug

concentrations, which might not be easily controllable for

treatment application. In addition, a pathogen could adapt to an

antiR treatment by developing a second resistance. Further

important aspects of the way pathogens may cope with antibiotics,

such as persistence, compensatory mutations, the development of

secondary resistance involving alternative biological mechanisms,

as well as a simultaneous application of antibiotic and antiR

treatment, are not part of the current investigation, but would be

interesting subjects for future expansions.

One of the assumptions of the model described in Figure 1 is

that the genes for resistance can be transferred and lost. This

assumption is consistent with the integration and excision

properties of mobile genetic elements [57–60]. De Gelder and

colleagues performed experimental measurements that show that

plasmid loss due to recombination plays a key role in resistance

attenuation [51]; however the rate of transfer and loss of mobile

genetic elements is still an under-explored topic [61,62]. Estimat-

ing the extent to which this assumption is true requires specific

measurements that are not available in current reports [6,7,47,63–

67]. Clinical studies usually identify whether an infection is caused

by antibiotic-resistant bacteria, but do not measure how the

resistance is carried. In addition, most reports on the topic describe

resistance to be associated with plasmids. For example, b-

lactamases, the most common genes for resistance in E. coli, are

usually carried by a plasmid [6,7,47,65,67]. The resistance for

quinolones was initially thought to be only caused by serial

mutations in the chromosome and to be restricted to vertical

transfers. However, 36 years after its introduction, researchers

have detected a resistance carrying plasmid that is associated with

the rise of high-level quinolone resistance, including multi-drug

resistance [7,63]. The methicillin resistance (mecA) in MRSA

strains of S. aureus is carried in gene cassettes that contain

recombinases able to excise and insert them into chromosomal

regions [57,66]. Moreover, most of the resistance to a second class

of antibiotics is carried by a plasmid [66]. Resistance-carrying

plasmids occur for other classes of antibiotics and organisms and

are often the cause for the rise of multi-resistant strains [7,47].

An important general message emerging from our analysis is

that resistance attenuation (which in turns affects tclear) arises as the

population of pathogens approaches its carrying capacity (Fig. 2).

This suggests that resource competition is a key component of

resistance attenuation, in agreement with previous observations of

its role in the selection of resistant strains under antibiotic

treatment [68]. A potential implication of this concept is that the

population of non-pathogens, by influencing the global carrying

capacity [45,48], may significantly affect the dynamics of

pathogens, and should be taken into account for the development

of more accurate models.

Figure 8. A host population model that takes into account resistance loss leads to different conclusions on the strategies to combat
resistance. In the original host population model [40] (see also Fig. 7), drug mixing (panel B) and drug combination (panel C) outperform drug
cycling strategies (panel A and D), however, different conclusions can be reached by our modified model (panels E–H). The gain (,G.) of therapy is
measured by the integral of the curve for uninfected patients (x) in each plot. The original model suggests that drug combination provides the best
strategy, while the modified model suggest potential gain for cycling. In addition, one can see that cycling periods can be improved to increase gain
(compare A vs D or E vs H). Cycling 5/5: drugs a and b are alternated at every 5 time units; Drugmix 0.5: of patients receive treatment with drug a and
0.5 with drug b; Drug combination: all patients receive both drugs; Cycling 1/1: drugs a and b are alternated at every 1 time unit. Parameters are
taken from the original publication [40], with rw = 0, ra = rb = 0.1, rab = 0.2.
doi:10.1371/journal.pone.0080775.g008
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In addition to exploring in detail the behavior of a single host

model under conditions that induce resistance attenuation, we

asked ourselves whether resistance attenuation in host population

models could affect infection dynamics at an epidemiological level.

By introducing a resistance-decaying rate into a previous host

population model [40] we found significant changes in the

predicted optimal strategy. Most notably while the original model

predicts drug mixing or drug combination as the best strategy, our

modified model indicates that drug cycling corresponds to the best

strategy under otherwise equal conditions. This finding, contingent

on further explorations of parameter ranges and assumptions,

offers a potential way of reconciling previous contrasting reports of

experimentally successful, though theoretically unfavorable, drug

cycling therapies [13–21,39–42,69–72]. More investigation is

necessary to make a mechanist connection between experimentally

measurable variables of resistance attenuation and host population

models. We believe that a mechanistic understanding of resistance

attenuation would be useful in predicting the efficacy of a drug-

restriction policy [73,74].

In the battle against antibiotic resistance, the use of mathemat-

ical models is important for transforming the cumulative

understanding of the mechanisms for acquisition and loss of

resistance [27,75,76] into potential strategies to treat infection

caused by resistant pathogens. While our work does not suggest an

immediate and practical protocol to fight resistant infection, it

highlights simple quantitative aspects of resistance attenuation that

could eventually translate into novel strategies to fight resistant

infections. We envisage that further iterations of empirical and

mathematical studies will help understand how specific resistance

mechanisms should be incorporated into models to enable

improved policies for fighting resistance.

Supporting Information

Figure S1 Overview of the main properties of the infection

dynamics models used in this paper. A treatment is successful

when the pathogen population is reduced below the dashed line

and is unsuccessful otherwise. The antibiotic treatment is effective

when the pathogen abundance has a low fraction of resistance.

Panels (A, B) illustrate the intuitive effect of different lengths of

antibiotic treatment in an infection caused exclusively by the

sensitive strain (blue continuous line). The parameters used in this

analysis do not affect the qualitative behavior depicted in the

original model [42]. A 9 days-long antibiotic treatment (green-

shaded region) can reduce infection until the immune system is

able to control it (A). The same infection is predicted to persist if

treatment is interrupted after 6 days (B). Panels C–D simulated

infection dynamics in a mixed population of sensitive (blue

continuous line) and resistant (red dashed line) strains. Immediate

antibiotic treatment can lead to effective treatment (C). However,

for the same initial condition shown in (C), the abundance of

pathogens increases after a 3 days delay under antibiotic use and

antibiotic treatment is ineffective (D). The initial abundance of

sensitive pathogen is 108 for all panels and the initial abundance of

resistant pathogen is 102 in panel C–D and null for panels A–B.

The black dashed line in the y-axis highlights when pathogen

abundance is equal to a single individual.

(EPS)

Figure S2 Sensitivity analysis of antibiotic treatment effective-

ness is illustrated by a schematic phase plane representation. This

figure follows the same representation used for the antibiotic plane

shown in Figure 5. The dark shaded areas represent regions of the

pathogen population that are susceptible to antibiotic treatment,

which we refer to as treatable region. For panel (A) and (B), these

areas are represented for the reference values, as from Table S1 in

File S1. Dashed lines represent the boundary edges of the treatable

region for different parameter values. The intersection at the y-axis

indicates the population limit for immune-system control. P0 and

m0 indicate reference values, according to Table S1 in File S1. (A)

Increasing the mortality rate of sensitive strains, mS, will expand

the treatable region. Notice that the immune-system threshold

limits the expansion for the abundance of resistant pathogen. This

is visualized by observing that the dark shaded area expands

horizontally, but not vertically. Reducing the values of mS will

shrink the treatable area. At very low mortality rate, it will

converge towards the limits for immune-system control. (B)

Expansion or contraction of the treatable region as a function of

the number of Phagocytes, P. (B–C) Notice that at low values of P,

the boundary of the treatable region does not touch the right side

edge of the figure. This indicates the treatable region contracts to a

level below the carrying capacity. In this case, under antibiotic

treatment, the presence of a single resistant pathogen cell will be

enough to drive highly abundant sensitive population towards high

resistance (C, dashed arrow). (D) Therapy strategies should

consider how drug concentration varies under antibiotic treat-

ment. The treatable region will vary according to mmin and mmax,

the minimum and maximum values of mS during antibiotic

treatment. The varying area is represented by vertical hatched

area. A conservative strategy should consider the values of mmin to

plan a successful antibiotic treatment.

(EPS)

Figure S3 Schematic representation of infection dynamics

depicts success or failure of infection treatment. An infection

treatment can typically lead to two possible outcomes: the first is

complete healing of the infection, the second persistence of the

infection. Each panel shows a schematic representation of

infection dynamics under different type of treatment. A successful

treatment reduces the total pathogen abundance and directs

infection towards the origin (attractor 1). An ineffective treatment

is not able to contain infection and pathogen abundance grows

towards attractor 2. The dark and light shaded areas represent the

regions of pathogen abundance where treatment is effective and

ineffective, respectively. (A) When no treatment is performed, the

immune system is able to control infection of low pathogen

abundance. In case of high pathogen abundance, infection ensues

and pathogen abundance converges towards a high sensitive

population. (B) Antibiotic treatment extends the region under

which infection can be controlled towards highly sensitive

pathogen abundance and moves the position of attractor 2 to a

highly resistant infection. Note that the top right corner of the dark

shaded area indicates the maximum abundance of resistant

pathogen that guarantees an effective antibiotic treatment (h0,

Equation 2). (C) An antiR treatment slightly extends the region of

pathogen abundance where infection can be controlled towards

the population of resistant pathogen. However, in this conservative

representation, antiR treatment is not able to control a fully

resistant infection. Note that none of the three options of treatment

would be successful to treat infection in all range of pathogen

abundance. However, our analysis predicts that an effective

treatment could be possible for all range of pathogen population in

a multi-treatment representation (see figure 5).

(EPS)

Figure S4 Our modified host population model considers a rate

of resistance loss that is exponentially proportional to the antibiotic

usage. We represent the rate of resistance loss (Equation S7 in File

S1) as a function of drug usage. This shape is inspired on the

exponential rate of resistance loss suggested by our analysis and
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also supported by the observed values measured by De Gelder and

colleagues [51]. Note that at high-antibiotic usage, this rate is close

to null.

(EPS)

File S1 Combined supporting information, containing Table S1,

Text S1, Text S2, Text S3, and Text S4.

(PDF)
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