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Abstract

Molecular entities work in concert as a system and mediate phenotypic outcomes and disease states. There has been recent
interest in modelling the associations between molecular entities from their observed expression profiles as networks using
a battery of algorithms. These networks have proven to be useful abstractions of the underlying pathways and signalling
mechanisms. Noise is ubiquitous in molecular data and can have a pronounced effect on the inferred network. Noise can be
an outcome of several factors including: inherent stochastic mechanisms at the molecular level, variation in the abundance
of molecules, heterogeneity, sensitivity of the biological assay or measurement artefacts prevalent especially in high-
throughput settings. The present study investigates the impact of discrepancies in noise variance on pair-wise
dependencies, conditional dependencies and constraint-based Bayesian network structure learning algorithms that
incorporate conditional independence tests as a part of the learning process. Popular network motifs and fundamental
connections, namely: (a) common-effect, (b) three-chain, and (c) coherent type-I feed-forward loop (FFL) are investigated.
The choice of these elementary networks can be attributed to their prevalence across more complex networks. Analytical
expressions elucidating the impact of discrepancies in noise variance on pairwise dependencies and conditional
dependencies for special cases of these motifs are presented. Subsequently, the impact of noise on two popular constraint-
based Bayesian network structure learning algorithms such as Grow-Shrink (GS) and Incremental Association Markov
Blanket (IAMB) that implicitly incorporate tests for conditional independence is investigated. Finally, the impact of noise on
networks inferred from publicly available single cell molecular expression profiles is investigated. While discrepancies in
noise variance are overlooked in routine molecular network inference, the results presented clearly elucidate their non-
trivial impact on the conclusions that in turn can challenge the biological significance of the findings. The analytical
treatment and arguments presented are generic and not restricted to molecular data sets.
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Introduction

Identifying associations and network structures from observa-

tional data sets obtained across a given set of entities is a

challenging problem and of great interest across a spectrum of

disciplines including molecular biology [1–8]. While the molecular

entities of interest are represented by the nodes, their associations

are represented by the edges. Such networks can prove to be

convenient abstractions of the underlying pathways and signalling

mechanisms across distinct phenotypes and disease states. [1,2,7].

They can reveal interesting characteristics including repetitive

structures, dominant players, community structures and generative

mechanism [9–11] that can assist in developing meaningful

interventions.

Molecular data obtained from biological systems may or may

not have explicit temporal information. While the former explicitly

captures the evolution of the molecular activity as a function of

time (dynamic), the latter represents a snapshot of the biological

activity in a given window of time (static). Dynamic data sets are

rare and challenging to generate since they demand controlling a

number of factors. Static data sets in conjunction with multiple

independent realizations are relatively easier to generate. Their

prevalence may also be attributed to the tradition of genera-

ting replicate measurements in molecular biology in order to

demonstrate reproducibility of the findings. Prior studies on static

data sets used pairwise dependency measures to capture the

associations between a given set of molecules in the form of

relevance networks [1]. The underlying hypothesis being that

correlated genes are likely to be co-regulated or functionally

related [12]. However, pairwise dependency measures by defini-

tion are symmetric measures resulting in undirected graphs. It is also

known that the dependency between a given pair of genes may not

necessarily be direct and possibly mediated by other gene(s). This

possibly motivated the choice of conditional dependencies as

opposed to pairwise dependencies for molecular network infer-

ence. Subsequently, probabilistic approaches such as Bayesian

network structure learning techniques that model the conditional

dependencies across a larger number of variables in an automated

manner were proposed to infer molecular networks from static

data sets [3,6,7]. The resulting networks of constraint-based

structure learning are typically in the form of directed acyclic graphs

(DAGs) or partially directed acyclic graphs (PDAGs). While DAGs have

directed edges, PDAGs have directed as well as undirected edges

and accommodate the presence of equivalent classes [13,14].

Constraint-based structure-learning algorithms by their very

nature do not accommodate the presence of cycles and feedback

between the molecules of interest which is an inherent limitation.

They have nevertheless proven to be useful approximations of
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pathways and signalling mechanisms [6,7,13]. The DAGs

(PDAGs) may also reveal possible causal relationships between the

nodes under certain implicit assumptions [15].

Of interest, is to note that these molecular data sets are

inherently noisy [16,17,18]. Noise and its variation across

molecular entities may have contributions from several factors

including stochastic mechanisms coupled to the systems dynamics,

sensitivity and precision of the measurement device, variations in

abundance of specific molecules, preferential binding affinities and

experimental artefacts that are an outcome of the estimation

process [7,19,20,21]. While identifying the source of noise is a

challenging problem in its own merit, understanding its impact on

network inference procedure is especially critical in order to avoid

identification of spurious associations. In a recent study, we

elucidated the non-trivial impact of noise and auto-regulatory

feedback on networks inferred using Granger causality tests. The

results were established on multivariate time series generated using

gene network motifs modelled as vector auto-regressive processes

(VAR) [22], as well as those inferred from cell-cycle microarray

temporal gene expression profiles [23,24]. The present study

investigates the impact of noise on pair-wise correlation, partial

correlation and constraint-based structure learning algorithms by

considering static data sets generated from linear models of

popular network motifs and publicly available molecular expression

data [7]. Network motifs are repetitive atomic structures that have

been found to be prevalent across more complex networks [9]. In

the present study, we consider three popular three-node motifs,

namely: common-effect, three-chain and the coherent type-I feed-forward

loop (FFL) [9,25,26]. The common-effect motif and the three-chain motif

represent the convergent and serial connection respectively. These

connections comprise the fundamental connections in Bayesian

networks [27]. Furthermore, the conditional independence rela-

tionships represented by these motifs are usually among the first to

be examined in any constraint-based structure learning algorithm

justifying their choice. Common-effect motif is also an essential

ingredient in identifying equivalent classes and PDAGs [13]. The

coherent type-I FFL has been shown to persist across a number of

organisms including E. Coli and S. Cerivisiae [25,26]. Of interest,

is to note that three-chain and common-effect motifs are an

integral part of a type-I coherent FFL. Analytical expressions for

large discrepancies in noise variance on pairwise (correlation

coefficient) and conditional dependencies (partial correlation) are

investigated. The impact of such discrepancies on constraint-

based Bayesian network structure learning is also investigated.

Finally, the presence of significant discrepancies in noise variance

and its impact on network inference from experimental molecular

expression profiles [7] is investigated.

Methods and Results

Prior to investigating the impact of noise on the constraint-

based Bayesian network structure learning algorithms, its impact

on pairwise and conditional dependencies across the three network

motifs is investigated.

2.1 Pairwise and Conditional Dependencies
Network Motif Parameters. In the following discussion,

xt,yt,ztð Þ represent the molecular expression of the three genes

x,y,zð Þ respectively in a small time window T ,Tztð Þ. The terms

Et,gt,dtð Þ represent zero-mean, unit-variance uncorrelated noise

attributed to inherent uncertainties and artifacts prevalent in

molecular expression studies. Parameter(aw0) represents the

transcriptional coupling strengths between the genes and is

constrained to be equal across the genes, since the impact of

variations in a on pairwise and conditional dependencies is

expected and not the goal of the present study. Discrepancies in

the noise variances across the nodes are represented by parameters

ciw0, i~1,2.

Case 1: Common-effect network motif. The common-

effect network motif (v-structure) [13] is a fundamental connection,

Fig. 1a, discussed widely within the context of Bayesian network

structure learning algorithms. For this motif, z is regulated by x
and y given by the linear model,
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For large noise limit at y(c1??) with finite noise at z(c2%c1),
the correlation coefficients are given by

lim
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Remark 1. Correlation coefficient estimates reveal significant pairwise

dependencies across (x,z) and (y,z) in contrast to (x,y) resulting in the

undirected graph x{z,y{z. As expected, conditioning the marginally

independent nodes x,yð Þ on z renders them dependent (i:e:rxy:z=0).

N (i)Large noise limit at the common-effect node z(c2??,c1%c2):
Pairwise as well as conditional dependencies vanish (4, 5) challenging any

reliable conclusion on the network structure in the large noise limit when

(c2??,c1%c2) preventing any reliable inference of the network. More

importantly, conditioning on the common-effect node at large noise levels

did not render x and y dependent as expected (5).

N (ii)Large noise limit at one of the causes z(c2??,c1%c2): Pairwise

dependencies (x,y) as well as (x,z) disappear (6). Interestingly,

conditional dependencies rxy:z and rxz:y are equal in magnitude with

opposite signs and function of c2 (7). Pairwise as well as conditional

dependencies ryz and ryz:x have maximal values of unity in the large noise

limit at y.

Case 2. Three-chain network motif

Consider the three-chain network motif [9], Fig. 1b, where y
mediates the activity between x,zð Þ given by the linear model
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Figure 1. Popular three-gene network motifs: common-effect, three-chain and coherent type-I feed-forward loop are shown in (a), (b) and (c)
respectively.
doi:10.1371/journal.pone.0080735.g001
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For large noise limit at y(c1??) with finite noise at z(c2%c1),
the correlation coefficients are given by

lim
c
1
??

rxy~0

lim
c
1
??

rxz~0

lim
c
1
??

ryz~1 ð13Þ

The partial correlations are given by

lim
c
1
??

rxy:z~0
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c
1
??

rxz:y~0
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c
1
??

ryz:x~1 ð14Þ

Remark 2. Correlation coefficient estimates reveal significant pairwise

dependencies across (x,y), (y,z) and (x,z) resulting in the undirected graph

x{y,y{z,x{z. As expected, conditioning the marginally dependent nodes

x,zð Þ on y renders them independent (i:e:rxz:y~0). This result is immune to

the choice of the linear model parameters and reflects possible directed acyclic

graph of the form x?y?z.

N (i). Large noise limit at the node z (c2??): Pairwise dependencies (11),

(rxy,rxz,ryz) are identical to the conditional dependencies in (12),

(rxy:z,rxz:y,ryz:x). Of interest is to note that pairwise dependencies rxy

and conditional dependency rxy:z have identical non-zero magnitude.

N (ii). Large noise limit at the node y (c1??): Pairwise dependencies

(13), (rxy,rxz,ryz) are identical to those of conditional dependencies

(14), (rxy:z,rxz:y,ryz:x) similar to what was observed for (c2??).

However, in contrast to (c2??), pairwise (ryz) and conditional

dependencies ryz:x

� �
are identical with a maximum value similar to that

of the common-effect network motif. Also, pair-wise dependencies

(rxy,rxz,ryz) (13) are identical to those obtained for the common-effect

motif (6) failing to distinguish these two structures.

Case 3. Coherent Type-I feed-forward loop network motif

Consider the coherent type-I feed-forward loop [25,26], Fig. 1c,

where the expression of y is regulated by x whereas those of z is

regulated by x as well as z given by the linear model
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Remark 3. Correlation coefficient estimates reveal significant pairwise

dependencies across (x,y), (y,z) and (x,z) indicating a possible undirected
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graph of the form x{y{z. Unlike the three-chain, conditioning x,zð Þ on y
does not render them independent.

N (i). Large noise limit at z(c2??): Pairwise dependencies (18) and

conditional dependencies (19) are identical to those obtained for the three-

chain motif (11, 12) failing to distinguish these structures for relatively

large noise variance at z, Table 1.

N (ii). Large noise limit at y(c1??): Pairwise dependencies (20) and

conditional dependencies (21) are identical to those obtained for the

common-effect motif (6), (7) failing to distinguish these structures for

relatively large noise variance at y, Table 1. Also, the pairwise

dependencies for (c1??)is identical for the coherent Type I FFL, three-

chain as well as the common-effect motif.

2.2 Constraint-based Bayesian Network Structure
Learning

Bayesian network structure learning algorithms have been used

successfully to infer the associations between a large numbers of

variables. Several such algorithms have been proposed in

literature, a partial list of contributions include [28,29,30,31,32].

In the present discussion, we focus on constraint-based structure

learning algorithms that infer the network structure using tests for

conditional independence, namely: the Grow-Shrink (GS) algo-

rithm [30] and the Incremental Association Markov Blanket

(IAMB) [31].

GS was the first algorithm that learned the Markov blanket of each

node as an intermediate step to speed up structure learning

process. The Markov blanket Bl Xð Þ of a node X is defined as the

set of nodes that makes X independent from all the other nodes in

the domain. In a Bayesian network, it is formed by the parents of

X , its children, and the other parents of its children [15].

Therefore, the search for the neighbors of each node can be

restricted to its Markov blanket, which in most cases contains a

limited number of nodes. GS learns Markov blankets using a

forward selection (Growing Phase) followed by a backward selection

(Shrinking Phase). Conditional independence tests are performed in

order of increasing complexity (i.e. with respect to the number of

nodes involved in the test) in order to maximize the overall power

of the structure learning algorithm. Markov blankets are then

reduced to the corresponding set of neighbors by an additional

backward selection. Arc directions are established starting from v-

structures, which can be identified by the interplay of the causes

conditional on their common effect, and then propagated to

prevent the formation of further v-structures and enforce acyclicity.

This is achieved using the heuristics described elsewhere [30,33].

IAMB introduces relatively better heuristics to identify Markov

blankets while improving on GS by using a forward stepwise

regression. However, IAMB in contrast to GS is designed to

identify the Markov blanket of each node and not the complete

network structure. Essentially, it performs the same task as the first

step of GS but the forward stepwise selection in IAMB reduces the

number of nodes incorrectly included in the Markov blankets. In

the context of Bayesian network structure learning, IAMB is

extended to a complete learning algorithm by adding steps 2 to 4

of GS. While both algorithms have been shown to be formally

correct, IAMB has been recently supported by more extensive

proofs and simulations [34,35]. Of interest is to note that GS as

well as IAMB are highly dependent on the ability of the

conditional independence tests to correctly identify dependence

relationships. In fact, the proofs of correctness of both structure

learning algorithms implicitly assume absence of type I or type II

errors. Such an assumption can especially be violated in the

presence of noise that may accentuate false-positives as well as

false-negatives challenging the biological significance of the results.

This in turn justifies investigating the impact of discrepancies in

noise variance across the nodes on network inference using GS

and IAMB. Since the conditional independence tests increase in

complexity during the structure learning process across GS and

IAMB [36] the present study is restricted to well-established

network motifs that are prevalent across more complex structures.

The concerns presented across these motifs are expected to be

aggravated across more complex network topologies.

Common-effect network motif
For large noise limit at z(c2??) with finite noise at y(c1%c2):

For relatively large noise variance at z, the pairwise as well as

conditional dependencies (4, 5) vanish across GS as well as IAMB

resulting in an empty network. This happens regardless of the

values of (rxy:z,rxz:y,ryz:x) because both GS and IAMB test for

significant pairwise dependencies (rxy,rxz,ryz) first and conclude

the Markov blankets of x,y and z to be empty sets. As a

consequence, none of the nodes have any neighbours resulting in

an empty graph.

For large noise limit at y(c1??) with finite noise at z(c2%c1):

Table 1. Pair-wise and conditional dependencies across the three network motifs in the asymptotic noise limits.

c1?? rxy rxz ryz rxy:z rxz:y ryz:x

Common-Effect 0 0 1 �affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2zc2

2

� �q affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2zc2

2

� �q 1

Three-Chain 0 0 1 0 0 1

Type I FFL 0 0 1 �affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2zc2

2

� �q affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2zc2

2

� �q 1

c2?? rxy rxz ryz rxy:z rxz:y ryz:x

Common-Effect 0 0 0 0 0 0

Three-Chain affiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2zc2

1

q 0 0 affiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2zc2

1

q 0 0

Type I FFL affiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2zc2

1

q 0 0 affiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2zc2

1

q 0 0

doi:10.1371/journal.pone.0080735.t001
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For relatively large noise variance at y, GS was able to retrieve a

part of the network structure as discussed below. The Markov

blankets inferred by GS are as follows:

N For Bl xð Þ from (6) we have x\y, i.e. rxy~0 and x\z, i.e. rxz~0
resulting in Bl xð Þ~1.

N For Bl yð Þ, from (6) we have y\x, i.e. rxy~0 and yz, i.e. ryz~1.

As a result, z is added to Bl yð Þ. Also from (7), yx given z, i.e. rxy:z=0

since aw0. Therefore,xis added to Bl yð Þ for suitable values of a
resulting in Bl yð Þ~ x,zf g characteristic of the motif (1).

N For Bl zð Þ, from (6) we have z\x, i.e. rxz~0 but zy,i.e. ryz~1. As

a result,y is added to Bl zð Þ. Also from (7) rxz:y=0, since aw0.

Therefore, a suitable choice of a results in the Markov blanket

Bl zð Þ~ x,yf g characteristic of the motif (1).

For IAMB, the conditional independence tests are performed in

a different order since the nodes are included in the Markov

blankets in decreasing order of association. However, the resulting

Markov blanketsBl xð Þ, Bl yð Þ and Bl zð Þ are same as those of GS.

The impact of discrepancies in noise variance across the nodes on

structure learning is especially elucidated by the asymmetry of the

Markov blankets Bl xð Þ and Bl yð Þ as well as Bl xð Þand Bl zð Þ.
Markov blankets are symmetric by definition, i.e.x[Bl yð Þ then

y[Bl xð Þ and vice versa. However, for the present case we have

following asymmetries (x[Bl yð Þ while y=[Bl xð Þ) and (x[Bl zð Þ
while z=[Bl xð Þ) violating the definition of Markov blanket. For

consistency, a symmetry correction [34,35] may be applied either by

removing x from Bl yð Þ andBl zð Þ, or adding y and z to Bl xð Þ. The

latter correction enables faithful reproduction of the motif while

the former does not.

Three-Chain network motif
For large noise limit at z(c2??) with finite noise at y(c1%c2):z

For relatively larger noise variance at z, the Markov blankets

inferred by GS are given as follows:

N For Bl xð Þ, from (11) we know that xy, i.e. rxy=0 since aw0. For

suitable choice of a, we may correctly infer Bl xð Þ~ yf g. Also, from (11,

12) we have x\z, i.e. rxz~0 and x\zjy, i.e. rxz:y~0 so z=[Bl xð Þ.
Therefore, the ability to infer Bl xð Þ depends on a.

N For Bl yð Þ, from (11, 12) we have y\z, i.e. ryz~0 and y\zjx, i.e.

ryz:x~0 resulting in either Bl yð Þ~ xf gorBl yð Þ~1 markedly

different from Bl yð Þ~ x,zf g characteristic of the motif (8).

N For Bl zð Þ, from (11) we have z\x, i.e. rxz~0 and y\z, i.e.

ryz~0resulting in Bl zð Þ~1 in contrast to Bl zð Þ~ yf g characteristic

of the motif (8).

As in the case of common-effect network motif, reordering of

the conditional independence tests in IAMB does not result in

Markov blankets different from those inferred by GS. Unlike

common-effect motif, no asymmetry between the Markov blankets

is observed for the three-chain, since x[Bl yð Þ and y[Bl xð Þ are

established using the same correlation coefficient rxy. Given these

set of Markov blankets, identifying the correct network structure is

impossible. Since for large values of a, both GS and IAMB learn

(x{y,z), while for small values of a both GS and IAMB are unable

to identify any of the arcs present in the true motif structure. The

presence of at most a single arc x{y makes it impossible to infer

its direction, since both GS and IAMB use v-structures to infer

directions and the learned motif structure contains none.

For large noise limit at y(c1??) with finite noise at z(c2%c1):

For relatively large noise variance at y, no reliable conclusion of

the motif is possible across GS as well as IAMB. The Markov

blankets are as follows:

N For Bl xð Þ, from (13) we have x\y, i.e. rxy~0 and x\z, rxz~0.

As a result, Bl xð Þ~1 in contrast to Bl xð Þ~ yf g characteristic of the

motif (8).

N For Bl yð Þ, from (13) we have y\x, i.e. rxy~0 but yz, i.e. ryz~1.

Even after updating the Markov blanket to Bl yð Þ~ zf g, the dependence

between x and y is obscured by noise as rxy:z~0. Therefore, the Markov

blanket Bl yð Þ~ zf g.
N For Bl zð Þ, from (13) we have that z\x, i.e. rxz~0 but zy, i.e.

ryz~1. Also, from (14) we have x\zjy, i.e. rxz:y~0. This results in

the Markov blanket Bl zð Þ~ yf g characteristic of the motif (8).

In this case, no asymmetry is observed despite the effects of

noise. Nevertheless, neither GS nor IAMB was able to learn the

motif for relatively large noise variance.

Coherent Type-I Feed-Forward Loop motif
For large noise limit at z(c2??) with finite noise at y(c1%c2):

For relatively large noise variance at z, the Markov blankets

determined by GS and IAMB are as follows:

N For Bl xð Þ, from (18), x y i.e. rxy=0, since aw0. Also from (18, 19)

we note that x\z, i.e. rxz~0 and x\zjy, i.e.rxz:y~0. Therefore, z is

not included in Bl xð Þ. Thus, GS and IAMB return either Bl xð Þ~1 or

Bl xð Þ~ yf g for suitable choice of a in contrast to Bl xð Þ~ y,zf g
characteristic of the motif (15).

N For Bl yð Þ, from (18) xy, i.e.rxy=0, since aw0. Also, from (18, 19)

we have y\z, i.e. ryz~0 and y\zjx, i.e. ryz:x~0. Therefore, z is

not included in Bl yð Þ. Thus, GS and IAMB return either Bl yð Þ~1 or

Bl yð Þ~ xf g for suitable choice of aas opposed to Bl yð Þ~ x,zf g
characteristic of the motif (15).

N ForBl zð Þ, it is impossible to learn the correct Markov blanket

Bl zð Þ~ x,yf g sincez\x,i.e. rxz~0 as well as z\y,i.e. ryz~0

from (18). As a result, Bl zð Þ~1:

In the present case, discrepancy in noise variance does not result

in asymmetry in the Markov blankets. Thus, symmetry correction

may not alleviate the impact of noise. Possible motif structures

corresponding to large discrepancies at z are either an empty

structure or (x{y,z). This is problematic for two reasons. First,

only one arc out of three is correctly identified and its direction

cannot be determined by the learning algorithm. Second, the

motif structures above are indistinguishable from those obtained

for the three-chain network motif.

For large noise limit at y(c1??) with finite noise at z(c2%c1):

For relatively large noise variance y, again neither GS nor

IAMB was able to infer the motif. The Markov blankets are given

as follows:

N For Bl xð Þ, from (20) we have x\y, i.e. rxy~0 and x\z, i.e.

rxz~0. This results in Markov blanket Bl xð Þ~1in contrast to

Bl xð Þ~ y,zf gFor Bl yð Þ, from (20) we have y\x, i.e. rxy~0.

However, y is dependent on z, i.e. ryz~1. Also, from (21) we have

rxy:z=0, since aw0. This results in Markov blanket Bl yð Þ~ x,zf g
characteristic of the motif (15) for suitable choice of parameter a
characteristic of the motif (15).

N For Bl zð Þ, from (20) we have z\x,i.e. rxz~0. However, z is

dependent on y, i.e.ryz~1. Also, from (21) rxy:z=0, since aw0.

These results in turn result in Bl zð Þ~ x,yf g for suitably large values of

a.
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Asymmetry between the Markov blankets is observed across

Bl xð Þ and Bl yð Þ as well as between Bl xð Þ and Bl zð Þ. This can

be attributed to the fact that x[Bl yð Þ while y=[Bl xð Þ and

x[Bl zð Þ while z=[Bl xð Þ for suitably large values of a. Correcting

this asymmetry by adding y and z to Bl xð Þ results in the Markov

blankets characteristic of the motif. However, establishing their

directions is not possible since the presence of an arc between x
and y prevents both GS and IAMB from identifying x?y/z.

As a result, all possible configurations of the arcs’ directions are

probabilistically equivalent resulting in an undirected graph.

This is phenomenon is known as the shielded collider identification

problem and affects all constraint-based learning algorithms

[37].

2.3 Simulation Results
In the following discussion, the three gene network motifs are

generated using (1, 8, 15) with parameter a~0:5ð Þ and

normally distributed noise. Since the objective is to demonstrate

the impact of noise as opposed to the other parameter, a~0:5ð Þ,
is held constant across all the simulations. The noise variance at

the node x is fixed at unit variance whereas those at y c1w0ð Þ
and z(c2w0) are varied systematically in order to understand

the impact of discrepancy in noise variance on the conclusions.

Three distinct cases of noise variances, namely: (c1~1,c2~1),
(c1~10,c2~1) and c1~1,c2~10ð Þ are considered. The cases

(c1~10,c2~1) and c1~1,c2~10ð Þ correspond to large noise

variance limits as discussed under (Cases 1, 2 and 3) whereas

(c1~1,c2~1) corresponds to absence of discrepancies in noise

variance. The conditional independence tests used in the

following discussion is exact t-test for Pearson correlation as

implemented in the R package bnlearn [38]. A description of

the functions in bnlearn can be found in the accompanying

manual with applications to molecular expression profiles in

[39].

Results generated using constraint-based structure learning

algorithms GS and IAMB were quite similar consistent with

their expected behaviour, Section 2.2. Therefore, we discuss

only the results from the GS algorithm. The networks were

learned across 200 independent realizations of the data (sample

size = 2000) and Friedman’s confidence yð Þ [3] was computed for

each of the edges. Friedman’s confidence essentially represents

the percentage of times an edge shows up across networks learnt

independently from bootstrapped realizations. In the case of

observational data sets, confidences are estimated from networks

learned from nonparametric bootstraps of the given empirical

sample. In the present study, the underlying model generating

the networks is known a priori. Therefore, parametric bootstrap

is used where independent realizations of the data were

generated from the model in contrast to non-parametric

bootstrap [40]. Also, in the present study, confidence estimates

of edges known to be present in the given graph a priori

essentially represent their statistical power. As a rule of thumb [3],

edges with confidence at least y§0:8ð Þ were deemed significant.

In a recent study [41], we proposed a noise floor approach in

order to avoid the ad-hoc choice of y, and subsequently a

statistically motivated approach that estimates optimal y from

the cumulative distribution of the confidence values [42].

However, in the present study the actual confidence values are

presented for enhanced clarity.

Common-effect network motif. The common-effect net-

work motif, Fig. 1a, was generated using (1) with a~0:5ð Þ and

normally distributed noise Et,gt,dtð Þ. For finite and equal noise

variance c1~1,c2~1ð Þ at y,zð Þ the correlation coefficients rxz,ryz

were similar and relatively higher than rxy (,0) as expected (2),

Fig. 2a. In order to investigate the impact of large discrepancies in

the noise variances, the noise variance across y was increased

relative to z c1~10&c2~1ð Þ. This resulted in small values of

rxz, rxy relative to ryz, Fig. 2a and resembled (6) as expected. A

similar analysis with c1~1%c2~10ð Þ across y and z resulted in

small correlation coefficients across the board similar to (4), Fig. 2a.

Therefore, large discrepancies in noise variances across the nodes

can have a pronounced effect on the pair-wise dependencies. The

corresponding partial correlations for the three choices of noise

variance c1,c2ð Þ are shown in Fig. 2d. For finite equal noise

variance c1~1,c2~1ð Þ at y,zð Þ, the partial correlation rxy:zv0 (3)

was non-zero in contrast to rxy~0, rendering the marginally

independent nodes x,yð Þ dependent. Increasing the noise variance

across y relative to z c1~10&c2~1ð Þ resulted in a significant

increase in ryz:x (7) whereas for c1~1%c2~10ð Þ, all the

conditional dependencies were rendered negligible (5) preventing

any reliable conclusion of the network structure, Fig. 2d. For finite

equal noise variance c1~1,c2~1ð Þ at y,zð Þ, GS was able to

faithfully retrieve the structure of the common-effect motif, Fig. 3a.

Increasing the noise variance across y c1~10&c2~1ð Þ relative to

z, also retrieved the structure faithfully, Fig. 3c. However,

increasing the noise variance on the common effect node

z c1~1&c2~10ð Þ resulted in low confidence values of the edges

challenging any reliable inference of the network, Fig. 3b. Thus

the magnitude of the noise variance at the nodes can have a

pronounced effect on constraint-based structure learning of a

common-effect network motif.

Three-chain network motif. The three-chain network

motif, Fig. 1b, was generated using (8) with a~0:5ð Þ and normally

distributed noise Et,gt,dtð Þ. For finite and equal noise variance

c1~1,c2~1ð Þ at the nodes y,zð Þthe correlation coefficients

rxy,rxz,ryz were significant as expected (9) with rxz representing

the transitive dependency between x and z, Fig. 2b. In order to

investigate the impact of large noise variance, the noise variance

on the mediating node y was increased relative to z
c1~10&c2~1ð Þ. This resulted in small values of rxy,rxz relative

to ryz (13) similar to what was observed for the common-effect

network motif (6) failing to distinguish these structures. On the

other hand, large noise variance on the terminal node z relative to

y c1~1%c2~10ð Þ resulted in rxy values relatively higher than

that of rxz and ryz, as expected from Fig. 2b. These results clearly

demonstrate the non-trivial impact of noise strengths on network

inference on pairwise dependencies. Partial correlations rxy:z and

ryz:x for finite equal noise variance c1~1,c2~1ð Þ were consider-

ably higher than that of rxz:y
~00
� �

as expected, since conditioning

on the mediator y should render marginally dependent nodes x,zð Þ
independent. Increasing the noise variance at y relative to z
c1~10&c2~1ð Þ and at z relative to y c1~1&c2~10ð Þ, rendered

the pairwise and conditional dependencies similar. This is reflected

by the similar profiles, Figs. 2b and 2e respectively. For finite equal

noise variance c1~1,c2~1ð Þ at y,zð Þ, GS was able to faithfully

retrieve the underlying undirected graph, Fig. 3d. This is to be

expected since the Markov equivalent structure of the three-chain

network motif is the undirected graph x{y{zð Þ. Increasing the

noise variance across the mediator y relative to z c1~10&c2~1ð Þ
resulted in low confidence along y{zð Þ preventing any reliable

inference of possible association between these nodes, Fig. 3e.

Interestingly, increasing the noise variance on the terminal node z
relative to y c1~1%c2~10ð Þ resulted in low confidence along

x{yð Þ preventing any reliable inference of possible association

between these nodes, Fig. 3f.

Coherent Type-I feed-forward loop network motif. The

coherent Type-I feed-forward loop network motif, Fig. 1c, was
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generated using (15) with a~0:5ð Þ and normally distributed noise

Et,gt,dtð Þ. While one part of the Type-I FFL resembles the

common-effect motif x?z/yð Þ, the other part resembles a three-

chain x?y?zð Þ, Fig. 1b. For finite and equal noise variance

c1~1,c2~1ð Þ at y,zð Þ the pairwise (16) and conditional depen-

dencies (17) were non-zero. Increasing the noise variance across

yrelativetoz c1~10&c2~1ð Þ resulted in pairwise (20) identical to

those of the common-effect (6) and three-chain motifs (13) failing

to distinguish these network structures. This is reflected by

similar profiles across Figs. 2a, 2b and 2c. On a related note,

increasing the noise variance across z relative to

y c2~10&c1~1ð Þ resulted in pairwise (18) and conditional

dependencies (19) identical to those of the three-chain motif

(11, 12) failing to distinguish these two distinct network

structures. Similarities in the pairwise and conditional depen-

dencies across these motifs are also reflected by similar profiles

between Figs. 2b and 2c and between Figs. 2e and 2f

respectively. For finite equal noise variance c1~1,c2~1ð Þ at

y,zð Þ GS was able to retrieve the undirected edges x{y{zð Þ,
Fig. 3g. Failure to retrieve the exact structure, Fig. 1c, can be

attributed to the presence of equivalent classes. Increasing the

noise variance across z relative to y c1~1&c2~10ð Þ resulted in

low confidences along x{zð Þ and y{zð Þ relative to x{yð Þ
preventing any reliable inference of possible associations along

x{zð Þ and y{zð Þ, Fig. 3h. Thus for these choices of noise

variances it is possible the results of GS for Type 1 FFL

resembles the structure of the three-chain failing to distinguish

them. In contrast, increasing the noise variance at y relative to

z c1~10%c2~1ð Þ resulted in large edge confidence only along

y?z and x?z with low edge confidence along x{yð Þ Fig. 3i

preventing any reliable inference of the network structure.

2.4 Application to Molecular Expression Profiles
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In a recent study [7], signalling mechanisms between 11

molecules were inferred from single-cell data using flow-cytometry

in conjunction with Bayesian network structure learning algo-

rithms. The resulting network was shown to validate existing

associations as well as discovering novel undocumented associa-

tions. Of interest, was the sub-network consisting of three

molecules PIP2,PIP3,Plccð Þ weakly connected to the rest of the

molecules in the network (see Fig. 3 in [7]). The network structure

inferred from the molecular expression data between these three

molecules PIP2,PIP3,Plccð Þ consisted of the following directed

edges PIP3?PIP2, Plcc?PIP3 and Plcc?PIP2. A quick

inspection would reveal the resemblance of the relationships

between these three molecules (22) to that of coherent Type-I FFL

motif (Fig. 1c, Case 3) discussed earlier. The expected and the

inferred relationships along with the influence paths for these three

molecules can be found in (Table 3, Sachs et al., 2005). While the

authors acknowledged that the directionality between (Plcc
?PIP3, recruitment leading to phosphorylation) inferred from the data

was opposite to that established in the literature [43] (see

Supplementary Material, Table I, Sachs et al., 2005), they

successfully validated (PIP3?PIP2, precursor-product) and

(Plcc?PIP2, direct hydrolysis to IP3) [44,45] (see Supplementary

Material, Table I, Sachs et al., 2005). While several data sets were

Figure 2. The average correlation coefficient and partial correlation estimates across 200 independent realizations of the common-
effect, three-chain and coherent Type I feed-forward loop network motifs for various choices of noise variances (c1,c2) are shown in
(a, d), (b, e) and (c, f) respectively. The x-axis labels correspond to the correlation coefficients rxy,rxz,ryz

� �
in (a, b, c) and partial correlations

rxy:z,rxz:y,ryz:x

� �
in (d, e, f) respectively. The (circles, squares and triangles) in each of the subplots correspond to noise variances with magnitudes

(c1~1,c2~1), (c1~1,c2~10) and (c1~10,c2~1) respectively. The points bounded by the dotted rectangle represent cases that occurred much
lesser than 80% of the time as significant (a� = 0.001) across 200 independent realizations.
doi:10.1371/journal.pone.0080735.g002
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investigated in [7], we restrict the present study to the unperturbed

data set comprising the expression of PIP2,PIP3,Plccð Þ across

853 single cells. Prior to investigating the impact of noise on the

network inference between the three molecules, we found the

distribution of the expression levels across the single-cells to be

positively skewed, indicating large variations in the expression

estimates across the cells. Interestingly, we also found the variance

in the expression levels proportional to their average value across

the molecules PIP2,PIP3,Plccð Þ. Box-Cox [46] transforms are

widely used in literature to minimize the skew in the distribution

and suppress non-constant variance as a function of magnitude. In

the present study, we used the log-transform which is the limiting

case of the classical Box-Cox transform to minimize the skew in

the distribution of the expression across these three molecules.

Therefore, the results across the raw as well as the log-transformed

data are presented.

Three different networks Pk,k~1,2,3ð Þ were investigated. P1 :
Network inferred from the given data; P2 : Network inferred from

data generated from the linear model (22) fit to the given data

without any constraints on the model parameters; P3 : network

inferred from data generated by the linear model fit (22) to the

given data with constraint on the noise variance to be equal

i:e:c0~c1~c2ð Þ. The above exercise was repeated for the raw as

well as the log-transformed protein expression data and the

corresponding edge confidences were estimated. The approach is

outlined below.

N Step 1: Given the expression Xnx3 of the three molecules

across n~853 cells.

N Step 2: Generate independent realizations X i
mx3,i~1 . . . p by

resampling Xnx3 mvnð Þ with replacement. In the present

study, we set m~800,p~200ð Þ. Set each column in X i
mx3 to

zero-mean.

N Step 3: Set i/1.

N Step 4: Infer the network structure from X i
mx3 using the GS

algorithm. Let the resulting network be Pi
1.

N Step 5: Estimate the parameters (i.e. regression coefficients

and noise variances (c0, c1,c2) by fitting the linear model (22) to

X i
mx3. Generate Y i

mx3, using the estimated model parameters

and zero-mean i.i.d. noise terms Et,gt,dtð Þ sampled from a log-

normally distributed noise to accommodate for the positive-

skew in the distribution. Infer the network structure from Y i
mx3

using the GS algorithm. Let the resulting network be Pi
2.

N Step 6: Generate data Zi
mx3, using the linear model in Step 5

with the additional constraint on equal noise variance

i:e:c1~c0; c2~c0ð Þ in (22). Infer the network structure from

Zi
mx3 using the GS algorithm. Let the resulting network be Pi

3.

N Step 7: Set i/iz1:

N Step 8: Repeat Steps 4–7 till iwp.

N Step 9: Estimate the confidences of the edges for each of the

networks Pk,k~1,2,3ð Þ.
N Step 10: Repeat Steps 1–9 for the log-transformed data with

normally distributed noise as opposed to log-normally

distributed noise in Steps 5 and 6.

Raw Data. The networks Pk,k~1,2,3ð Þ inferred using the

raw data for the molecules PIP2,PIP3,Plccð Þ are shown in

Figure 3. Bayesian networks inferred using Grow-Shrink algorithm along with Pearson correlation (a� = 0.01) for the three-gene
network motifs, namely: common-effect (a-c), three-chain (d-f) and coherent type-I feed-forward loop (g-i) for various choices of
noise variances: c1~1,c2~1ð Þ,(c1~1,c2~10), and c1~10,c2~1ð Þ. The confidences of the edges yð Þ are represented as percentage of the edges
that persisted across 200 independent realizations. Edges with y§0:80ð Þ are shown by solid arrows whereas others yƒ0:80ð Þ are shown by dotted
arrows. Edges with confidence yƒ0:05ð Þ are deemed noisy and excluded for clarity.
doi:10.1371/journal.pone.0080735.g003
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Figs. 4a–4c respectively. Network structures inferred from the raw

data (P1, Step 4) and those of the linear model fit (P2, Step 5)

exhibited considerable similarity as reflected by their edge

confidences, Figs. 4a and 4b. The confidence was high along

PIP2?PIP3 and Plcc?PIP3, and markedly low along

Plcc?PIP2, Figs. 4a, 4b. Noise variance estimated from the

linear model fit (Step 5) of the raw data revealed around a two-fold

difference i:e:
c2

c1

*2:7+0:3

� �
. Constraining the noise variance

to be equal i:e:c1~c2~c0ð Þ had a marked effect on the resulting

network (Step 6) P3, Fig. 4c. The edge confidences were

considerably high along PIP2?PIP3 as seen earlier (P1 and

P2), Figs. 4a, 4b. However, relatively smaller edge confidence

along between (Plcc,PIP3)along either directions, Fig. 4c, in

contrast to Figs. 4a or 4b was also observed. More importantly,

constraining the noise variance also increased the edge confidences

between (Plcc,PIP2) along either directions in contrast to those

shown in Figs. 4a and 4b (i.e. P1,P2). Thus forcing the noise

variance to be equal had a pronounced effect on the inferred

network.

Log-transformed Data. In order to minimize the impact of

skewness on the conclusions, the entire exercise was repeated on

the log-transformed data. The resulting networks along with

confidence of the edges are shown in Figs. 4d–4f. The networks

Pk,k~1,2ð Þ inferred from the log-transformed data (P1, Step 4)

and those from data generated on the linear model fit (P2, Step 5)

along with the edge confidences are shown in Figs. 4d–4e

respectively. The noise variance estimates from the linear model fit

to the log-transformed data revealed no marked difference

i:e: c2

c1

~11:1+0:01
� �

in contrast to what was observed in the raw

data. Since there were no marked discrepancies in noise variance,

forcing the noise variance to be equal i:e:c1~c2~c0ð Þ had no

profound effect on the resulting network (P3, Step 6) Fig. 4f as

expected. This was revealed by the similar edge confidences across

P2 and P3. Furthermore, it is important to note that the networks

Pk,k~1,2,3ð Þ inferred from the log-transformed data unlike those

from raw data, failed to capture any relationship Plcc and PIP2.

Discussion

Real-world entities work in concert as a system and not in

isolation. Associations between such entities are usually unknown.

Inferring associations and network structure from data obtained

across the entities is of great interest across a number of disciplines.

The recent surge of high-throughput molecular assays in

conjunction with a battery of algorithms has facilitated validating

established associations while discovering new ones with the

potential to assist in novel hypothesis generation. These associa-

tions and networks have been shown to capture possible causal

relationships under certain implicit assumptions and proven to be

useful abstractions of the underlying signaling mechanism. Such

an understanding can provide system level insights and often

precedes developing meaningful interventions. Several network

inference algorithms have been proposed in literature including

those that depend on pairwise and conditional dependencies.

However, little attention has been given to the impact of possible

discrepancies in noise variance across the data obtained across the

molecular entities. In molecular settings, such discrepancies can be

attributed to several factors including inherent stochastic mecha-

nisms, heterogeneity in cell populations, variations in abundance

of the molecules, variation in binding affinities, sensitivity of the

measurement device and other experimental artifacts. Under-

standing the discrepancies in noise variance is critical in order to

avoid spurious conclusions and an important step prior to

identifying the source of the noise.

The present study clearly elucidated the non-trivial impact of

discrepancies in noise variance on associations and network

inference algorithms across synthetic as well as experimental data.

The impact of large discrepancies in noise variance on associations

and network structure inferred from data generated using linear

models of popular network motifs and fundamental connections as

well as those from experimental protein expression profiles were

investigated. Analytical expressions and simulations were present-

ed elucidating the non-trivial impact of noise on three popular

molecular network motifs and fundamental connections (common

effect, three-chain and coherent Type-I feed-forward loop). It was

Figure 4. Bayesian networks inferred using Grow-Shrink algorithm from the molecular expression data (PIP2, PIP3, Plcc) with
sample-size 800 and Pearson correlation (a� = 0.01) are shown in (a–f). Confidences estimated from 200 independent bootstrap realizations
are shown along the edges. Edges with (yw0:80) are shown by solid arrows whereas others yƒ0:80ð Þ are shown by dotted arrows. Edges with
confidence yƒ0:05ð Þ are deemed noisy and excluded for clarity. The edge confidences of the networks P1,P2,P3ð Þ inferred from the raw data are
shown in (a), (b) and (c) respectively. Those inferred on the log-transformed data are shown in (d), (e) and (f) respectively.
doi:10.1371/journal.pone.0080735.g004
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shown that discrepancies in noise variance can significantly alter

the results of pairwise dependencies, conditional dependencies as

well as constraint-based Bayesian network structure learning

techniques that implicitly rely on tests for conditional indepen-

dence. As expected, the discrepancies in noise variances was found

to result in markedly different topologies from those of their noise

free counterpart challenging reliable inference of the underlying

network topology. Such discrepancies were also shown to result in

spurious conclusion of similar structures across markedly distinct

network topologies. The impact of discrepancies in noise variance

were also investigated on publicly available single-cell molecular

expression profiles of a sub-network comprising of three molecules

(PIP2, PIP3, Plcc) involved in human T-cell signaling. The sub-

network shared considerable resemblance to the coherent Type-I

feed-forward loop. The distribution of the raw expression

estimates across these three molecules was positively skewed

indicating large variations in the expression estimates across the

single-cells. Variance about the average expression across the three

molecules was found to be markedly different and proportional to

their average values. Several factors can contribute to such

discrepancies including: abundance of these molecules, antibody

binding characteristics, uncertainty due to possible overlap in the

wavelengths corresponding to the colors tagged to the molecules.

In the present study, a linear model was fit to the molecular

expression data. Parameter estimates from the linear model

indicated significant discrepancies in the noise variances across the

molecules. Adjusting for these discrepancies in the model was

shown to significantly affect the edge confidences of the resulting

networks, hence the topology. The results were presented on the

raw molecular expression data as well as its log-transformed

counterpart. As expected, log-transforming the data not only

reduced the positive skew of the expression profile but also

rendered the noise variance estimates comparable across the

molecules. However, the networks inferred using the log-

transformed data were considerably different from those inferred

on the raw data. While identifying the source of the variation and

controlling for the same prior to the network inference may be the

long-term goal and a research problem in its own merit,

understanding the impact of discrepancies in noise variance is a

critical step in this direction. While the present study focused on

simple network motifs comprising of three molecules, the concerns

are likely to be aggravated across more complex network

topologies. The analytical treatment provided in the present study

has the potential to be translated across other setting such as

genome-wide association studies (GWAS) [47]. Unlike the

molecular network motifs investigated in this study, GWAS

investigate the impact of causal genes and variants on a given

trait or set of traits. Similar to the concerns presented in the

present study, discrepancies in biological variances across the traits

is not uncommon and can have a pronounced effect in discerning

the relationship between the causal and the traits. However, given

the intricacies accompanying GWAS studies a more detailed

investigation is required.
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