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Abstract

The profile hidden Markov model (PHMM) is widely used to assign the protein sequences to their respective families. A
major limitation of a PHMM is the assumption that given states the observations (amino acids) are independent. To
overcome this limitation, the dependency between amino acids in a multiple sequence alignment (MSA) which is the
representative of a PHMM can be appended to the PHMM. Due to the fact that with a MSA, the sequences of amino acids
are biologically related, the one-by-one dependency between two amino acids can be considered. In other words, based on
the MSA, the dependency between an amino acid and its corresponding amino acid located above can be combined with
the PHMM. For this purpose, the new emission probability matrix which considers the one-by-one dependencies between
amino acids is constructed. The parameters of a PHMM are of two types; transition and emission probabilities which are
usually estimated using an EM algorithm called the Baum-Welch algorithm. We have generalized the Baum-Welch algorithm
using similarity emission matrix constructed by integrating the new emission probability matrix with the common emission
probability matrix. Then, the performance of similarity emission is discussed by applying it to the top twenty protein families
in the Pfam database. We show that using the similarity emission in the Baum-Welch algorithm significantly outperforms the
common Baum-Welch algorithm in the task of assigning protein sequences to protein families.
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Introduction

Structure and function determination of newly discovered

proteins, using the information contained in their amino acid

sequences, is one of the most important problems in genomics [1].

Often, but certainly not always, as the homologous proteins have

similar sequences and structures, they have similar functions [2].

The profile hidden Markov model (PHMM) can be applied to

determine the related proteins by sequence comparison [3]. The

parameters of a PHMM are of two types; transition and emission

probabilities. Under a PHMM, there are two assumptions made

for transition and emission probabilities as follows:

1. The tth hidden state, given the (t{1)th hidden state, is

independent of previous states.

2. The tth observation depends only on the tth state.

The PHMM is specified as a triplet l~(A,B,P) where A is the

transition probability matrix, B is the emission probability matrix

and P is the vector of initial probabilities. An important task in

assigning a new protein sequence to a protein family is to estimate

the parameters of the PHMM. The Parameters of a PHMM

(transition probability matrix and emission probability matrix) can

be estimated in two ways: they can be estimated either from the

aligned sequences or unaligned sequences using the Baum-Welch

algorithm [4].

The Baum-Welch algorithm works by guessing initial parameter

values, then estimating the likelihood of the observation under the

current parameters. This likelihood then will be used to re-

estimate the parameters iteratively until a local maximum is

reached. The Baum-Welch algorithm finds Maxl P(observation D
l) by considering only the information on the previous state of a

hidden state. In other words, in the process of the Baum-Welch

algorithm, it is assumed that given states the observations are

independent and only the dependency between hidden states is

considered. So, the dependency between observations can be

combined with the PHMM. For this purpose, the multiple

sequence alignment (MSA) which is a representative of a PHMM

can be considered. In this paper the ClustalW program which is

the current implementation of MSA is used for consideration of

the dependency between observations.

Based on the MSA, one-by-one dependencies between corre-

sponding amino acids of two current sequences that model the

similarity between them can be appended to the PHMM. This

approach in spirit is similar to the works proposed by Holmes [5],

Qian and Goldstein [6] and Siepel [7] where a PHMM is

augmented with phylogenetic trees. In their approach, the

evolutionary information is appended to the PHMM. They

considered the dependency between sequences based on the fact

that all the current sequences (external nodes in the guide tree or

phylogenetic tree) are dependent upon their ancestral sequences.
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Based on their idea, there is no dependency between two current

sequences.

But in our approach, the dependency between two current

sequences based on the similarity between them can be appended

to the PHMM. Based on the fact that with a MSA, the sequences

are biologically related, we can use the MSA to find the areas of

similarity between two current sequences. So, the MSA is used for

consideration of the one-by-one dependency between observa-

tions. In other words, the dependency between corresponding

amino acid located above the residue and the residue can be

combined with the PHMM. Therefore the new parameters of

PHMM called similarity emission (SE) probabilities are created

and should be estimated.

It should be noted that the similarity emission probabilities are

estimated from the MSA and then combined with the common

emission probabilities estimated from Baum-Welch algorithm to

generalize the Baum-Welch algorithm. In other words, both

aligned and unaligned sequences are used to generalize the Baum-

Welch algorithm: aligned sequences for estimation of the similarity

emission probabilities and unaligned sequences for estimation of

the common emission and transition probabilities.

In this paper, we first construct a PHMM. Then using a MSA,

we model the similarity emission (SE) matrix for consideration of

the similarity information and generalize the Baum-Welch

algorithm. We finally compare the results of applying the similarity

emission to the Baum-Welch algorithm with the results of the

commonly used emission for sequence alignment. For this purpose

we use real data from the top twenty protein families in the Pfam

database [8].

Materials and Methods

2.1 The PHMM
The profile hidden Markov model (PHMM) is a useful method

to determine distantly related proteins by sequence comparison

[3]. The PHMM is a linear structure of three states named; Match

(M), Delete (D), and Insert (I). Therefore we need to decide how

many states exist in a PHMM. In other words, how many match

states do we have in a family? Here we assume that K is the

number of match states in the PHMM. A commonly used rule is to

set K equal to the number of columns of the MSA including more

than half of the amino acid characters. Note that the number of

match states is related to the length of the MSA [9]. So, the total

number of M, D and I states is 3K. Begin and End states which

emit no output symbols are introduced as dummy states [9]. Since

there is an Insert state for each transition, there should be a

transition from Begin called I0. Therefore the total number of

states is 3K+3. Twenty amino acids are observed from Match and

Insert states. Delete, Begin and End states are silent states because

they do not emit any symbols.

Following Durbin [10], we estimate the transition probabilities,

A, and the emission probabilities, B, using the plan7 construction

(Figure 1). Unlike the original Krogh/Haussler and HMMER

model architecture, Plan 7 has no DRI or IRD transitions. This

reduction from 9 to 7 transitions per node in the main model is the

origin of the codename Plan 7. Note that the transition probability

aij is the probability of moving from state i to state j i.e.

aij~P(entering state qj at time tz1Dthe process is in state qi at timet)

and emission probability bj(k) is the probability of observation ok

being emitted from state sj i.e.

bj(k)~P(producing ok at time tDthe process is in state qj at time t):

Parameters of a PHMM (transition probability matrix

A(3Kz3)|(3Kz3), and emission probability matrix B(3Kz3)|20)

can be estimated using the Baum-Welch algorithm.

2.2 Considering The Similarity Between Sequences in the
Baum-Welch Algorithm

The sequences appearing in the final multiple sequence

alignment are written based on their similarity [10]. So, in a

PHMM, the one-by-one dependency between corresponding

amino acids of two current sequences can be considered.

Therefore, we propose a model which considers the effect of the

similarity information (the dependency between observation) as

well as the effect of the hidden state on the previous state of an

amino acid in a PHMM. For consideration of the similarity

information, we introduce a similarity emission probability matrix

based on the multiple sequence alignment. This matrix illustrates

the similarity dependencies among the observations. Following the

MSA, we assume that protein sequences consisting of 21

observations (20 amino acids and one gap) have been placed on

a regular lattice. In other words, each observation is arranged as a

site and a matrix with R rows and L columns (length of sequences)

is obtained. This matrix is called the MSA matrix, in which the site

position above the s = (r, c) is denoted by (r -1, c). Hence, we

assume each site on the lattice has a dependency with the

corresponding residue located at the above position. This scheme

is a special case of the discrete state hidden Markov random field

(HMRF) with 2-point cliques (Table 1). Note that the adjective

‘hidden’ refers to the states. The ingredients of this model are as

follows:

1. S: a set of lattice points

2. s: a lattice point, s[S, s~(r,c), 1ƒrƒR, 1ƒcƒL

3. Emissions (Os): an observation at point s

4. Hidden states (Qs): the hidden state at point s

5. Ls: the neighboring point of s (in this work, it is the above

position of an amino acid)

6. Transition probabilities on the lattice: a matrix A with

following entries:

as(i,j)~P(Qs~iDQs{1~j), 1ƒi,jƒN,s§2

Figure 1. Plan 7 Construction.
doi:10.1371/journal.pone.0080565.g001

Generalized Baum-Welch Algorithm
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where, s{1 is a lattice point at previous state of s and N is the

total number of hidden states.

7. Emission probabilities on the lattice: a matrix B with the

following entries:

bs(k,i)~P(Os~kDQs~i), 1ƒiƒN, 1ƒkƒM,

where M is a set of symbols that may be observed.

8. Emission probabilities on the lattice based on the above

position: a matrix E with the following entries representing the

probabilities of the above position of an observation on the

lattice:

Es(i,k)~P(OLs~iDOs~k),

where OLs is an observation (amino acid or gap) at the above

position.

9. Initial value: the probability of starting state at s~(r,1), Vr§1:

ps(j)~P(Qs~j):

The likelihood of the parameters (l) given the observations is:

L(lDO)~p(ODl)~
X

q

p(ODQ,l)p(QDl)

~
X

q

P
s

p(OsDQs,OLs)p(QsDQs{1)

~
X

q

P
s

p(Qs,OLsDOs)p(Os)

p(Qs,OLs)
p(QsDQs{1)

~
X

q

P
s

p(QsDOs)p(OLsDOs)p(Os)

p(Qs)p(OLs)
p(QsDQs{1)

~
X

q

P
s

p(OsDQs)p(OLsDOs)

p(OLs)
p(QsDQs{1)

~
X

j,l

P
os~i,oLs~k

p(Os~iDQs~j)p(OLs~kDOs~i)

n

|p(Qs~jDQs{1~l)

~
X

j,l

P
i

bs(i,j)Es(k,i)

n
as(j,l)ps(j),

ð1Þ

where n is a constant equal to
1

21
~0:047. It should be noted that

in Equation (1), the Qs and OLs are independent, because Qs emits

only Os. Based on Equation (1), we wish to find l�~(A,B,E,P),
where l� = argmaxlL(lDO). The entries of matrices A, B, and the

vector P will be estimated through the following steps [11]:

1. Define auxiliary forward variable as(i) which is the probability

of the partial observation sequence O1, � � � ,Os at lattice points

1, � � � ,s when it terminates at the state i:

as(i)~P(O1, � � � ,OsDQs~i,l)

2. Define backward variable bs(i) as the probability of the partial

observation sequence Osz1, � � � ,OT , given that the current

state is i:

bs(i)~P(Osz1, � � � ,OT DQs~i,l)

3. Calculate js(i,j) as the probability of being in state i at lattice

point s and in state j at lattice point sz1, given observations

and model:

js(i,j)~P(Qs~i,Qsz1~jDO,l)

This is the same as,

js(i,j)~
P(Qs~i,Qsz1~j,ODl)

P(ODl)

Using forward and backward variables this can be expressed as,

js(i,j)~
as(i)as(i,j)bsz1(j)bs(osz1,j)

PN
i~1

PN
j~1 as(i)as(i,j)bsz1(j)bs(osz1,j)

4. Define variable cs(i) as the probability of being in state i at

lattice point s, given the observations and model:

cs(i)~P(Qs~iDO,l)~
X

j

js(i,j)

In forward and backward variables this can be expressed by,

cs(i)~
as(i)bs(i)PN

i~1 as(i)bs(i)
:

Now it is possible to use the Baum-Welch algorithm to

maximize the quantity, P(ODl). The estimation of parameters

based on iterative calculation can be obtained by the following

expressions:

âas(i,j)~

PT{1
s~1 js(i,j)

cT{1
s~1

b̂bs(k,j)~

PT
os~k cs(j)PT
s~1 cs(j)

Table 1. An example of the dependency between
corresponding residues.

X1,1 X1,2 X1,3

X2,1 X2,2 X2,3

X3,1 X3,2 X X3,3

X4,1 X4,2 X4,3

doi:10.1371/journal.pone.0080565.t001

Generalized Baum-Welch Algorithm
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p̂ps(j)~cs(j),s~(r,1):

Hence, we have the matrices of parameter estimation

B̂B(3Kz3)|20, ÂA(3Kz3)|(3Kz3), and vector P̂P.

Since the matrix E is a type of emission probability matrix, it

should have the same size as the matrix B(3Kz3)|20. The

estimation method for the matrix E(3Kz3)|20 is as follows:

In the MSA matrix, the frequencies of ordered pairs of 20

amino acids and the gap i.e. (OLs,Os) in each column are

determined. It should be noted that Os represents the amino acids

(20 types) at lattice point s = (r,c) and OLs is the amino acids or

one gap (21 types) located above Os. In other words, for a given

amino acid Os, the position (r{1,c) can be filled with any of 20

types of amino acids or the gap. hence, we can imagine of having a

420 (20|21) by L frequency matrix. After dividing these

frequencies by the sum of frequencies in each column, the

probabilities are estimated as follows:

ÊEs(i,k)~P̂P(OLs~iDOs~k),

1ƒiƒ21, 1ƒjƒ20

for which i and k are amino acids or the gap and ÊEs(i,k) is the

conditional probability of i given k at lattice point s. This

procedure produces the matrix ÊE420|L.

In each column of matrix ÊE420|L, for every set of 21

probabilities, the highest probability is chosen. In other words,

the highest probability for a given amino acid Os in the position

(r,c) should be chosen. Then the matrix ÊE420|L is reduced to a

new matrix with 20 rows and L columns (ÊE20|L). After

transposing the matrix ÊE20|L, the matrix ÊEL|20 is obtained.

We assume that the L rows consist of Match and Insert states in

which each Insert state can be repeated on its own several times.

Using this assumption, we determine the Match states in ÊEL|20

corresponding to Match states in B̂B(3Kz3)|20. Note that there are

K Match states. In addition, the average values of the rows

between each of two Match states in ÊEL|20 are considered as

Insert states. So, the matrix ÊEL|20 is changed to the matrix

ÊE(2Kz1)|20 with 2Kz1 Match and Insert states in a row. The

Delete states are included by adding zeros to the rows of ÊE, so that

3Kz1 states are obtained.

Since the Begin and the End states are silent and do not emit

any symbols, the two rows with zero number can be added at the

beginning and the end of matrix ÊE(3Kz1)|20. Consequently the

matrix ÊE(3Kz3)|20 is obtained. This matrix is the estimation of the

matrix {P(OLsDOs)}(3Kz3)|20.

2.3 Similarity Emission Matrix
The Baum-Welch algorithm defines an iterative procedure for

estimating the parameters. It computes maximum likelihood

estimators for the unknown parameters given observation [11].

Since the Baum-Welch algorithm finds local optima, it is

important to choose initial parameters carefully. In this paper

we perform the algorithm with different initial parameters in such

a way that the transition probabilities into Match states are larger

than transition probabilities into other states. In order to improve

the prediction accuracy of assigning sequences to protein families,

we consider both emission probability matrices ÊE(3Kz3)|20 and

B̂B3Kz3|20. We generalize the Baum-Welch algorithm by integrat-

ing the both emission probability matrices ÊE(3Kz3)|20 and

B̂B3Kz3|20 called similarity emission matrix (SE). In what follows,

we give the details:

1. Count the frequencies of ordered pairs of 20 amino acids and

the gap, i.e., (OLs,Os) in each column of the MSA matrix

2. Calculate the probability matrix ÊE420|L of ordered pairs by

dividing frequencies by the sum of frequencies in each column

with elements:

ÊEs(i,k)~P̂P(OLs~iDOs~k)

3. Choose the highest probability for each set of twenty one

probabilities of each column of matrix ÊE420|L, to obtain the

matrix ÊE20|L

4. Transpose the matrix ÊE20|L to obtain the matrix ÊEL|20

5. Write directly the values of Match states of L rows and the

average values of Insert states between two Match states of the

matrix ÊEL|20 to obtain the matrix ÊE(2Kz1)|20. It should be

noted the Match and Insert States will be obtained by using the

multiple sequence alignment.

6. Add zero rows after each Match and Insert states to the

ÊE(2Kz1)|20 and also two zero rows as Begin and End states to

obtain the matrix ÊE(3Kz3)|20

7. Use Hadamard product that is the entry-wise product of

ÊE(3Kz3)|20 and B̂B(3Kz3)|20 and then divide the entries by

Table 2. Top twenty protein families in pfam database.

profile Number of sequence

Seed Full

ABC tran 60 163029

RVT 1 155 126258

COX1 94 118265

GP120 24 105452

WD40 1842 101999

RVP 50 93675

zf-C2H2 195 88330

Response_reg 57 75322

Cytochorm B N 92 70463

HA TPase c 662 70410

BPD transp 1 81 70027

MFS_1 196 69503

Oxidored q1 33 60333

Pkinase 54 56691

Cytochrom_B_C 114 51006

RVT_thumb 41 50191

Adh short 230 50144

Acetyltransf 1 243 46279

Helicase_C 491 42435

HTH 1 1556 41545

doi:10.1371/journal.pone.0080565.t002

Generalized Baum-Welch Algorithm
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0.047 to get the estimated similarity emission ŜSE(3Kz3)|20 with

the following entries:

P̂P(OsDQs,OLs)~
p̂p(OsDQs)P̂P(OLsDOs)

P̂P(OLs)

~
b̂bs(i,j)ÊEs(k,i)

0:047

ð2Þ

2.4 Data Preparation
The Pfam is a well known database of protein families [8]. It is

widely used to align new protein sequences to the known proteins

of a given family. There are two components in Pfam: Pfam-A and

Pfam-B. The entries of Pfam-A have high quality. As shown in

Table 2, we use twenty families of Pfam-A for assigning the protein

sequences to these families. In this paper due to computational

challenges and round-off errors in estimating parameters, we

selected just twenty protein families from Pfam database which

called top twenty HMM.

Results and Discussion

To assess the performance of our method, ten sequences from

each of the top twenty families are randomly removed. These ten

removed sequences in each family are used as test sequences, while

the other sequences form the training set. We repeat this

procedure ten times. Since some of the protein families contain

few proteins (likeGP120 and Oxidored q1), we choose just ten

samples. Therefore, each time we have selected 200 sequences. In

total 2000 sequences are randomly removed. Then we estimate

the transition matrix A(3Kz3)|(3Kz3), emission matrices

B(3Kz3)|20 and E(3Kz3)|20 for each protein family. Given top

twenty protein families, the score of each removed sequence

belonging to each family are computed and compared. To score a

sequence and assign it to one of the top twenty families, we use the

logarithm of the probability score. It is defined by

log2
prob

null{prob
~log2(prob){log2(null{prob) ð3Þ

where prob is the probability of sequence based on parameter

estimation and null-prob is equal to (0:05)T where T is the length

of sequence. Since there are twenty amino acids, the probability of

random occurrence of each of them is 0.05. Hence, for a sequence

of L amino acids, the probability of random occurrence is (0:05)L.

In this paper, due to computational challenges and round-off

errors in estimating probabilities of B(3Kz3)|20 and E(3Kz3)|20,

we have employed logarithm transformation instead of the direct

multiplication of these probabilities:

log2ŜSE~log2b̂bzlog2ÊE{log20:047:

The mean and standard error of the numbers of correctly assigned

proteins to the top twenty protein families are shown in Table 3.

Based on the results shown in Table 3, the assignment of

sequences to the protein families using the ŜSE(3Kz3)|20 is

considerably improved. For all protein families, more than half

of the sequences are assigned correctly. In the task of assigning

Table 3. The mean and standard error of the numbers of correctly assigned sequences.

profile Mean Standard Error

Using B̂B(3Kz3)|20 Using ŜSE(3Kz3)|20 Using B̂B(3Kz3)|20 Using ŜSE(3Kz3)|20

ABC_tran 6.200 9.100 0.805 0.482

RVT 1 9.102 9.723 0.588 0.531

COX1 5.529 9.34 0.534 0.482

GP120 9.034 9.980 0.460 0.405

WD40 7.515 8.601 0.672 0.520

RVP 6.129 8.802 0.801 0.672

zf-C2H2 1.980 9.001 0.534 0.578

Response_reg 8.456 8.991 0.555 0.612

Cytochorm B N 7.800 8.901 0.850 0.601

HA TPase c 7.098 9.992 0.640 0.504

BPD transp 1 7.091 8.002 0.605 0.604

MFS_1 8.409 8.997 0.583 0.538

Oxidored q1 8.001 8.973 0.593 0.471

Pkinase 2.009 8.623 0.981 0.812

Cytochrom_B_C 8.032 9.010 0.524 0.503

RVT thumb 6.839 8.902 0.835 0.561

Adh short 6.998 8.572 0.984 0.607

Acetyltransf 1 6.504 9.760 0.551 0.504

Helicase C 7.228 8.423 0.682 0.634

HTH_1 1.734 7.991 0.609 0.684

doi:10.1371/journal.pone.0080565.t003

Generalized Baum-Welch Algorithm
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protein sequences, measuring the specificity is also important to

prevent false positive prediction. Specificity is a statistical measure

of the performance of a classification test, also known in statistics

as classification function. Specificity measures the proportion of

negatives which are correctly identified. This measure is closely

related to the concepts of type II errors in testing a statistical

hypothesis . Specificity relates to the ability of the test to identify

negative results. This can also be written as:

Specificity~
TN

TNzFP
,

where, TN is the number of True Negative and FP is the number

of False Positive. In other words, specificity means how many of

the true negatives are detected? Ideally, suitable method should

have high specificity or a perfect predictor would be described as

100% specificity. The specificity on average is about 75% and 62%
using similarity emission and common emission model respective-

ly. In addition to the correct assignment, the mean of the standard

assigning scores, based on the matrix ŜSE3Kz3|20 in most families

are more than those obtained by the matrix B̂B3Kz3|20 (Table 4).

The results presented in this paper show that considering a model

which incorporates the similarity information of the corresponding

amino acid located above a residue in a protein family will result in

a notable improvement in assignment task. It should be noted that

based on the MSA implemented by ClustalW, one-by-one

dependencies between corresponding amino acids of two current

sequences that model the similarity between them can be

appended to the PHMM. In other words, we combine the

similarity emission matrix obtained form the aligned sequences

and common emission matrix obtained from the unaligned

sequences to generalize the Baum-Welch algorithm.
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zf-C2H2 20.567 20.523 0.048 0.043

Response_reg 20.775 20.709 0.061 0.062

Cytochorm B N 2.143 3.4452 0.233 0.231

HA TPase c 1.814 3.651 0.202 0.200

BPD transp 1 0.807 0.718 0.069 0.058

MFS_1 20.213 20.035 0.082 0.044

Oxidored q1 20.403 20.352 0.050 0.078

Pkinase 20.046 0.567 0.070 0.065

Cytochrom_B_C 20.749 20.757 0.089 0.055

RVT_thumb 0.005 0.142 0.057 0.021

Adh short 20.550 20.523 0.079 0.078

Acetyltransf 1 0.453 0.501 0.053 0.059

Helicase C 0.478 0.501 0.078 0.076

HTH_1 0.640 0.703 0.070 0.052

doi:10.1371/journal.pone.0080565.t004
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