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Abstract

How easy is it to reproduce the results found in a typical computational biology paper? Either through experience or
intuition the reader will already know that the answer is with difficulty or not at all. In this paper we attempt to quantify this
difficulty by reproducing a previously published paper for different classes of users (ranging from users with little expertise
to domain experts) and suggest ways in which the situation might be improved. Quantification is achieved by estimating
the time required to reproduce each of the steps in the method described in the original paper and make them part of an
explicit workflow that reproduces the original results. Reproducing the method took several months of effort, and required
using new versions and new software that posed challenges to reconstructing and validating the results. The quantification
leads to ‘‘reproducibility maps’’ that reveal that novice researchers would only be able to reproduce a few of the steps in the
method, and that only expert researchers with advance knowledge of the domain would be able to reproduce the method
in its entirety. The workflow itself is published as an online resource together with supporting software and data. The paper
concludes with a brief discussion of the complexities of requiring reproducibility in terms of cost versus benefit, and a
desiderata with our observations and guidelines for improving reproducibility. This has implications not only in reproducing
the work of others from published papers, but reproducing work from one’s own laboratory.
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Introduction

Computation is now an integral part of the biological sciences

either applied as a technique or as a science in its own right -

bioinformatics. As a technique, software becomes an instrument to

analyze data and uncover new biological insights. By reading the

published article describing these insights, another researcher

hopes to understand what computations were carried out, replicate

the software apparatus originally used and reproduce the

experiment. This is rarely the case without significant effort, and

sometimes impossible without asking the original authors. In short,

reproducibility in computational biology is aspired to, but rarely

achieved. This is unfortunate since the quantitative nature of the

science makes reproducibility more obtainable than in cases where

experiments are qualitative and hard to describe explicitly.

An intriguing possibility where potential quantification exists is

to extend articles through the inclusion of scientific workflows that

represent computations carried out to obtain the published results,

thereby capturing data analysis methods explicitly [1]. This would

make scientific results more reproducible because articles would

have not only a textual description of the computational process

described in the article but also a workflow that, as a

computational artifact, could be analyzed and re-run automati-

cally. Consequently, workflows can make scientists more produc-

tive because they capture complex methods in an easy to use

accessible manner [2–3].

The goal of this article is, by applying a workflow to an existing

computational analysis [4], to describe and quantify the effort

involved in reproducing the published computational method and

to articulate guidelines for authors that would facilitate reproduc-

ibility and reuse. Quantification is achieved by assigning a

reproducibility score that exposes the cost of omitting important

information from the published paper that then caused problems

in creating the workflow. Beyond this no case is made for the value

of workflows which is well described elsewhere [3].

Related Work
As stated, scientific articles describe computational methods

informally, as the computational aspects of the method may not be

the main focus of the article. We acknowledge that in computer

science the method may be described formally and any limitations,

it could be argued, reside with the editors and reviewers. However,

in the domain of computational biology, which is the focus here,
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we believe methods to be, for the most part, described informally

as formalizations are not typically favored by authors or enforced

by reviewers.

Computational methods are often complex and hard to explain

in textual form with the given space limitations of many articles. As

a result, reproducing methods often requires significant effort from

others to reproduce and reuse. Studies have shown that

reproducibility is not achievable from the article itself, even when

datasets are published [5–7]. The reproducibility process can be so

costly that it has been referred to as ‘‘forensic’’ research [8]. Lack

of reproducibility also affects the review process and as a result

retractions of publications occur more often than is desirable [9].

A recent editorial proposed tracking the ‘‘retraction index’’ of

scientific journals to indicate the proportion of published articles

that are later found problematic [10]. Publishers themselves are

asking the community to end ‘‘black box’’ science that cannot be

easily reproduced [11]. Pharmaceutical companies report aban-

doning efforts to reproduce research that seemed initially

promising and worth investigating after substantial investments

[12].

Computational reproducibility is a relatively modern concept.

The Stanford Exploration Project led by Jon Claerbout published

an electronic book containing a dissertation and other articles

from their geosciences lab [13]. Papers are accompanied by zipped

files with the software that could be used to reproduce the results,

and a methodology was developed to create and manage all these

objects that continue today with the Madagascar software [14].

Advocates of reproducibility have sprung up over the years in

many disciplines, from signal processing [15] to psychology [16].

Organized community efforts include reproducibility tracks at

conferences [17–19], reproducibility editors in journals [20], and

numerous community workshops and forums (e.g., [21], [22]).

Active research in this area is addressing a range of topics

including copyright [23], privacy [24], social [25] and validation

issues [26].

Scientific publications could be extended so that they incorpo-

rate computational workflows, as many already include data [1].

Without access to the source codes for the papers, reproducibility

has been shown elusive [7]. This would make scientific results

more easily reproducible because articles would have not just a

textual description of the computational process used but also a

workflow that, as a computational artifact, could be inspected and

automatically re-executed. Some systems exist that augment

publications with scripts or workflows, such as Weaver for Latex

[27–28] and GenePattern for MS Word [29]. Many scientific

workflow systems now include the ability to publish provenance

records [30–31]. The Open Provenance Model was developed by

the scientific workflow community and is extensively used for this

purpose [32]. Here we make a contribution to the on-going

discussion of reproducibility by attempting to quantify what

reproducibility implies.

Methods and Analysis

Quantifying Reproducibility
We focus on an article that describes a method that lends itself

to workflow representation, since others can, in principle, use the

same exact procedures [4]. The article describes a computational

pipeline that, as applied, maps all putative FDA and European

drugs to possible protein receptors within a given proteome;

Mycobacterium tuberculosis (TB) in the paper under study.

Mapping is limited to the accessible structural proteome of

experimental structures and high quality homology models.

Mapping is performed using a binding site comparison algorithm

which compares the binding site of the drug bound to a primary

protein receptor to potential binding sites found on every available

protein in a given proteome. Docking of the drug to the off-target

protein is used to further validate the predicted binding. The study

uses data from the RCSB Protein Data Bank (PDB [33]) and

Modbase [34]. The resultant ‘‘drugome’’ established multiple

receptors to which a given drug can bind and multiple drugs that

could bind to a given receptor. As such it is a putative map of

possible drug repositioning strategies in treating a given condition

caused by a pathogen. Although the article focuses on Mycobac-

terium tuberculosis (TB), according to the article’s abstract:

‘‘… the methodology may be applied to other pathogens of

interest with results improving as more of their structural

proteomes are determined through the continued efforts of

structural biology/genomics.’’

That is, the methodology is likely to be repeated for other

organisms and/or repeated in the same organism as more drugs

become available and/or more of the structural proteome

becomes available. The original work did not use a workflow

system; instead the computational steps were run separately and

manually. The original work was done over a period of two years,

with different authors having different degrees of participation in

the design and the programming aspects of the study. There is a

TB Drugome project site where many details about the work can

be found [35].

The original article was used to challenge participants at the first

Beyond the PDF workshop [21]. The workshop attracted partici-

pants interested in bettering the communication and comprehen-

sion of science. The challenge was to apply the tools they had

developed to illustrate their value on a given piece of science to

which, as far as possible, all lab notes, raw data, software, drafts of

the paper etc. where made available. The work described here is

one outcome of these efforts and is aimed at addressing the

questions: What can we gain from the process of workflow creation

and what does it tell us about reproducibility?

The rest of this paper describes our attempt to answer these

questions. Many details of the analysis and how progress was made

in reproducing the method are available on the project site [36].

Also Supplement S1 includes a more detailed analysis and the

thought processes that occurred.

Methodology
The workflow was reproduced as a joint effort between

computer scientists and the original authors of the article.

Although some of the authors of the paper had moved to other

research groups (notably Kinnings, its first author), they were still

available to answer questions and provide software scripts and

data as needed.

We present a detailed analysis of the issues that came up in

reproducing three major parts of the methods section in the

original paper. These three parts were originally fully automated.

Other steps of the method, notably the initial steps to obtain the

data and the final steps for visualization and presentation, were

manually done and not considered as part of the workflow

presented here.

We describe how each of the three method subsections was

implemented as a workflow. Each computational step corresponds

to an execution of an existing tool or a script written by the paper

authors. We were able to recreate the workflow in the Wings

workflow system [37–39] to make sure it was executable and

reproduced the original results reported in the paper. Hence, the

workflow explicitly represents the method that the authors meant

to convey in the original text, that is, the process by which software

and data are used to achieve the published result.

Measuring Reproducibility in Computational Biology
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Based on this explicit computational workflow, we present an

analysis of the reproducibility of each subsection. We considered

reproducibility by researchers of four types:

1. REP-AUTHOR, is a researcher who did the original work

and who may need to reproduce the method to update or

extend the results published. It is assumed that the authors have

enough backup materials to answer any questions that arise in

reconstructing the method. In practice, some authors may be

students that move away from the lab and their materials and

notes may or may not be available, confounding reproducibility

[40].

2. REP-EXPERT is a researcher familiar with the research area.

These researchers could reproduce the method even if the

methods section of the paper is incomplete and ambiguous.

They can use their knowledge of the domain, the software tools

and the process to make very complex inferences from the text

and reconstruct the method. However, there may be some non-

trivial inferences that require significant effort.

3. REP-NOVICE is a researcher with basic bioinformatics

expertise. They may be asked to use the method with new

data, but are only able to make limited inferences based on

analyzing the text and software tools. For them reproducibility

can be very costly since it may involve a lot of trial and error, or

perhaps additional research. In some cases reproducibility may

become impossible.

4. REP-MINIMAL is a researcher with no expertise in

bioinformatics. They need some programming skills to

assemble the software necessary to run the different steps of

the method. They represent researchers from other areas of

science with minimal knowledge about biology, students, and

even entrepreneurial citizen scientists (e.g., [41]). Unless the

steps of the method are explicitly stated, they would not be able

to reproduce the results.

In our work, we did not ask experts to reproduce the method, so

we only have three categories of researcher rather than four. We

used the following approach:

N REP-MINIMAL - The computer scientists in the team read

the article and formulated the initial workflows. They have

minimal background knowledge in biology.

N REP-NOVICE - The computer scientists subsequently

consulted the documentation on the software tools mentioned

in the article to try to infer how the data were being processed

by each of the steps of the method. Based on this, they refined

their initial workflows.

N REP-AUTHOR - Lastly the computer scientists approached

the original paper authors to ask specific questions, resolve

execution failures and errors and consult concerning the

validity of the results for each step. They created the final

workflow based on these conversations with the authors.

We analyzed each of the workflow steps in terms of: whether the

existence of the step itself was clear to the reproducers, whether the

software that was used to run the step was clear to the reproducers,

and whether their inputs and outputs were clear. For example, the

existence of a step to compare ligand binding sites is mentioned in

the text of the original paper, and the fact that it was carried out

using the SMAP software [42] is also explicit in the text, so those

would be things that the REP-MINIMAL reproducers were able

to figure out. The use of a p-value as an input was not mentioned

in the text and cannot be easily inferred unless the researcher

reproducing the method becomes familiar with the software, so

REP-NOVICE reproducers were able to figure out this param-

eter.

For this analysis, we assigned a reproducibility score to each

aspect of the workflow for each of these reproducer categories. A

score of 1 in a category means that, in our assessment, a

prototypical researcher of that category would be able to figure out

the item. A score of 0 means that they would not be likely to figure

it out without help from experts.

Based on these scores, we designed a reproducibility map,

where the reproducibility of each computational step was

highlighted to determine how far each category of researcher

could go in reproducing a given workflow fragment.

Finally, we report on the effort involved in creating the

workflow, measured as the time spent on various aspects of the

work involved in reproducing the method described in the original

article.

Conceptual Overview of the Method and Final Workflow
An interesting result of our initial discussions of the method was

a collaborative diagram that indicated each of the steps in the

method and how data were generated and used by each step. This

diagram, shown in Figure 1, makes the steps of the method more

explicit and adds useful information to the text in the methods

section. It also shows where the data in the tables of the article fit

into the method.

In essence, the bulk of the results in the paper are obtained

through three major steps:

1. Comparison of ligand binding sites, which compares the putative

binding sites of solved protein structures and homology models

(obtained from queries to the PDB and other sources) against

the binding sites from protein structures where approved drugs

are bound. This step used the SMAP software [42].

2. Comparison of protein structures, optimizing their alignment as well

as reporting on the statistical significance of the structural

similarity. This step used the FATCAT software [43] and is in

essence a filtering step to remove structures which have overall

global similarity and hence likely to be in the same protein

family, since we are interested in similar binding sites found in

otherwise dissimilar proteins.

3. Molecular docking, to predict the binding and affinity of the

proteins and drug molecules. This step used the eHits software

[44].

Based on our experience, authors should be encour-
aged to publish such high-level flow diagrams as a
normal part of the materials and methods section of a
paper. The diagrams provide a high level overview of the

method, highlights major steps, and offer a roadmap for

reproducibility.

The final workflow with the four steps that reproduced the

method is shown in Figure 2. We highlight the first three major

subsections of the method. In order to validate the new results, we

used the same inputs (drug binding sites, solved structures, and

homology models) as in the original work. However, these inputs

point to external data sources (like the PDB) where the data are

stored. These third-party data sources had been updated, and

therefore the workflow execution produced slightly different results

than the results reported in the original article. A detailed

comparison of the original results and the results of the new

workflow is provided in Supplement S1.

Measuring Reproducibility in Computational Biology
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Reproducibility Analysis
We now analyze each of the subsections of the method as

described in the original paper, discussing the difficulties

encountered in reproducing the method, highlighting recommen-

dations to improve reproducibility, and show reproducibility

scores for each step of the final workflow. An extended analysis

of each subsection of the method is available in Supplement S1,

detailing the evolution of each sub-workflow in order to achieve

the final result.

Comparison of ligand binding sites. The initial workflow

design used a single step to compare the three items: the binding

sites of experimental structures, the binding sites of the homology

models, and the binding sites of the proteins to which drugs were

bound. Examining the SMAP software and associated scripts

revealed that comparison occurred in two steps: one to compare

the experimental binding sites with the drug binding sites, and one

to compare the homology model binding sites with the drug

binding sites.

To clarify how the outputs of both SMAP invocations were

combined, the authors provided the script that invoked the SMAP

software. This revealed a new step for sorting the results. In

addition, there was an additional step where the results below a

given p-value were filtered out.

The SMAP software has several configuration parameters.

Without the author’s configuration files, default values of the

parameters were used not knowing if the workflow would produce

questionable results. That is, it is not clear whether without the

same parameter settings the original method would be reproduced

and similar results would be obtained. For these reasons, the

original configuration files were obtained from the authors. This
suggests that it would be good practice for authors to
publish not just a description of the software used and

the data used in the original experiment, but also the
configuration files used.

It also became clear that the data published as tables in the

original article were not the direct input to the SMAP software,

and some transformations would be required in order to use these

data in the workflow. We recommend that when data is
published in formats that make it more readable, the
actual data that is input for software to run also be made
available.

Another issue concerned the constant evolution of the software

tools that are used for the method steps. In our case, the SMAP

software had evolved since the publication of the original paper.

As with many software tools used in biology, SMAP is an active

research effort and its functionality continues to improve. When

the workflow was reproduced there was a new version of SMAP

that had the same basic functionality, but produced slightly

different results. Under normal research circumstances, it is not

critical that the workflow reproduce the exact execution results,

but that the conclusions drawn from those results still hold. An

interesting result would be if the workflow was run again with a

newer more powerful tool and there were additional findings over

and above the original publication. The same can be said for new

and more comprehensive sources of input data. The possibility
of easily re-running and checking the method periodi-
cally with new versions of software tools and/or data
that might lead to additional findings may entice
researchers to keep their methods more readily repro-
ducible.

Global comparison of protein structures. Inspecting the

scripts used by the authors revealed two steps for this subsection

not mentioned in the original article. The first step generates a list

of significant comparisons, which is used in the second step to

Figure 1. A high-level dataflow diagram of the TB drugome method.
doi:10.1371/journal.pone.0080278.g001
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remove significantly similar pairs of global structures from the

FATCAT output. An expert in the domain would infer the need

for these steps from the published article – only one structure from

a set with similar global structures is needed to reach the

appropriate conclusions. The article mentions the use of a

threshold of 0.05, but this value did not appear in any parameter

file. The FATCAT documentation mentions that 0.05 is a default

value used to filter results, so this threshold did not have to be

reflected in the workflow since it was fixed by the software – hard

for a novice to know. Thus the workflow for this subsection could

not be recreated just from the article alone, but required the scripts

from the authors. Authors should be encouraged to publish any

software and parameter files that were written by them and that

became part of the method, because public domain software tools

are only part of the software required to reproduce the method.

An important issue regarding reproducibility came up in this

subsection of the workflow. Although the method was reproduced

with all of the necessary steps, the execution of the FATCAT step

failed. The reason for the failure was that some of the PDB

(protein) ids used in the input list had been superseded by newer

structures in the PDB. Therefore, an additional component was

added to check availability and replace any obsolete protein with

Figure 2. The reproduced TB Drugome workflow with the different subsections highlighted. (1) Comparison of ligand binding sites using
SMAP; (2) protein structure comparison using FATCAT; (3) docking using Autodock Vina; and (4) graph network creation (visualization). We focus on
the reproducibility of sections 1-3 here.
doi:10.1371/journal.pone.0080278.g002
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its superseded version. This issue will not be unusual in

reproducibility. Many experiments rely upon third party data

sources that change constantly. Consequently, it is to be expected

that these sources may not always be available and that the results

that they return for the same given query may not always be the

same. In our case, the changes in the PDB were addressed by

adding a step that updated the older IDs with the new ones. This
suggests that some published results that depend on
third party data sources may not always be reproducible
exactly, so it would be good practice to publish all
intermediate data from the experiment so that the
method followed can be examined when re-execution is
not possible. An alternative is that data archives provide
access to their contents for each version.

Docking. The raw interaction network resulting from the first

subsection of the method (comparison of ligand binding sites) was

assumed to be the input for docking. It turns out that although the

input for docking is data produced by SMAP, it is not the raw

interaction network that it outputs. Instead, it is data that SMAP

places in an ‘‘alignment’’ folder - only expert users would be aware

of this.

The original article refers to adding cofactors to relevant

proteins prior to docking, which could be interpreted to be a step

prior to docking. As it turns out, there is no explicit step for

handling the cofactors since this is handled by manually editing the

appropriate PDB file. Again, only expert users would be aware of

this.

Examination of the author’s scripts revealed some additional

steps: calculating the clip files, which are used for obtaining the

ideal ligands before docking. Clip files are mentioned in the article

as containing the aligned drug molecules, so it would seem to a

non-expert that the aligned molecules would be the output of the

initial alignment steps of the overall method.

A major issue with this portion of the workflow is that the

docking software used for the original article was no longer used in

the laboratory. It is proprietary software, and its license had

expired, so alternative software (AutodockVina) with similar

functionality has been adopted since the original article was

published. Some of the ligands were not recognized by this

software, so a transformation step had to be added to the workflow

to make Autodock Vina work correctly.

There are reasons why authors use proprietary software, for

example, ease of use, support, robustness, visualization and data

types supported. However, the authors could replicate the method

before publication using open source tools, which would facilitate

reproducibility by others. The use of open source software
instead of proprietary software facilitates the reproduc-
tion of the software steps originally used by the authors,
and should be the preferred mode of publication of
methods and workflows.

Reproducibility Maps
We present reproducibility maps created as a summary of the

reproducibility scores for all the major steps in the workflow.

Figure 3 shows the reproducibility maps for each of the

subsections, summarizing the reproducibility scores assigned to

each step. For each section of the method, we show a progression

of steps from left to right, noting on the right hand side the

category of reproducer represented (MINIMAL, NOVICE, and

AUTHOR). A step is shown in red if it was not reproducible by

that category of user, and green if it were.

Our observation was that a researcher with minimal knowledge

of the domain would only be able to reproduce one of the fourteen

steps in the workflow. A novice researcher would be able to

reproduce seven of the fourteen steps: the six steps to compare

ligand binding sites, only one of the four steps to compare the

protein structures, and none of the steps for docking. For docking,

our conclusion was that only expert researchers with advanced

knowledge of the domain would be able to reproduce the steps.

The original software was no longer available, and advanced

expertise was required to identify equivalent software to replace it,

and to write the software necessary to make it work as needed.

Expert researchers would be able to reproduce the method, as the

original article combined with the data and software published in

the site would be sufficient to infer any missing information. A

detailed rationale for the scores can be found in the reproducibility

scores subsection of Supplement S1.

Regarding the results, we checked that the output of the

workflow included all the drugs exposed in the original work (plus

new findings). The ranking of drugs in the results of the workflow

is almost the same as the original, although the number of

connections found for each drug is significantly higher in the

results of the workflow. A possible reason is changes in the version

of the software tools and updates to the external databases where

the structures are stored. A detailed comparison can be seen in the

original results versus results from the workflow subsection of Supplement

S1.

Productivity and Effort
We kept detailed records in a wiki of the effort involved in

reproducing the method throughout the project. These records are

publicly available from [36].

We estimated the overall time to reproduce the method as

280 hours for a novice with minimal expertise in bioinformatics.

The effort included analyzing the paper and the original author’s

web site and additional materials (data, scripts, configuration files)

to understand the details of the method, locating and preparing

the codes, finding appropriate parameter settings, implementing

the workflows, asking questions to the authors when necessary, and

validating the workflows. It should be noted that the authors of the

original experiment were available to answer questions (notably

Kinnings, the first author). These questions were related to missing

configuration parameters, documentation for the proper invoca-

tion of the tools, and validation of the outcome of the intermediate

steps. Table 1 estimates the time required to reproduce the

method and is broken down by major tasks according to our

records.

Publishing the Reproduced Workflow
Now that we had invested significant effort in reproducing the

workflow, our goal was to maximize its reusability.

First, the executed workflow was published using the Open

Provenance Model [32]. This model is used by many workflow

systems, so it increases the workflow reusability because it can be

imported into other systems depending on the preference of the

particular research group. We also publish the workflow prove-

nance using the PROV ontology [45], a recent standard for

provenance from the W3C [46]. This makes the published

workflow independent of the workflow system used to create it.

Second, we published an abstract workflow that complements it.

The abstract workflow describes the steps in a manner that is

independent of the software used to implement them. For this we

used an extension of the Open Provenance Model called OPMW

[47] that includes new terms to describe abstract steps.

Third, we published the workflow and all of its constituents

(including input and output data, software and scripts for the steps)

as Linked Data [48], which means that each constituent of the

workflow can be accessed by its URI through HTTP, and its

Measuring Reproducibility in Computational Biology
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properties are described using W3C RDF standards [49]. This

means that the published workflow is accessible over the Web, in a

way that does not require figuring out how to access institutional

catalogs or file systems.

With this maximally open form of publication of the workflow,

the effort that we invested in reproducing the workflow does not

have to be incurred by others. Each step and its inputs and outputs

are explicitly and separately represented as well as linked to the

workflow. The software for each step is available as well, as are the

intermediate and final results.

The effort involved in creating a workflow is negligible

compared with the time to implement the computational method.

Implementing the computational method typically takes months,

and involves activities such as finding software packages that

implement some of the steps, figuring out how to set up the

software (e.g., setting up parameters) to suit the data, and writing

new code to reformat the data to fit those packages. Once this is all

done, creating the workflow can be done in a few hours, and can

be as simple as wrapping each step so it can be invoked as a

software component and expressing the dataflow among the

components. Learning to create simple workflows requires only a

few hours, more advanced capabilities clearly require additional

time investment (e.g., running workflows in a cluster, depositing

Figure 3. Reproducibility maps of the three major subsections of the workflow. A step is shown in red if it was not reproducible by that
category of user, and green if it were.
doi:10.1371/journal.pone.0080278.g003

Table 1. Time to reproduce the method.

Tasks Time (hours)

Familiarization with workflow and running software 160

SMAP steps 32

SMAP result sorter steps 8

Merger steps 4

Get significant results 4

FATCAT URL checker 8

FATCAT step 4

Remove significant pairs 4

Create clip files 8

Create ideal ligands 8

Ideal ligand checker 8

Autodock Vina 16

Data visualization steps 16

TOTAL 280 hours

doi:10.1371/journal.pone.0080278.t001
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results in a catalog, or expressing a complex control flow).

Similarly, publishing workflows takes no effort at all since the

workflow system takes care of the publication.

Technical details on how the workflow is published can be

found in [50]. The OWL ontologies for OPM and PROV that

express all the underlying RDF properties can be browsed from

[51]. All the materials related to the workflow and its execution

results have been published online [36]. Additionally, input and

output datasets have been associated to DOIs and uploaded to a

persistent data sharing repository [52].

Discussion

Reproducibility is considered a cornerstone of the scientific

method and yet rarely is scientific research reproducible without

significant effort, if at all [5-7]. Authors submitting papers know

this; as do those reading the papers and trying to reproduce the

experiment. For computational work like that described here,

where data, methods, and control parameters are all explicitly

defined there is less of an excuse for not making the work

reproducible. Note that making the software available or accessible

through a webserver, while commendable, is not the same as

making the work reproducible. Workflows, which define the

scientific process as well as all the components, provide the tools

for improved reproducibility. While workflows are commonly used

for highly repetitive tasks, they are less used for earlier stage

research. Whether this is a result of shortcomings in the tools or

insufficient emphasis on the need to make work reproducible

requires further consideration. This then raises the further issue of

whether the emphasis itself is justified. Do we really care if work is

exactly reproducible? This generally only becomes important if

some variation of the original work cannot be reproduced at all,

then the original work is fully scrutinized. This speaks to a need for

better quantification of what is really needed to improve

productivity in science. When, as is the case here, the experiment

is conducted completely in silico, the opportunity to accurately

capture what has transpired becomes a relatively straightforward

task (i.e., there is a relatively favorable cost:benefit ratio) and raises

the question as to whether the community of computational

biologists should do better. What does doing better imply?

We believe it is rare that work is purposely made irreproducible;

rather the system of peer review speaks to reproducibility but is

cursory in demanding it. The scientific reward is in publishing

another paper, not making your current paper more reproducible.

Tools help, but changes in policy are also needed. It will be a brave

publisher indeed that demands that workflows be deposited with

the paper. Publishing after all is a business and if one publisher

demands workflows, authors are more likely to publish elsewhere

than go to the trouble. Journals are beginning to provide

guidelines for reproducibility and minimum requirements for

Table 2. Observations and desiderata for reproducibility.

Observation

?We found that important computational steps were either missing or ambiguous. The paper should make clear all computational steps needed by a novice

user.

?Software is often used with carefully selected parameter settings and configurations. It would be good practice for authors to publish not just a description

of the software and data used, but also to publish any parameter settings and configuration files used.

?The possibility of re-running the method periodically with new versions of software tools leading to new findings might help entice researchers to keep their methods

readily reproducible.

?Published results that depend on third party data sources may not always be accessible and may make the experiments run by the original authors irreproducible.

Where practical, authors should publish all intermediate data from the experiment so that the method they followed can be examined when direct
re-execution is not possible.

?To implement some steps of their methods, authors often use proprietary software or software that is not widely available. The use of open source software

facilitates the reproduction of the software steps originally used by the authors, and should be the preferred mode of publication for authors of
methods and workflows.

?Although many methods are implemented by using public domain software tools, they often contain additional steps that were implemented by the authors. To

facilitate reproducibility, authors should publish any software written by them and that became part of the method.

doi:10.1371/journal.pone.0080278.t002

Table 3. Reproducibility Guidelines for Authors.

Guideline

1. Input data: Provide the original datasets used in the experiment reported in the paper

2. Dataflow Diagram: Provide a diagram that represents a dataflow of the computational steps. The nodes in the graph should be computational steps, which include
invocations of software tools, scripts and other software that were written, and any additional data manipulations that were carried out manually. The links in the graph
specify the dataflow, which indicates what the input data for each step are and links to other steps that may have generated the data.

3. Software: Prefer open software tools that are appropriately documented. Specify the software tools used mentioning versions and download dates. For any scripts
or other software that were written, provide the code itself or at least ‘‘pseudo-code’’ (i.e., an informal version of the code that is language-independent)

4. Configurations: Provide the values of any parameters and configuration files used

5. Intermediate data: Provide key intermediate data that resulted from important steps and that would help others determine whether they reproduced the method
correctly

doi:10.1371/journal.pone.0080278.t003

Measuring Reproducibility in Computational Biology

PLOS ONE | www.plosone.org 8 November 2013 | Volume 8 | Issue 11 | e80278



method descriptions [53–54]. There is already a concept of ‘‘data

publication,’’ where datasets are described and receive a unique

identifier and a publication. Similarly, there should be a concept of

‘‘workflow publication.’’ There is no explicit credit for publishing

software packages, and many people do it. The credit comes

indirectly from acknowledgement by the community that the

software is useful. Perhaps publishing end-to-end methods as

workflows would bring similar reputation. For this to work,

authors must be recognized and credited by other researchers

reusing their workflow. We posit that the authors of the original

method need not be the ones publishing the workflow. Third

parties interested in reproducing the method could publish the

workflow once reproduced, and get credit not for the method but

for the workflow as a reusable software instrument. In one sense

this is no different than taking other scientists data and developing

a database that extends the use of these data to a wider

community. It is a value-added service worthy of attention

through publication.

Federal mandates similar to those emerging around shared data

could also be put in place for reproducibility too. In the end,

funding for science ultimately comes from taxes from the public,

and we need to be responsible in making science as efficient and

productive as possible. Many government agencies already require

data to be published and shared with other researchers. Workflows

should follow the same path. The recent emphasis on open

availability of research products resulting from public funds [55–

56] will eventually include the publication of software and the

methods (workflows). This will likely be sometime coming as the

easier issue of meaningful data provision is not fully understood

and solved yet. Notwithstanding, if this remains a difficult issue on

a global scale we can make progress in our own laboratories.

A new researcher coming to almost any laboratory and picking

up tools used by previous laboratory members can likely testify to

what is described in this paper. If we are to accelerate scientific

discovery we must surely do better both within a laboratory and

beyond. This is particularly important in an era of interdisciplinary

science where we often wish to apply methods that we are not

experts in. Some would argue that irreproducibility in the

laboratory is part of the learning process; we would argue yes,

but with so much to learn that is more relevant to discovery we

should do better now that we have tools to assist us.

Or should we? Reproducibility aside, is there indeed a favorable

cost:benefit ratio in using workflows with respect to productivity?

There is a dearth of literature that addresses this question. Rather

the value of the workflow is assumed and different workflow

systems on different computer architectures are analyzed for their

relative performance. At best the question can be addressed by

work habits. We must be careful as such work habits could be

mandated, in a large company say, rather than by choice, which

would be the case in an independent research laboratory. Creating

workflows results in overhead for exploratory research, where

many paths are discarded. However, once created a workflow can

be reused many times. This makes them ideal for repetitive

procedures such as might be found in aspects of the pharmaceu-

tical industry. Pharmaceutical companies use workflows for

computational experiments [57]. This means there must be a

business case for workflows in terms of saving time and effort and/

or facilitating quality control. Taking an independent computa-

tional biology laboratory, as is the case for this study, it is fair to

say that workflows are making inroads into daily work habits.

These inroads are still localized to specific subareas of study –

Galaxy [58] for high-throughput genomic sequence analysis;

KNIME [59] for high-throughput drug screening, and so on, but

with that nucleation and with new applications being added by an

open source-minded community, adoption is increasing. Adoption

would assume a favorable cost:benefit ratio in that use of a

workflow system provides increased productivity over not using

such a system. This is a cost measured in time rather than money

since most academic laboratories in computational biology would

use free open source workflow systems. Finally, when articles

cannot be easily reproduced the authors are often contacted to

clarify or describe additional details. This requires effort that

might as well have been invested in writing the article more

precisely in the first place.

Workflows can also be seen as an important tool to make the

research in a lab more rigorous. Analyses must be captured so they

can be inspected by others and errors detected as easily as possible.

For example, writing code to transform data makes the transfor-

mation inspectable, while using a spreadsheet to do the task makes it

much harder to verify that it was done correctly. Ensuring

consistency and reproducibility requires more effort without

workflows. In our own laboratory we find that the workflow can

act as a reference such that new users can more quickly familiarize

themselves with the various applications than would be the case

without the benefit of the workflow organization, but then choose to

go on and run applications outside of the workflow system. As the

workflow systems themselves continue to be easier to use and more

intuitive we anticipate that more work will be done within the

workflow system itself, presumably improving productivity.

For the practitioner, what are the pluses and minuses of

workflow use today? An obvious minus is the time required to

establish the workflow itself. In some sense this is analogous to

documenting a procedure to run a set of software programs. But in

most cases once codes are prepared for publication little additional

effort is required to include them in a workflow. The advantage of

a workflow is that capturing the steps themselves defines the

procedure and it can be re-run, in principle, without any further

effort. We say ‘‘in principle’’ since as this work has shown

workflows decay – the tools available change, the licenses to those

tools change, remote data accessibility changes etc. Virtual

machines offer the promise of capturing the complete executable

environment for future use, however they introduce other issues

[26]. For example, virtual machines often act as black boxes that

allow repeating the experiment verbatim, but do not allow for any

changes to the computational execution pipeline, limiting its

reproducibility. Furthermore, virtual machines cannot store

external dynamic databases accessed at runtime (like the PDB in

our work) due to their size. These databases are commonly used

for experiments in computational biology.

All taken together, it may be that we are at this tipping point of

broad workflow adoption and it will be interesting to review

workflow use by the computational biology community two or

more years from now.

Conclusions

We conclude by summarizing the main observations resulting

from our work, leading to desiderata for reproducibility shown in

Table 2, and a set of guidelines for authors shown in Table 3. We

have restrained from making too many absolute conclusions from

a single instance of applying a workflow to a scientific method. It

would be interesting to carry out similar studies in other domains

and compare findings.
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