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Abstract

Networks are employed to represent many nonlinear complex systems in the real world. The topological aspects and
relationships between the structure and function of biological networks have been widely studied in the past few decades.
However dynamic and control features of complex networks have not been widely researched, in comparison to topological
network features. In this study, we explore the relationship between network controllability, topological parameters, and
network medicine (metabolic drug targets). Considering the assumption that targets of approved anticancer metabolic
drugs are driver nodes (which control cancer metabolic networks), we have applied topological analysis to genome-scale
metabolic models of 15 normal and corresponding cancer cell types. The results show that besides primary network
parameters, more complex network metrics such as motifs and clusters may also be appropriate for controlling the systems
providing the controllability relationship between topological parameters and drug targets. Consequently, this study reveals
the possibilities of following a set of driver nodes in network clusters instead of considering them individually according to
their centralities. This outcome suggests considering distributed control systems instead of nodal control for cancer
metabolic networks, leading to a new strategy in the field of network medicine.
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Introduction

Ever since Otto Warburg discovered the unique characteristics

of tumor cell metabolism over 80 years ago [1], the interpretation

of cancer as a genetic disease has gradually been displaced by the

understanding of it as a metabolic disease [2]. Cancerous cells

have to reprogram their metabolic states during tumor initiation

and progression through genetic and epigenetic alterations in

metabolic genes, in order to respond to the demanding

requirements for growth [3]. Understanding the details of human

metabolism has facilitated the reconstruction of genome-scale

metabolic models (GEMs) of various cell types and diseases. [4–6].

There are four generic reconstructed genome-scale human

metabolic networks: Recon1 [7], Recon2 [8], the Edinburgh

Human Metabolic Network (EHMN) [9], and HumanCyc [10].

For the study of particular human cell types, tissue-specificity, and

cancer; metabolic models have been reconstructed either manually

or automatically. Manually reconstructed metabolic models

include models of the liver (HepatoNet1, [11]), kidney [12], brain

[13], erythrocytes [14], alveolar macrophages [15] as well a model

of the core metabolic pathways participating in cancer growth

[16]. The first automatic reconstructed metabolic model has been

developed by Schlomi et al. for 10 different human tissues [17] as

subsets of Recon1. Later they proposed a different algorithm to

generate a more flexible and functional tissue-specific model [18].

Folger et al. [19] have constructed a large-scale metabolic model

of different cancers. Agren et al. [20] have developed the INIT

algorithm (Integrative Network Inference for Tissues) which relies

on the Human Protein Atlas (HPA) as the main evidence source,

and on tissue-specific gene expression data [21] and metabolomic

data from the Human Metabolome DataBase (HMDB) [22] as

extra sources of evidence. Finally, Wang et al. [23] have developed

a new approach named metabolic Context-specificity Assessed by

Deterministic Reaction Evaluation (mCADRE) in order to build

126 human tissue-specific metabolic models.

Reconstructed human metabolic networks provide a useful tool

for the study of diseases and the development of drugs. Several

simulations and modeling methods have been developed to

address the issues of drug-target prediction [24–28]. The

topological features of metabolic networks contribute to the

robustness and flexibility of the complex biosystems and may

explain, in general, the fact that many drug candidates are

ineffective (the drug effect is compensated by other pathways in the

network) or show unexpected severe side effects [29–31].

Prompted by these findings, many scientists have proposed a

system-oriented drug design strategy to replace the current ‘‘one

gene, one drug, one target, one disease’’ approach [31–33]. Hence

the concept of polypharmacology has been proposed for those

drugs acting on multiple targets instead on one target [34]. It is

also reasonable that multiple target modifications can more

effectively convert the system from a disease state to a normal

state than a single target modification. In fact, successful

applications of multi-component therapies have been reported

and multi-component drugs are already on the market [35,36].
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Systems analysis will help us not only in the discovery of novel

drug targets but also in developing new systems-based therapy

strategies [37].

Network medicine is a new subject that tries to link topological

network properties to biological function and disease. Network

medicine explores the molecular complexity of a special disease

and relationships between distinct phenotypes which may lead to

the identification of disease modules and pathways [38]. A better

understanding of the implications of cellular interconnectedness

for disease progression will lead to discovery of new disease genes

and pathways. These advances may also reshape clinical practice,

from discovery of more accurate biomarkers to a better disease

classification leading to personalized therapies and treatment.

Recently, there have been some studies on disease clustering

approaches which aim to find different disease modules and

predict new genes. Barabasi et al. [39] have shown that each

disease has its own unique module and that different disease

modules can overlap. In another study with respect to the

prediction of new genes, Chen et al. [40] have validated three

unknown genes (LPL, LACTB, and PPM1L) as obesity genes in

transgenic mice. In other work, Oti et al. [41] have found Janus

kinase 3 (JAK3) as a candidate protein for severe combined

immunodeficiency syndrome. The controllability of networks is

becoming a key issue in many disciplines, including sociology and

biology [42–45]. Network controllability is the ability to guide a

system’s behavior towards a desired state through appropriate

management of some input variables [46,47]. The difficulty in

control theory is because of the system’s architecture and the

dynamical rules which makes controllability to be possible only in

systems where both issues are well mapped [48]. In the last

decades, it has been demonstrated it is fair to expect that the

network topology would definitely affect controllability as well.

This approach helps us avoid any entanglement due to nonlinear

effects and consideration of networks with thousands to millions of

nodes [49]. So, structural controllability could be an appropriate

choice for dealing with large biological networks. Despite extensive

interest in the study of topological features over the last decade,

dynamic and control aspects of complex networks have not

followed the same pace of research development. For example,

different topological properties such as highly connected nodes,

betweenness and closeness centralities have been chosen as

candidates for an encoding part of system controllability but there

is no agreement at present on what network property is suitable for

[48,50,51]. Liu et al. [48] have proposed analytical tools for the

controllability of complex networks. Their approach is based on

the identification of a subset of nodes (called driver nodes) in a

directed network that can control the dynamics of the system.

They have shown that the number of driver nodes is determined

primarily by the degree distribution of a network. It means that

while homogeneous (dense) networks could be controlled using a

few driver nodes, inhomogeneous (sparse) networks (found in

many real networks) are the most difficult to control due to a high

number of driver nodes. In addition, driver nodes tend to avoid

high-degree nodes (called hubs) in both dense and sparse (real)

systems. Consequently, random networks are easier to control

[48]. One year later, they have introduced a new network

centrality called control centrality in order to address the

importance of a given node in maintaining a system’s controlla-

bility [51].

There have been reactions to Liu’s work. Ferrarini [52] has

introduced five unconventional thoughts on Liu’s approach using

the control of edges instead of nodes, which may be more useful in

complex networks. In another comment, Benarjee et al. [53] have

doubts about using degree centrality for controlling a system. They

believe that an effective understanding of controllability in directed

networks can be reached using distance based measures of

closeness centrality (CC) and betweenness centrality (BC), and

may not require the knowledge of local connectivity measures such

as in-degree and out-degree, because degree reflects information

about the immediate neighborhood of a node. In contrast, CC and

BC signifies a node’s potential to communicate with further nodes

through the network. This shows the important role that CC and

BC may play in determining controllability. However the main

challenge still remains to determine which node is the driver node.

In 2012, Nepusz et al. considered the controllability of a system

based on edge dynamics. In this approach, each node accepts

information through its inbound edge and spreads the results to

its neighbouring nodes using the outbound edges [54]. They

have shown that networks with scale-free degree distribution

are easier to control. In the same year, Nacher et al. [50]

introduced a new approach which investigated the dependence

of the size of the minimum dominating set (MDS) of nodes on

topological features of directed real networks for the purposes

of control design. Having computed the MDS in real networks

and in computer-generated networks with a variety of

topologies, they demonstrated that the MDS size depends on

the average degree of all nodes in the network. They have

shown that the more homogeneous a network, the larger the

fraction of individuals required for dominating the entire

system. Also, the more heterogenous a network is, the easier it

is to control the system. In addition, the MDS tends to target

highly connected nodes, which is in contrast to the Liu et al.

study [48]. However they mention that their results do not

contradict Liu’s work because of different strategies. Liu’s work

assumes that only driver node values could be directly

controlled through external signals, whereas the MDS method

undertakes that each driver node is sufficiently smart to control

individual links separately. On the other hand, in the MDS

approach, a node with degree k is treated as if it were a set of k

nodes [50]. So they believe that the MDS approach comple-

ments Liu’s results.

Both nodal and edge dynamics frameworks (the approaches

mentioned above) have been implied for covering unipartite

graphs. In 2013, Nacher et al. introduced a modified version of

MDS in order to study the controllability of bipartite networks.

The results demonstrated that MDS tends to select high degree

nodes and nodes with a high betweenness centrality in bipartite

networks. But the author mentioned that this approach may not be

possible in some kinds of biological networks such as Protein-

Protein Interaction (PPI) and metabolic networks.

In this paper, we have tried to explore possible relation between

topological analysis, structural controllability, and metabolic

networks. We have applied a comprehensive (local and global)

topological analysis of recently published genome-scale metabolic

models of normal and cancer tissue-specific models to assess the

controllability relation between topological parameters and drug

targets (as driver nodes),with the assumption that the targets of

approved anticancer metabolic drugs are driver nodes and

therefore control cancer metabolic networks. In addition, the

outcomes of metabolic networks controllability could create

insights leading to the discovery of novel drug targets. We have

shown that besides primary network parameters, more complex

network metrics such as motif and clusters may also provide new

tools for addressing network controllability in metabolic networks.

Characterizing the drug target in enzyme-centric clusters shows

that most of the drug targets belong to one specific cluster of an

enzyme-centric network. This could provide new insight into

considering distributed control systems (DCS) instead of nodal
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control for cancer metabolic networks [55,56]. If so, DCS may be

considered as a new strategy in the field of network medicine.

Materials and Methods

Metabolic and enzyme-centric network construction of
cancer and normal cell types

Omics data such as transcriptomic data are often noisy. In

addition, mRNA expressions are relative to a reference condition

and sometimes do not correlate well with enzyme levels [57].

Therefore, a prerequisite for reconstructing reasonable and

reliable tissue-specific models is to consider other resources as

well. We used metabolic networks of 15 cancer cell types and their

corresponding normal cell types in our study (categorized

according to Table 1). These networks have been constructed on

the basis of the INIT algorithm [20] which integrates tissue-

specific gene expression data into a general human metabolic

model. Therefore, each normal and cancer model contains

metabolites and reactions different to the others. We have written

MATLAB scripts to compare metabolites and reactions between

normal and cancer models (File_S1). Full lists of metabolites and

reactions of all 15 cancers and their associated normal models are

summarized in the Files_S2, S3.

All original SBML files have been downloaded from http://

www.metabolicatlas.com/ [20].

The SBML files are bipartite graphs including two types of

nodes (metabolites and reactions). Bipartite characteristics of

metabolic networks make it difficult to analyse them with

structural methods. In addition, metabolite-metabolite (metabo-

lite-centric) and enzyme-enzyme (enzyme-centric) networks can

provide extra insights and are therefore relevant for further

analysis of the metabolism. It is also necessary to address structural

controllability based on nodal dynamics (the approach of this

study), and to construct metabolite- and enzyme-centric networks.

We have written scripts in MATLAB software (R2012b) in order

to construct undirected and directed metabolite-centric, as well as

undirected and directed enzyme-centric networks based on SBML

files. We have added network construction procedures including

the algorithms in the File_S13. All the networks constructed are

available in the File_S4. An example of a directed enzyme-centric

metabolic network of cancer and normal breast cells imported in

Cytoscape software [58] is shown in Figure 1. A summary of the

kind of networks, the software and the parameters used for each

analysis has been provided in Table 2.

Primary topological analysis of four different kinds of
networks

Primary topological analysis has been carried out on four

different networks of normal and cancer cell metabolic networks

(undirected and directed metabolite-centric network, undirected

and directed enzyme-centric network) using the Network Analysis

plugin in Cytoscape [58]. The in-degree, out-degree, connected

components, average number of neighbors, number of nodes and

isolated node parameters have been measured for direct networks.

The degree, connected components, network diameter, network

centralization, characteristic path length, average number of

neighbors, total number of nodes, network heterogeneity and

isolated node parameters have been measured for undirected

networks. A summary definition of the different parameters is

available in the File_S5. We have provided all power-law plots for

every constructed network with fitting results in the File_S12.

Centrality analysis
Centrality analysis has been carried out on the directed enzyme-

centric networks of cancer and normal cell types using the

cytoHubba plugin [59] in Cytoscape. We have used twelve centrality

parameters: Maximal Clique Centrality (MCC), Density of

Maximum Neighborhood Component (DMNC), Maximum

Neighborhood Component (MNC), Degree, Edge Percolated

Component (EPC), Bottleneck, Eccentricity, Closeness, Radiabil-

ity, Betweenness, Stress and Clustering Coefficient [59].

Motif discovery
Motif finding has been carried out on the directed metabolic

and enzyme-centric networks of cancer and normal cell types

using the Quatexelero algorithm [60] (an enhanced Kavosh

algorithm [61]). The analysis has been performed on motifs of size

3 (including 13 different types-Figure 2) because the motif of this

size has been served as the building blocks of biological networks

from bacteria to mammals [62].

Clustering
Clustering analysis has been performed on the directed enzyme-

centric networks of cancer and normal cell types using the

MCODE [63] plugin in Cytoscape. Clustering parameters during

analysis have been shown in Table 2.

Anticancer metabolic drugs and their targets
For finding anticancer metabolic drugs and their targets, we

have used the drug bank database [64]. All anticancer metabolic

drugs and their targets are listed in the File_S6. The metabolic

functions of the drug targets are listed in the File_S7. These data

have been used for centrality and clustering analysis of enzyme-

centric networks of cancer cell types.

Results

Primary topological analysis
Since metabolic networks satisfy power-law degree distribution,

scale-free, and small-world properties [65], we have checked all

constructed networks for basic network properties. Degree

Table 1. List of 15 cancer cell types and their corresponding
normal cell types.

Cancerous cell Normal cell

Breast Breast Glandular

Cervical Cervix squamous

Colorectal Colon Glandular

Endometrial Corpus Endometrial-Corpus Glandular

Renal Kidney Glomeruli-Kidney Tubules

Liver Liver Hepatocyt

Lung Lung Alveolar

Ovarian Ovary Stromal

Pancreatic Pancreas Islet

Prostate Prostate Glandualr

Skin Skin Epidermal

Stomach Stomach Glandular (I&II)

Testis Testis Leydig

Thyroid Thyroid Glandular

Urothelial Urinary Bladder

doi:10.1371/journal.pone.0079397.t001
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distribution of a scale-free network having k connections to other

nodes satisfies the following relation [65]

P(k)*kc

where c is power-law parameter. For all constructed networks, we

have applied curve fitting to aforementioned relation and have

calculated values of c and r2 (coefficient of determination or R-

squared). Our results show that c related to degree distribution (in-

degree and out-degree for directed networks) for all metabolite-

centric and enzyme-centric networks are less than two. According

to the r2, all networks are scale free. In addition, calculated

characteristic path length values have been implied on small-world

property. Clustering coefficient, network diameter and connected

components are other topological parameters that relate to

network heterogeneity. The primary topological parameters

related to directed metabolite-centric networks are shown in

Table 3. Complete lists of data are available in the File_S8. All

power-law plots for every constructed network with fitting results

are available in the File_S12.

Anticancer metabolic drugs and their targets through
centralities

Centrality parameters are global properties of a network that

rank graph nodes according to their importance in the network.

The higher the rank, the more important a node is in the network,

indicating that it may play key roles in controlling cellular

functions. We have carried out centrality analysis for directed

enzyme-centric networks. All enzymes in 15 enzyme-centric

networks have been sorted according to 12 different centrality

parameters in order to check whether drug targets appears as

highly connected nodes. As Figure 3 shows, drug targets are not

available among the 100 top of 12 different centralities. All

centrality data are available in the File_S9.

Figure 1. Directed enzyme-centric metabolic networks of cancer and normal breast cells.
doi:10.1371/journal.pone.0079397.g001
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Motif discovery
Network motifs (one of the important local properties of

networks) have served as the building blocks of biological networks

from bacteria to mammals, and their function has been

experimentally studied in some species such as the transcription

network of E. coli [62]. For exploring significant differences

between metabolite- and enzyme-centric networks of normal and

corresponding cancer cell types, size 3 motif analysis has been

carried out for these networks. In metabolite-centric networks

there was no difference in motif distribution with size 3 between

normal and cancer cell types. In addition, motifs with IDs ‘‘38, 46,

142, 166, 174, and 238’’ have positive Z-Scores for metabolic

networks. For enzyme-centric networks, motif distributions in size

3 are different in normal and the corresponding cancer cell types.

For example, in the breast enzyme-centric network, the feed

forward loop (ID = 38) has a positive Z-Score in breast cancer but

a negative Z-Score in the normal cell type (Table 4). All motif data

are available in the File_S10.

Clustering
We have carried out clustering analysis for exploring

significant differences in the number of clusters in directed

enzyme-centric networks of normal and corresponding cancer

cell types. Results related to the MCODE clustering algorithm

(Figure 4) show that the number of clusters in metabolite-centric

networks in both normal and cancer cell types reveal no

significant discrepancy. This is also true for the enzyme-centric

networks of normal and cancer cell types. All clustering data are

available in the File_S11.

Table 2. A summary of the different networks, software and parameters used for each topological analysis.

Primary topological analysis

Purpose of study: to check any structural differences between metabolite- and enzyme-centric of normal and cancer networks

Networks Types metabolite-centric network directed

undirected

enzyme-centric network directed

undirected

Software Network Analysis plugin in Cytoscape

Parameters directed in-degree, out-degree, connected components, average number of neighbors, number of nodes, isolated
node

undirected degree, connected components, network diameter, network centralization, characteristic path length,
average number of neighbors, total number of nodes, network heterogeneity, isolated node

Centrality analysis

Purpose of study: to check distribution of drug targets among the 100 top of centralities

Networks Types enzyme-centric network directed

Software cytoHubba plugin in Cytoscape

Parameters Maximal Clique Centrality (MCC), Density of Maximum Neighborhood Component (DMNC), Maximum
Neighborhood Component (MNC), Degree, Edge Percolated Component (EPC), Bottleneck, Eccentricity,
Closeness, Radiability, Betweenness, Stress, Clustering Coefficient

Motif discovery

Purpose of study: to check any differences between metabolite- and enzyme-centric of normal and cancer networks.

Networks Types metabolite-centric network directed

enzyme-centric network directed

Software Quatexelero algorithm

Parameters Motif of size 3 (13 types)

Clustering

Purpose of study: (1) to check any differences between number of clusters in normal and cancer networks, (2) to check distribution of drug targets among clusters

Networks Types enzyme-centric network directed

Software MCODE plugin in Cytoscape

Parameters degree cutoff = 2, without loops, node score cutoff = 0.2, K-core = 2, Max. Depth = 100, Include haircut,
without fluff

doi:10.1371/journal.pone.0079397.t002

Figure 2. Corresponding Motif IDs of size 3 used in this study.
doi:10.1371/journal.pone.0079397.g002
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Figure 3. Cluster distribution in enzyme and metabolite-centric cancer and normal networks.
doi:10.1371/journal.pone.0079397.g003

Table 4. Motif finding in directed metabolic and enzyme-centric breast networks.

Motif ID Enzyme centric network Metabolic centric network

Breast Cancer Normal - Breast Grandular Breast Cancer Normal - Breast Grandular

Z-SCORE Z-SCORE Z-SCORE Z-SCORE

6 20.297858 6.904595 26.640324 25.26027

14 214.077722 25.136464 214.989574 216.436516

34 211.134564 24.373875 211.714442 28.455331

36 24.061103 2.328047 26.202353 24.754256

38 1.447868 23.813574 5.214613 3.870699

46 15.150644 6.304231 3.585829 3.334919

78 6.237981 11.685102 212.759671 28.828319

140 52.125441 36.997489 23.720983 23.250312

142 4.300469 4.41293 40.237059 42.413737

164 3.747944 10.054664 218.118178 218.989507

166 23.970751 25.07765 5.691384 5.705127

174 22.890623 23.240451 5.873318 8.981136

238 NA 211.224703 17.323516 5.615659

doi:10.1371/journal.pone.0079397.t004
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Figure 4. Distribution of drug targets in twelve different centralities.
doi:10.1371/journal.pone.0079397.g004
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Figure 5. First 17 clusters of liver enzyme-centric cancer network. Drug targets (green nodes) are in cluster number 14.
doi:10.1371/journal.pone.0079397.g005
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Anticancer metabolic drugs and their targets through
clusters

In the next step, we have identified the drug target of anticancer

metabolic drugs (extracted from the drug bank) through clusters in

the enzyme-centric network of cancer cell types. The results shows

drug targets gather in a specific cluster of an enzyme-centric

network of the cancer cell (Figure 5, cluster number 14). All

clustering data are available in the File_S11.

Discussion

Networks are considered to be a major representation of

many nonlinear complex systems in the real world. The theory

of complex networks uses methods previously developed in

graph theory, statistics, physics, and computer simulation in

order to study the topological features and relationships

between structure and function in the formation of different

real world networks such as social, information, and biological

networks. Structural network controllability is a new field

guiding a system’s behavior towards a desired state through

appropriate management of some input variables. The diffi-

culty in control theory is because of the fact that two

independent factors (with its own layer of unknown) contribute

to controllability [48]: (1) the system’s architecture, represented

by the network in which components interact with each other;

and (2) the dynamical rules that capture the time-dependent

interactions between the components. Therefore, controllability

has been possible just in systems where both issues are well

mapped, for instance rate control for communication networks,

small biological circuits, and the control of synchronized

networks [45,66,67]. From the advances towards understand-

ing complex networks accumulated in the last decade, we know

that network topology fundamentally affects the dynamical

processes on it, from epidemic spreading to synchronization

phenomenon. So, it is fair to expect that the network topology

would definitely affect controllability as well. This approach

helps us avoid any entanglement due to nonlinear effects [49].

In addition, this kind of controllability (structural controllabil-

ity) allows consideration of networks of arbitrary size (with

thousands to millions of nodes). In structural network

controllability, both nodal and edge dynamics frameworks

have been implied for covering unipartite graphs [48,50,54]. In

the nodal dynamics approach, Liu’s work assumes that only

driver node values could be directly controlled through

external signals whereas Nacher’s study (MDS method)

undertakes that each driver node is sufficiently smart to

control individual links separately [48,50]. Although these two

works have provided different results especially in targeting

highly connected nodes by driver nodes, the authors mention

that their results do not contradict because they use different

strategies. Thus they believe that the MDS approach comple-

ments Liu’s results [50].

In this study, we have explored the relationships between

structural network controllability, topological parameters, and

network medicine (metabolic drug targets). We have applied a

topological analysis to genome-scale metabolic models of 15

normal and corresponding cancer cell types. First, we have

constructed metabolite- and enzyme-centric networks based on

the metabolic SBML files. We have performed primary

topological analysis to check whether there are any structural

differences in the metabolite-centric and enzyme-centric of

normal and cancer metabolic networks. The results show all

constructed networks satisfy scale-free and small-world proper-

ties. But there is not any significant differences between normal

and cancer tissues. Next, we have used the MDS concept in

metabolic networks since controlling cancer metabolism

through internal signals seems more reasonable biologically.

Metabolic networks are appropriate choice because they allow

us to consider both metabolite-centric (nodes in original

network) and enzyme-centric (edges in original network)

networks separately. Based on an assumption (the targets of

approved anticancer metabolic drugs are driver nodes and

therefore control cancer metabolic networks), we wanted to

explore whether it is possible to explore topological parameters

which could specify driver nodes in the metabolic networks. So,

we have done two studies based on the MDS controllability

concept in the enzyme-centric metabolic networks: 1) to check

whether driver nodes tend to be part of centrality indexes such

as highly connected nodes (Hubs). 2) to explore topological

parameters which could specify driver nodes in the metabolic

networks.

In performing centrality analysis, the distribution of drug

targets among the 100 top of twelve centrality parameters

was not significant. It means that drug targets avoid being

highly connected enzymes. So, different centralities used in

this study could not consider as a driver node for controlling

systems. Motifs, as another local property of networks, have

also been examined and there was no difference in

metabolite-centric networks of cancer and normal cell types,

but there were significant discrepancies in the enzyme-centric

networks of cancer cells and their corresponding normal cell

types. The number of clusters between cancer and corre-

sponding normal cell networks show no significant differenc-

es, but characterizing drug targets in enzyme-centric clusters

shows that most of the drug targets belong in one specific

cluster of an enzyme-centric network. Therefore our results

indicate that besides primary network parameters, more

complex network metrics such as motifs and clusters may

be also appropriate parameters for controlling the metabolic

systems. Besides, for metabolic networks, enzyme-centric

networks could be more reliable in the context of control-

lability, although little attention has been paid to such

networks in systems controllability. The outcomes of meta-

bolic network controllability could create insights into the

discovery of novel drug targets.The results also suggest

considering DCS [55,56] instead of nodal control could lead

to a new strategy for cancer treatment in the network

medicine field.

Supporting Information

File S1 Compare metabolites and reactions between
normal and cancer models (including all networks).

(RAR)

File S2 Lists of metabolites and reactions of cancers
models.

(XLSX)

File S3 Lists of metabolites and reactions of normal
models.

(XLSX)

File S4 Constructed networks (including all normal and
cancer networks).

(RAR)

File S5 Summary definition of the different parame-
ters.
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File S6 Anticancer metabolic drugs and their targets.
(XLSX)

File S7 Metabolic functions of the drug targets.
(XLSX)

File S8 Primary topological parameters for all con-
structed networks (including metabolite- and enzyme-
centric directed and undirected networks).
(RAR)

File S9 Centrality data (including all enzyme-centric
cancer networks).
(RAR)

File S10 Motif data (including metabolite- and enzyme-
centric normal and cancer networks).
(RAR)

File S11 Clustering data (including all enzyme-centric
cancer networks).

(RAR)

File S12 Power-law plots for every constructed network
with fitting results (including metabolite- and enzyme-
centric directed and undirected networks).
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File S13 Network construction procedures.
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