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Abstract

Understanding the drivers of urban mobility is vital for epidemiology, urban planning, and communication networks.
Human movements have so far been studied by observing people’s positions in a given space and time, though most
recent models only implicitly account for expected costs and returns for movements. This paper explores the explicit impact
of cost and network topology on mobility dynamics, using data from 2 city-wide public bicycle share systems in the USA.
User mobility is characterized through the distribution of trip durations, while network topology is characterized through
the pairwise distances between stations and the popularity of stations and routes. Despite significant differences in station
density and physical layout between the 2 cities, trip durations follow remarkably similar distributions that exhibit cost
sensitive trends around pricing point boundaries, particularly with long-term users of the system. Based on the results,
recommendations for dynamic pricing and incentive schemes are provided to positively influence mobility patterns and
guide improved planning and management of public bicycle systems to increase uptake.

Citation: Jurdak R (2013) The Impact of Cost and Network Topology on Urban Mobility: A Study of Public Bicycle Usage in 2 U.S. Cities. PLoS ONE 8(11): e79396.
doi:10.1371/journal.pone.0079396

Editor: Michael S. Samoilov, University of California, Berkeley, United States of America

Received August 15, 2013; Accepted September 29, 2013; Published November 13, 2013

Copyright: � 2013 Jurdak. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The work of Jurdak is funded by the Commonwealth Scientific Industrial and Research Organisation (CSIRO), Australia. The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The author has declared that no competing interests exist.

* E-mail: rjurdak@ieee.org

Introduction

Increasing greenhouse gas emissions and traffic congestion have

driven large cities to build public shared bicycle systems as an

active, low-emissions, and sustainable form of transport. City

councils typically install bicycle stations at hundreds of locations

across the city, and citizens can then use any available bicycle from

these stations. Public bicycles are seen as the last mile of

transportation systems [24,26], with the potential to bridge the

gap between people’s home and workplace and other transpor-

tation options, and they are experiencing exponential growth in

large cities in Europe, Asia, North America and Australia

[1,24,26].

While these systems have attracted large public and private

investments and media hype, their impact on gas emissions has

been limited due to their failure to attract car commuters in

significant numbers to switch to public bicycles [1,25,29].

Fundamental to improving uptake of public bicycle share systems

and to rendering them financially sustainable in the long-term is to

understand the factors that affect their usage patterns.

Recent work on understanding human mobility has character-

ized the distance people travel and the duration of their trips as

power law distributions, i.e. people tend to mostly travel for short

periods and distances, with longer trips being exponentially less

likely [2,3,4,16]. While highly valuable, power law characteriza-

tion does not capture the associated costs and returns of mobility.

The drivers of all forms of human mobility, spanning short-

distance journey to work and residential mobility to long distance

migration within and between countries [5], are established to be a

function of cost and return [6,7], both monetary [8] and non-

monetary [9]. Gravity models [10,11], where more populous

locations are more attractive for incoming trips, implicitly assume

that mobility costs are proportional to distance. More recent work

has linked mobility decisions to other incentives, such as

employment options [12].

Kolbl and Helbing [27] have pointed out the existence of a daily

energy budget for urban movement, but they did not explicitly

quantify how monetary cost interacts with this energy budget. In

general, the impact of monetary cost has not been quantified for

most types of mobility, partly because of the reliance on available

data sources, such as census records, mobile phone traces, and

GPS logs that do not directly capture costs and returns associated

with mobility. Public transport costs are an exception, as they map

specific fares to given routes. The impact of cost and return on

mobility using conventional public transport provides only a

limited view, as mobility is constrained to fixed routes and thus

fails to capture the effects of personal choices. As a result, there is

limited understanding of the impact of pricing and incentive

structures on mobility dynamics, and the relative importance of

these structures compared to other factors, such as the physical

layout that governs mobility.

Public bicycle systems provide a unique opportunity to explore

the impact of monetary cost on mobility decisions by coupling

both the flexibility to choose any route between existing stations

and an explicit costing structure. The works in [24,26] provide

comprehensive reviews of the history and outlook for public

bikesharing, as well as an overview of their evolution and uptake

drivers across different regions in recent years. Kolbl and

Helbing’s work on the energy laws for human travel behaviour

[27] across different travel modes provides valuable insights into

the usage dynamics of cycling. However, it did not consider the
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current generation of public bicycles and how these laws interact

with public bikeshare systems. Buck et al. [25] studied the reported

trip purpose of public bicycle users in Washington D.C., finding

that a large proportion of annual members use the system for

utilitarian purposes such as commuting, while casual users tend to

use it mostly for tourism.

This paper builds on the above work by exploring the impact of

cost thresholds and network topology on how people use the public

bikeshare systems. The focus is to characterize the explicit impact

of cost on urban mobility and compare its relative importance with

network topology through the case study of shared public bicycle

systems. Public bicycles typically require users to subscribe to the

system or pay a one-off fee before borrowing a bicycle. Nearly all

public bicycle systems incentivize shorter trips, where trips of more

than 30 minutes are charged extra fees at progressively increasing

rates [1,13]. This common costing structure provides an explicit

representation of the cost (effective for trips longer than 30

minutes) and return (moving from source to destination).

Analysis and Results

This paper uses publically available shared bicycle data for

Boston [14] and Washington D.C. [15], which include 1000 and

1800 bikes, 100 and 200 stations, and 552,073 and 1,859,773 trips

respectively. The data for both cities spans a timeframe from

September 2010 to December 2012, where each trip is represent-

ed by a start and end station, start and end time, unique bicycle

ID, and for the Boston data, demographic information about the

user. To check out a bicycle, users must first subscribe to the

system. The subscription costs for trips in each of the cities are

shown in Table 1, indicating a slight variation in prices between

the 2 cities. Once subscribed, additional trips may incur further

costs based on trip time (see Figure 1). Only trips of 60 seconds or

longer are considered in the analysis to filter out bicycles that are

immediately returned without being used. Trips longer than

24 hours are also disregarded as they represent irregular use of the

bike-sharing system.

Figure 1 plots the trip cost as a function of time, which is the

same for the public bicycle systems in both Washington D.C. and

Boston. Trips below 30 minutes incur zero additional cost

(maximum return) beyond the initial cost of becoming a member,

while longer trips incur an increasing cost at half hour intervals,

with the maximum cost at trips of between 7 and 24 hours capped

at $100 for casual users and $80 for registered users. Registered

users are defined as having either a monthly or annual

membership, with all other users classified as casual.

Cost Impact
To explore the impact of cost structure on public bicycle usage,

Figure 2 plots the distribution of trip durations in these cities. The

trip duration distributions for both cities are remarkably similar

with a strong bias towards shorter trips, and an apparent power

law decrease beyond a certain duration, which confirms observa-

tions in earlier work around trip duration [17] and energy [27].

Within the cost-free period, there is a tendency towards shorter

trips with a peak around 6 minutes. A fairly broad spread of trip

times within 30 minutes is observed, with a sharp decline in the

likelihood for trips just under and above 30 minutes. This captures

the behavior of most public bicycle users to try to maximize their

travel distance and time (mobility return) without increasing their

cost. Once they have incurred the cost ($2) by exceeding the 30-

minute mark, most users tend to keep the bicycle to increase their

return for cost they have already incurred. The distinct decline in

trip time around 30 minutes continues until about 50 minutes,

when users realize they may incur a significantly higher cost ($6) if

they do not return bicycles within a few minutes. A minor bump

appears in the plot between 50 and 60 minutes confirming this

behavior. Beyond 60 minutes, where the cost of every additional

half hour is the same at $8, trip times exhibit a power-law

distribution of the form:

y~axk

in both cities (Boston: a = 2.656105; k = 22.4156; D.C.:

a = 4.286105; k = 22.4643), where longer trips are exponentially

less likely than shorter trips. The deviations from the main power

law trend around the cost boundaries of 30 and 60 minutes, with a

tendency to cut trips just before 30 minutes and to extend them

further when they exceed 30 minutes, suggest that users are

adapting their trip times to minimize cost.

To further explore this effect, Figure 3 shows the trip duration

distribution separately for casual and registered users in Boston.

Casual users, whose primary primary use of the bicycles is for

tourism [25], clearly take longer trips on average (3283 seconds)

than registered users (818 seconds). Nevertheless, the cost

sensitivity for casual users around the 30 minute and 60 minute

marks persists with the small bumps and troughs before and after

the pay boundaries respectively. Beyond simply taking shorter trips

on average, registered users appear to have a much higher cost-

sensitivity around the 30 minute mark, with a visible drop in the

slope of the distribution shortly before this limit of the cost-free

period. This steeper slope remains stable even for longer trips. The

higher cost sensitivity of registered users may be a result of their

closer knowledge of the bikesharing system, its spatial layout, and

the cost structure, which enables them to optimize their use of the

system without incurring additional cost.

Figure 1. The monetary cost of public bicycle trips as a function
of time. The cost is the same in both cities.
doi:10.1371/journal.pone.0079396.g001

Table 1. One-time subscription costs in each of the 2 cities.

City Annual ($) Monthly ($) Daily ($) 72-hour ($)

Boston 85 20 6 12

Washington
D.C.

75 25 7 15

Individual trip costs depend on the trip time and are shown in Figure 1.
doi:10.1371/journal.pone.0079396.t001
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Topology Impact
Having established a strong similarity in the trip duration

distributions and the cost sensitivity of trip durations around the

price boundaries, the dependence of trip durations on station

topology is now explored. The high similarity in trip duration

distributions between the two cities suggests that, if station

topology is a strong determinant of trip durations, the topologies

in Boston and Washington should also be similar.

Figure 4 shows the distribution of inter-station distances in both

cities, as a measure of the spatial station density. Boston stations

are on average located much closer to other stations (M:113.09,

S:82.21) compared to Washington D.C. (M:247.32,S:162.69). In

other words, a bicycle trip in Boston encounters many more

stations before reaching its destination relative to a trip in

Washington D.C. with comparable distance and duration. Despite

the spatial and topological differences, which have been shown to

impact trip distributions at finer spatial scales [17], the global trip

distributions in the two cities remain highly similar. The nearly

identical trip duration distributions coupled with the highly

heterogeneous station distributions between the two cities indicates

that the (non-monetary) energy cost [27] is the most likely driver of

this trip distribution. As Kolbl and Helbing report in their long-

term study, there appears to be a universal energy budget for daily

travel that is independent of transportation mode. They also

highlight that average bicycle trips are around 42 minutes. In

comparison, Figure 3 indicates an average trip time of around 14

minutes for registered users. This apparent underuse of the daily

energy budget for registered users suggests that they are using the

system in conjunction with other forms of transport, which would

support the last mile hypothesis [24,26]. Casual users, on the other

hand, have average trip times at around 54 minutes, which may

arise from the increased frequency of pauses during ‘‘touristic’’

trips undertaken by these users. These pauses are most likely not

accounted for in the daily travel energy budget that is dominated

by commuters. The consistent deviation in trip durations of public

bicycle users around the pricing boundaries in the two cities

appears to be primarily due to cost sensitivity rather than to spatial

considerations, such as specific station locations.

An alternative explanation to the remarkably similar trip

durations in Boston and Washington D.C., including the cost

sensitivity around pricing boundaries, is that a few hub stations

dominate the bicycle usage, and the durations of the trips among

these hub stations may be causing a bias in the trip duration

distribution. To explore this possibility, the station popularity for

each station is computed as the number of trips that start or end at

that station, in order to generate a ranking of all the stations in

descending order according to their number of trips. Each station

is then assigned a popularity rank, where the most popular station

in a city has a popularity rank of 1, and the nth most popular

station has a rank of n. The pairwise dominance of stations is

further computed by counting the number of other stations for

which each station is the most popular source or destination. This

metric is to indicate to what extent specific pairs of stations

dominate the trip data.

Figure 2. Distribution of trip durations in Boston and Washington, D.C. clearly shows a broad spread of trips durations within the
cost-free period and a more common power-law distribution for trips longer than 1 hour.
doi:10.1371/journal.pone.0079396.g002

Figure 3. Distribution of trip durations in Boston split by
registered and casual users. Casual users take longer trips on
average, while the trip duration of registered users appears to drop
more sharply just before 30 minutes to avoid incurring additional costs.
doi:10.1371/journal.pone.0079396.g003
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Figures 5 and 6 plot the pairwise station popularity versus the

station popularity rank for Boston and Washington D.C.

respectively. The results confirm previous reports that hub stations

exist [18,19], and show that there is asymmetry in popularity as

source or destination as a result of commuting patterns. However,

these hub stations by no means dominate the usage, with many

other stations being used to a slightly lesser extent.

Finally, the dominance of individual routes, represented by

source-destination station pairs, and its potential to bias the trip

duration distribution is investigated. The number of occurrences

for each route are counted and sorted in descending order of

occurrences. Every source-destination pair is then assigned a

unique route index for each of the two cities, with the results

shown in Figure 7. The common feature for both cities is the

relative flatness of the plots for the top 1000 routes. In both cities, a

handful of routes emerge as the most popular, with 4 most popular

routes in Washington D.C. with 2000–3000 trips, and 5 most

popular routes in Boston with a similar number of trips. In

comparison, all of the top 300 routes in both cities were taken at

least 500 times, suggesting that the total trip sample is broadly

spread among a large number of routes, and refuting the

hypothesis of bias in trip duration distribution due to dominance

of a few routes.

Discussion

The cost sensitivity around pricing boundaries in people’s usage

patterns supports the current trend for the design of dynamic

costing structures or incentive schemes to positively affect the

usage of this low emissions means of public transport. Clearly, the

time-specific cost-structure of current public bicycle systems has

been introduced to contain the issue of excessive borrowing times

in previous generations [24]. Dynamic costing and incentives have

to therefore strike the right balance between equity in bicycle

access, which penalizes longer trips with higher costs, and

optimizing demand in target locations, by tactically reducing the

cost.

Incentive schemes for using bicycles at the bottom of hills are

already in effect in some cities, such as the Velib system in Paris

[18,26] through the expansion of the cost-free period to 45

minutes. The incentives recognize that users have to spend extra

effort to cycle uphill and gives them an additional 15-minutes of

cost-free time to do so. When these additional minutes are not

spent in the current trip, they can be saved up for later trips [26].

The idea of ‘‘push’’ and ‘‘pull’’ stations introduces pricing

incentives to encourage borrowing or returning bicycles to specific

stations [26]. Recent proposals for dynamic public bike sharing

systems [24] have gone beyond incentive schemes towards mobile

Figure 4. Cumulative probability distribution of inter-station
distances in Boston and Washington D.C. highlights that
Boston has a much denser public bicycle network topology.
Black squares indicate mean inter-station distances.
doi:10.1371/journal.pone.0079396.g004

Figure 5. Station usage patterns show a few popular stations in
Boston, yet the popularity of trips is spread out over more
than two-thirds of the stations.
doi:10.1371/journal.pone.0079396.g005

Figure 6. Station usage patterns show a few popular stations in
D.C., and similarly with Boston, the popularity is spread out
over more than half the stations.
doi:10.1371/journal.pone.0079396.g006

Figure 7. Number of trips undertaken for unique source-
destination pairs reveals a broad spread of trips.
doi:10.1371/journal.pone.0079396.g007
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bicycle stations that are relocated based on usage patterns and user

demand. Other innovations have included the use of existing street

furniture as ad hoc stations and using GPS trackers to allow users

to localize the nearest bicycles [26]. A more recent embodiment of

these concepts is proposed in the Social Bicycles project [28] that

uses regular bike racks with wireless tracking to emulate public

bicycles in a distributed and controlled form.

General Implications
Given the clear cost sensitivity of trip durations at the pricing

structure boundaries that was identified in this paper, additional

dynamic costing structures and incentives can be introduced to

positively influence usage patterns. City councils can enforce

modified pricing at peak hours on specified routes to alleviate

pressure from congested roads by incentivizing public bicycle users

through longer cost-free durations and reduced penalties for

longer trip durations. A further step would be to dynamically link

pricing structure to the current traffic conditions so that incentives

adapt to the occurrence or severity of traffic conditions. For

instance, several mapping applications, such as Google Maps and

Apple Maps, provide live traffic information based on crowd-

sourced data from mobile phone users on the roads. Using this

data as an input, city councils can specifically lower public bicycle

prices on congested car routes to increase bikeshare demand and

relieve congestion along those routes. The drawback of this

approach is the potential lack of predictability and visibility of

incentives due to their non-periodic nature. A hybrid approach

may be the most suitable with a fixed schedule for reduced costs

along specific routes coupled with dynamic cost reductions at times

and routes where traffic arises.

A further implication of the results here is that the expansion of

cost-driven public share bicycle systems can have distinctly

different requirements from convenience-driven private cycling

infrastructure. For instance, the city of Amsterdam is planning

nearly J200 Million of investment by 2040 to alleviate pressure off

its bike infrastructure particularly in central urban regions where

mainly private cyclists have indicated the highest degree of

inconvenience in parking their bikes [20]. Their strategy focuses

on increasing the number of bike racks in central locations where

population and bike densities are highest. The current study

indicates that, unlike private bicycle users that prioritize conve-

nience in their transport decisions [20], public bicycle users can be

more sensitive to monetary cost in their trip patterns. In particular,

increasing the density of stations within currently covered

neighborhoods to alleviate traffic in central areas of cities may

not effectively increase uptake. New stations that increase the

reach of the current network into new areas, where the trip times

to existing stations remain within the cost-free period, are more

likely to increase uptake of public bicycles and encourage new

segments of society to cycle [25]. Cities that aim to increase uptake

among private and public cyclists should plan new infrastructure

that balances the considerations of convenience, with ample bike

racks in central locations for private users, and cost, with

appropriately separated stations that maximize coverage within

the cost-free time limit. Retrospective measures are also possible

for existing infrastructure by adjusting pricing structures, partic-

ularly the cost-free period, to generate public bicycle demand in

low uptake areas.

More broadly, understanding the cost sensitivity of urban

mobility and its interplay with energy budgets is relevant for the

design of the costing structures of other transport systems in

shaping citywide traffic patterns. The planning and design of car

sharing systems [21], which involve fleets of vehicle owned by

private companies, also requires meticulous consideration of the

costing structure and the locations at which shared cars can be

borrowed or left. In terms of topology, the emerging Personal

Rapid Transport (PRT) [22], which is proposed as a public and

more environmentally friendly replacement for cars, bears high

resemblance to public bikes in that it captures the freedom of

personal choice and explicit usage cost in mobility decisions.

Characterizing the extent to which cost or distance impact routing

decisions in shared transportation systems, and validating it

experimentally with social incentives [23], will play a significant

role in the design and expansion of this transportation paradigm.

Conclusion

This paper has analysed the impact of cost and topology on trip

duration distributions in public bicycle systems. It has confirmed

earlier reports [17,27] on similarity in trip duration distributions

for public bike share usage across cities, and has found that

registered users in particular exhibit a high cost sensitivity around

the 30 and 60 minute pricing boundaries. The analysis has also

shown that the spatial topology of the bikeshare system is not a

strong driver of usage patterns, with the significant differences in

station and route statistics for the two cities not affecting the

similarity in trip durations. It is likely that more universal factors,

such as energy rather than monetary cost [27], drive the overall

similarities in behavior while the pricing structure tunes behaviors

within the constraints of people’s daily energy budgets for

movement.
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