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Abstract

The quantitative effects of environmental and genetic perturbations on metabolism can be studied in silico using kinetic
models. We present a strategy for large-scale model construction based on a logical layering of data such as reaction fluxes,
metabolite concentrations, and kinetic constants. The resulting models contain realistic standard rate laws and plausible
parameters, adhere to the laws of thermodynamics, and reproduce a predefined steady state. These features have not been
simultaneously achieved by previous workflows. We demonstrate the advantages and limitations of the workflow by
translating the yeast consensus metabolic network into a kinetic model. Despite crudely selected data, the model shows
realistic control behaviour, a stable dynamic, and realistic response to perturbations in extracellular glucose concentrations.
The paper concludes by outlining how new data can continuously be fed into the workflow and how iterative model
building can assist in directing experiments.
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Introduction

Improving understanding of metabolic behaviour is vital to

drive research outcomes in medical and biotechnology fields.

Building mathematical models of metabolism, whether as a whole,

or as constituent pathways, allows the behaviour to be compre-

hensively investigated in order to generate hypotheses which can

be tested in the laboratory. Metabolic models show a loose

dichotomy, containing either a few reactions described to high

kinetic detail (‘‘kinetic models’’), or a large set of reactions with

little or no kinetic detail at all (‘‘stoichiometric’’ or ‘‘constraint-

based’’ models). For the well-studied model organism Saccharomyces

cerevisiae (baker’s yeast), many kinetic models are available in

BioModels Database [1]. Whilst these models allow for dynamic

simulations and control analysis, their coverage does not extend

far beyond the glycolytic pathway: they typically contain less than

20 reactions, which is, by far, not enough to understand the global

dynamics of metabolism. Larger models such as the yeast

consensus model [2] contain more than 1000 reactions, but

merely define the stoichiometry of the metabolic network [3],

which can only be studied using techniques such as Elementary

Mode Analysis [4] or Flux Balance Analysis (FBA) [5]. The lack of

kinetic detail in larger models results from a dearth of data: the

‘‘data-deluge’’, from a kinetic perspective, never really happened

[6]. Ways to circumvent the lack of data, by looking at network

reaction control under parameter uncertainty, have been devel-

oped [7–10], but these techniques do not provide explicit kinetic

solutions to the system.

Construction of large dynamic and kinetic models have been

attempted using both constraint-based, and kinetic research

paradigms. Constraint-based approaches, including dynamic

FBA [11] and structural kinetic modelling [12,13], start from

stationary fluxes and introduce pseudo-kinetic behaviour. Con-

versely, kinetic models contain rate laws determined reaction by

reaction (derived either experimentally or from the literature), and

then combined [14], an example being Teusink’s glycolysis model,

built using detailed in vitro kinetics [15]. Larger models, containing

many reactions with undetermined rate laws, must be built using

standard rate laws [16–20] and methods for completing the

missing parameter data. Smallbone (2010) [21] exemplified one of

the first large-scale kinetic constructions, populating the stoichio-

metric yeast consensus model with linlog rate laws and using a

previously developed approximation methodology [22]. The

methodology uses knowledge of the stoichiometric matrix, and

flux balance analysis, to generate data covering a large network.

Following this, Li (2010) [23] developed a workflow that uses a
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known metabolic network and inserts kinetic rate laws from Sabio-

RK [24]. Where suitable rate laws are not available, a generic rate

law is inserted instead. The parameter values are obtained from

various databases where possible. These methods exemplify the

main steps for constructing such a model: (i) the stoichiometric

network must be reconstructed, (ii) kinetic rate laws need to be

assigned to all reactions, and (iii) the kinetic constants in the rate

laws must be determined.

Current methodologies, however, do not go far enough towards

generating a model of the calibre required for the current needs.

Large kinetic models would have to show both a steady state with

realistic metabolic fluxes and concentrations, and a consistent

equilibrium state. This imposes a variety of constraints on the

model parameters, and naive constraint-based or kinetic ap-

proaches do not satisfy these requirements. Parameter balancing

[25] solves this problem: in place of inserting reported kinetic

constants directly into the model, it uses them as input data,

translates them into a consistent parameter set, and ensures that all

thermodynamic constraints are satisfied. Parameter balancing,

however, is unable to process metabolic fluxes or rate equations

directly: all of which are vital for constructing a usable model. We

therefore combined approximation techniques with flux analysis,

thermodynamic analysis, and parameter balancing into a new

methodology that can create consistent models in realistic

biological states. A key aspect of this method is the approximation

techniques which allow small, incomplete data sets to be used in

order to generate kinetic data for a whole model. This helps

circumvent many construction issues associated with a lack of

available data.

The model produced from the method is not a final model, and

its falsifiability is its strength. To quote Gutenkunst et al (2007)

[26]:

‘‘For computational modeling to be useful in incompletely

understood systems, we must focus not on building the final,

perfect, model with all parameters precisely determined, but on

building incomplete, tentative, and falsifiable models in the most

expressive and predictive fashion feasible’’.

Where the model does not predict experimental outcomes,

despite inclusion of relevant data, it forms a basis for asking

‘‘why?’’. This will lead to chances of obtaining more insight

through top-down analyses of ‘omics data, and then modifying

experiments to obtain the most useful data for improving the

model, something Heinemann et al (2010) [27] suggest is a vital

aspect of systems biology research. The steps of the method can

easily be repeated, allowing an iterative model improvement,

which in turn should lead to a model that is more of a ‘‘final’’

representation of the metabolic behaviour of the organism.

Results

Workflow for Model Construction
We developed a workflow for systematically converting meta-

bolic reconstructions into large-scale kinetic models of metabolism

(see Fig. 1). It is designed to take sparse or full data sets, performs

a thorough analysis of parameter constraints, and then generates

the kinetic model using massive data integration. In particular, it

addresses steps (ii) and (iii) of model construction, and their

associated issues. The resulting models meet the following

requirements: the kinetic constants are close to measured values

or, where data are not available, in biochemically plausible ranges;

the model reproduces a steady state with realistic stationary fluxes

and concentrations; model parameters and stationary fluxes are

consistent with thermodynamic laws, ensuring the existence of a

consistent equilibrium state.

We use the metabolic network as a frame in which certain

quantities are predefined (see Fig. 2). All quantities involved in

more than one reaction – fluxes, metabolite concentrations, and

equilibrium constants – are chosen in agreement with the network

constraints. Then, consistent Michaelis constants and catalytic

constants are selected, for every reaction, using parameter

balancing. The resulting model parameters satisfy all Wegscheider

conditions [28], Haldane relationships [29], and observed flux

directions, and after a simple rescaling of enzyme levels, actualise

the predefined steady state. Enzyme re-scaling is based on

strategies outlined in Kholodenko et al (1998) [30]. The resulting

models could immediately be used to direct experimentation and

accurately predict certain biological behaviours. The workflow is

extendable to all organisms for which there is a genome-scale

metabolic reconstruction established (something which is becom-

ing more accessible for many organisms [31]), and which can be

cultured under steady-state conditions. This addresses the needs of

systems biology and biotechnology by bridging the void between

kinetic models, stoichiometric models, and experimental investi-

gation.

The basic workflow and associated methods are illustrated in

Fig. 1, where letters represent data input or output and numbers

represent methods to process the data. First, we shall introduce

each of the pieces of data and methods contained within the

workflow and explain them in a general way. Then, we present a

kinetic model of yeast metabolism, built using this workflow, and

discuss some of its dynamic and control properties. The model

construction is described in detail in the Methods section.

Data used in the workflow. The workflow allows for a

seamless integration between measured data and data calculated

using approximation methodologies. Numerical values are not

directly inserted, but adjusted in order to produce a biologically

feasible model that obeys the physical laws. As shown in Fig. 1,

the input data include (a) a network structure, (b) flux data, (c)

kinetic and thermodynamic constants, and (d) metabolite concen-

trations. The network structure defines the stoichiometric model of

an organism’s metabolism, which can be large. It exhaustively lists

the reactions to appear in the final network, including all reactants

and products. Allosteric effectors can be included if known, and

isoenzymes can also be maintained in the network. The flux data

comprise a non-exhaustive set of reaction fluxes for a single

stationary state, and for the growth conditions in question. Some

reaction fluxes may be set to 0 to reflect details of the strain (e.g.

gene knockouts), and transport fluxes across the outer cell

membrane may reflect nutrient availability in the growth medium

used in the laboratory. The flux data may be obtained from

detailed kinetic models at the desired steady state, 13C measure-

ments, or a combination of both. The metabolite concentrations

need not be an exhaustive list and can either be taken from

measurements, from existing kinetic models, or can be assigned

based on knowledge of the extracellular medium, or a combina-

tion of all. For metabolites of unknown concentration, the median

value of all known concentrations is accepted as a default

concentration. The kinetic and thermodynamic constants can

include a non-exhaustive list of equilibrium constants and kinetic

constants such as catalytic constants or Michaelis constants, which

should ideally be known for the conditions the strain is grown at.

Steps of the workflow. The workflow consists of a series of

methods, allowing for a layered construction of a kinetic model

holding the desired steady state (see Fig. 1). First, Geometric FBA

[32] is used to determine a thermodynamically feasible, stationary

flux distribution matching the flux data (for a feasibility test, see

Note ii in File S1). Then, the network is reduced to a sub-network

of active, i.e. flux-carrying reactions. The criterion for reducing the

Constructing Genome-Scale Kinetic Networks
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Figure 1. Stages of data addition (+) and method runs ([.]) in the workflow. Letters and numbers in parentheses refer, respectively, to input
data and to the stages of the workflow. (1) Geometric FBA [32] is run, yielding a thermodynamically feasible, stationary flux distribution matching the
flux data; (2) a sub-network of flux-carrying reactions is exported, (3) consistent values of all metabolite concentrations and equilibrium constants are
determined, (4) kinetic constants appearing in the sub-network are balanced, (5) kinetic rate laws and associated kinetic constants are inserted into
the model, and (6) the maximal reaction rates are adjusted to reproduce the steady-state fluxes calculated before. The laboratory data feeding into
‘‘Flux’’ can include quantitative metabolomic measurements of metabolites, and also dynamically calculated flux values for the network. The lower
half of the diagram shows a cycle of experimentation and modelling: here the result of the MCA can be used to target which rate laws should be
measured in vitro after measurement, this rate law can be substituted into the model, with a view to better fit the observed perturbation behaviour.
All grey arrows refer to aspects of the workflow where additional data can be added in as knowledge increases. The pathway shown is a truncated
version of the trehalose pathway. Abbreviations: T6P = trehalose 6-phosphate; aaT = a-a trehalase; Glu = Glucose; G6P = glucose 6-phosphate.
doi:10.1371/journal.pone.0079195.g001

Figure 2. Consistent parameter sets for large kinetic models. (A) The metabolic network provides a frame for formulating parameter
dependencies. Stationary fluxes v, concentrations c, and equilibrium constants Keq must be thermodynamically consistent. (B) For each reaction, the
Michaelis constants kM and kcat need to agree with the predefined quantities c, Keq, and v. (C) Given a consistent parameter set, enzymatic reactions
can be safely connected. The resulting model will actualise a predefined steady state, with rate laws satisfying the following conditions: (i) Quantities
shared by several reactions – for instance, metabolite concentrations – have the same values in each of them. (ii) For internal metabolites, incoming
and outgoing fluxes are balanced. (iii) Quantities that arise from differences along reactions satisfy the Wegscheider conditions: for instance, their
sums over closed loops vanish. (iv) The kinetic constants satisfy the Haldane relationships, which relate the kinetic constants of a rate law to the
equilibrium constant of the reaction. (v) Flux directions agree with thermodynamic forces, given by the negative differences {Drm of chemical
potentials.
doi:10.1371/journal.pone.0079195.g002
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network can also be modified (i.e. by setting a minimum flux cut-

off point), or omitted (thus retaining the full network) depending

on the purpose of model construction (see Note i in File S1).

Next, equilibrium constants and metabolite concentrations,

consistent with the flux directions, need to be determined. As a

pragmatic approach, the predetermined metabolite concentra-

tions are held fixed and the equilibrium constants are adjusted

within constraints. A number of known equilibrium constants

(Keq) are used as fixed constraints on the system, while unknown

equilibrium constants are calculated using linear regression

to least squares, such that the Wegscheider conditions

NT
0 log Keq~0 are satisfied (where N0 is a kernel matrix of

the stoichiometric matrix). The associated mass-action ratio

Psteady� state product concentrations

Psteady� state reactant concentrations

� �
+10% is set as the

lower bound, and 1|106 is set as the upper bound. At this point, we

have obtained a complete and thermodynamically consistent set of

fluxes, concentrations, and equilibrium constants. Experimental

data and bounds on kinetic constants are now used, in conjunction

with parameter balancing [25], to obtain a complete set of kinetic

constants that obey both Wegscheider conditions and Haldane

relationships. The rate laws, with the balanced parameters, are then

inserted into the network. The resulting kinetic model, with the

chosen metabolite concentrations, show the right flux directions,

but not the correct steady-state fluxes as determined in step 1. Thus,

all maximal velocities Vm are adjusted to make the reaction rates

reflect the desired steady state.

Large-scale Yeast Model
As an example case for our workflow, we generated a large-scale

kinetic model of yeast metabolism. Sacharomyces cerevisiae is one of

the most studied eukaryotic model organisms, and a comparatively

large amount of data is available for fluxes, concentrations, and

equilibrium constants. The model generation process is described

in detail in the Methods section. The final model contains 285

flux-carrying reactions and 294 metabolites. As expected, it

displays a large flux through the glycolytic pathway and a large

production of ethanol (see Fig. 3 (b)). This behaviour is primarily

defined by the flux input from the kinetic models used and reflects

the expected behaviour when growing the organism in the

laboratory. A detailed list of flux values is given in S4.

Being able to direct the model into the desired steady state is a

significant improvement over previous methods [21,23] and to the

basic implementation of parameter balancing [25]. However, our

construction does not guarantee that the steady state is stable. A

model in a stable steady state will return to that state after a small

perturbation in a system variable, whilst a model with an unstable

steady state, when perturbed, will show increasing divergence or

oscillatory behaviour and is therefore fragile against molecular

noise. In this instance, the model demonstrates a stable steady state

with strictly negative Jacobian eigenvalues. We confirmed this by

perturbing the model using a ten-fold increase of extracellular

glucose and mapping the relaxation of the system back to the

original state. The stability is a clear improvement over the large-

scale model presented in Smallbone 2007 [22], which showed an

unstable steady state with 17% of the eigenvalues having a positive

real part, the largest value being around 1|104s{1. We believe

that ensuring thermodynamic consistency and introducing the

saturable rate laws have been key contributors to the stability of

the system.

To study the model response to changes in enzyme concentra-

tions, we performed metabolic control analysis (MCA, see

Methods section for details). The resulting control coefficients

describe the relative flux or concentration changes caused by

relative changes in enzyme levels. The results in Fig. 3 show that

overall flux control (see Methods) is heavily dominated by

reactions that balance and produce co-factors. In addition, high

control is exerted by some early reactions of the citric acid cycle. A

study by Thomas and Fell (1998) [33] demonstrates that ATP-

utilising reactions show a high control over flux changes within

glycolysis. However, transport reactions also show high control

over metabolic fluxes in a number of organisms [34–36]. Others

have shown that the control is distributed between ATP-utilising

reactions and glucose transport [37]. Whilst there is literature to

support the control patterns we have identified, more experimental

data and evidence will have to be collected to be certain of the

accuracy.

We compared the flux control in glycolytic enzymes of the large

yeast model with the flux control in each of the small yeast models

used to construct it (see Table 1). Even though the large model

contains input data from the smaller models, we expected to see

changes in the control distribution because control is a systemic

property and will be affected by extending the system. Within the

large model, linear chains of reactions from glycolysis are now

involved in branch-points between other major pathways,

including pentose phosphate pathway, trehalose biosynthesis,

and the citric acid cycle. This has led to a clear shift in the

control distribution in glycolysis.

Many of the models used to construct the large model contained

enzymatic regulation by allosteric effectors. To ensure that the

shift in control behaviour was not due to the lack of regulation in

the large model, we generated a version of the model with known

regulation included. Whilst there were no dramatic changes in the

pattern of overall control, the control within the glycolytic

pathway was largely shifted towards trends seen within the smaller

models. High control was observed for ATPase, glycerol-3-

phosphate dehydrogenase, hexokinase, alcohol dehydrogenase,

and glyceraldehyde-3-phosphate dehydrogenase. Low control was

seen for phosphoglycerate kinase, phosphoglycerate mutase,

enolase, phosphofructokinase, and fructose bisphosphate aldolase.

The control for glucose transport decreased further, showing the

lowest control out of all the enzymes in the pathway under

conditions where regulation is included. We also noted that the

model with allosteric regulation is not stable at the constructed

steady state and, when integrated, moves to a close-by stable

steady state. We believe this is related to the resolution of the

steady state calculation being set to 1|10{9 therefore small

numerical differences during the rate scaling, particularly in the

smaller fluxes (v1|10{4), will cause perturbations away from the

scaled state. The changes caused by allosteric regulation are

interesting to note because our knowledge of systemic enzymatic

regulation is poor. Given these findings, we expect the control

distribution from the model to be subject to major changes when

new regulation is discovered and included.

Using a 30% increase in extracellular glucose, we simulated the

dynamic response to perturbations in both the standard model and

the model including regulation. All plots can be seen in Figures A–

F in File S1. Both the standard model and the regulation model

demonstrate very similar behaviour during the perturbation. Both

models qualitatively reproduced expected behaviours such as

increase in extracellular glucose causing increased flux in glucose

transport, glucose-6-phosphate isomerase, and ethanol transport,

pushing the model towards increased fermentative metabolism.

There is also a small increase in biomass production. The converse

behaviours are true during decreased levels of extracellular

glucose.

Constructing Genome-Scale Kinetic Networks
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The changes in metabolite concentrations around key metabolite

pools, where flux is diverted into different pathways, also primarily

conform to what we would expect: there is a general increase in

concentrations leading through to fermentation. Amino acid pools

show a short delay before they respond to the changes in

extracellular glucose. Since it takes some time for the increased

glucose to proliferate through the interim metabolic pools, this is

something we would expect, unless there are regulators that alter

biomass production to respond to changes in extracellular glucose

more rapidly. Co-factor balances within the model generally behave

as expected, showing a conservation between their concentrations.

We noted that ATP concentration decreased upon addition of

extracellular glucose. This seemed counter-intuitive, given that ATP

regeneration depends on energy provided by glucose, but this

paradoxical phenomenon has been observed in laboratory as a

normal physiological behaviour of the cell [38,39]. It is demonstra-

tive of the turbo effect where ATP is first rapidly consumed in upper

glycolysis, leaving a lag before it is later produced through aerobic

metabolism. This behaviour is not captured by the small models,

which were used in contraction of the large model. It is therefore an

emergent dynamic property of the large-scale system, and highlights

the utility and need for creating large kinetic models.

Discussion

In the framework described, models are constructed from all

available data, and knowledge gaps are filled based on reasonable

assumptions about biochemical constants and variables, and on

the many constraints between them. A general concern in kinetic

modelling is whether model parameters can be reliably determined

from the available data. Ideally, a model should fit the data and, at

the same time, the data should suffice to determine the model

parameters. In kinetic models with incomplete data, gathered from

different sources, both requirements will inevitably be compro-

mised. While imperfect model fits are typically treated by least-

squares fitting, non-identifiable parameters can either be assessed

by analysing the model structure or be handled by regularisation,

i.e. heuristic rules for picking one out of the many possible

parameter sets. Bayesian parameter estimation is located in

between: formally, the use of non-uniform priors makes all

parameters – i.e., their posterior modes – identifiable, but

parameters that are not restricted by data may still show large

posterior uncertainties.

Both approaches, regularisation and Bayesian estimation, play a

role in our model construction. On the one hand, Geometric FBA

effectively uses regularisation to determine the flux distribution:

enforcing small fluxes will, in general, make the flux distribution

identifiable; of course, other heuristics could be used instead. On

the other hand, parameter balancing yields a joint posterior

distribution of the kinetic constants, entailing uncertainty ranges

for individual parameters and correlations between them. The

remaining uncertainties can be assessed by studying the posterior

distribution, and parameters that remain poorly determined can

be easily spotted by their large uncertainty ranges.

Figure 3. Fluxes and control coefficients in the yeast metabolic model. (A) Fluxes obtained from Geometric FBA. Only selected reactions
with large fluxes are depicted, co-substrates are not shown (flux directions and magnitudes shown by arrows). (B) Flux control coefficients. Top:
Control exerted by the glucose transporter (GluT). Unscaled flux control coefficients are shown in shades of blue (positive values) and red (negative
values). Bottom: control exerted by the biomass production reaction. High-flux reactions respond most strongly: an increased glucose import
increases the glycolytic flux, while increased biomass production directs fluxes to other pathways and thereby decreases the glycolytic flux. Flux
control coefficients for a model with allosteric regulation are shown in Figures G and H in File S1.
doi:10.1371/journal.pone.0079195.g003
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To construct and assess a whole range of possible models,

feasible flux distributions could be sampled and kinetic constants

could be drawn from their posterior distribution, leading to an

ensemble of kinetic models, all matching the input data. By

selecting models with stable steady states, simulating many of

them, and assessing their dynamic properties, one could obtain

probabilistic statements about model dynamics and control.

Over time, comprehensive cell models will have an impact on

biotechnology and medicine, owing to the reduced time and costs

associated with a more targeted approach to experimentation. We

have demonstrated the use of the method to generate a model with

and without known allosteric regulation, and the method can be

applied to any organism with an available stoichiometric

reconstruction, and which can be cultured under constant

conditions in the laboratory. Even imperfect data can be useful

in model construction, and as more is known about the organism

being researched, the modelling results can be iteratively

improved.

Many of the constants and concentrations within the model are

computed using approximation values. These estimations could be

considerably improved by taking experimental values for all

parameters. However, it will take some time before large-

metabolic coverage of such data becomes available. In a natural

extension to the methodology, data collection could be targeted

using the method proposed in Grimbs (2007) [13] where MCA is

used to determine reactions with high flux control, which would be

candidates for model refinement: for instance, rate constants could

be measured in vitro and be substituted into the workflow. With

iterative steps, the model is expected to show increased accuracy in

predicting the transient behaviour of the system during small

perturbations.

Our method is a helpful complement to current interdisciplin-

ary approaches, where modelling and experimentation are closely

weaved and each informs the other. Through iterative cycles, the

model will become more comprehensive and prove extendable for

more complex investigations into cellular behaviour, such as

metabolic re-routing, the effects of knockouts, and growth

responses to changes in the environment.

To ensure that readers can successfully implement the workflow

and adapt it for their purposes, we provide an in-depth range of

considerations for generating the model in Note i in File S1. In

particular, any method to determine thermodynamically feasible

fluxes, as well as associated equilibrium constants and metabolite

concentrations, could be used to replace the first steps of our

workflow. We recommend that the workflow is followed by a

dedicated modeller due to the specialised methods, and potential

adaptions, required throughout. The workflow should also be

supplemented by cross-discussion with laboratory scientists to

ensure that the models represent the known biology of the

organism as correctly as possible.

Materials and Methods

Tools and File Formats
To generate a large-scale kinetic model of yeast metabolism, a

set of tools and scripts were used to process different file formats.

For the model itself, the standard format SBML (Systems Biology

Markup Language [40]) was used throughout the workflow. Flux

data and metabolite concentrations were integrated into the

process via normal spreadsheets, whilst the parameter list for

parameter balancing was given in the table format SBtab (Systems

Biology Table, http://www.sbtab.net). MATLAB and COPASI

[41] were used for numerical analyses and data generation. The

software for parameter balancing is written in Python [42] and

available from SourceForge (https://sourceforge.net/projects/

parbalancing). The final SBML models produced for yeast can

be found in BioModels database (http://www.ebi.ac.uk/

biomodels/). The original model is MODEL1204270000 (see File

S2), and the regulation model is MODEL1307040000 (see File

S3).

Network [Data a]
The Yeast 4.0 model [3] was used to define the stoichiometric

matrix. This is a comprehensive reconstruction of the yeast

metabolism, which demonstrates a large improvement on lipid

Table 1. Overall flux control exerted by different enzymes in glycolysis.

Large model reg. model BM: 61 BM: 64 BM:172 BM:176 BM:177

Highest C�i ADH ATPase HXK GluT GluT GluT GluT

; ATPase G3PDH ADH HXK HXK HXK HXK

Eno HXK ATPase G3PDH G3PDH G3PDH ATPase

; FBPA ADH PFK ATPase ATPase ATPase G3PDH

GluT GAL3PD GAL3PD GAL3PD GAL3PD ADH ADH

; GAL3PD PGK G3PDH ADH ADH Eno Eno

G3PDH PGM GluT Eno Eno PFK PFK

; HXK Eno – FBPA PGK FBPA PGK

PFK PFK – PGK PFK PGK FBPA

; PGK FBPA – PFK PGM – PGM

Lowest C�i PGM GluT – PGM FBPA – –

The general flux control exerted by a reaction is quantified by C�i , the sum of squared scaled control coefficients. Control coefficients were calculated at the operating
state from the large-scale yeast model and from the five original modelsa used to define the flux and concentration values. Only a selection of enzymes appearing in the
original models are shownb.
aModel references are as follows BM:61 [43], BM:64 [44], BM:172 [45], BM:176 [46], and BM:177 [46]
bAbbreviations as follows: ADH, alcohol dehydrogenase, reverse reaction; ATPase, cytosolic ATPase; Eno, enolase; FBPA, fructose-bisphosphate aldolase; G3PDH,
glycerol-3-phosphate dehydrogenase; GAL3PD, glyceraldehyde-3-phosphate dehydrogenase; GluT, glucose transport; HXK, hexokinase; PFK, phosphofructokinase; PGK,
phosphoglycerate kinase; PGM, phosphoglycerate mutase.
doi:10.1371/journal.pone.0079195.t001
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metabolism compared to previous reconstructions, and also shows

a higher connectivity between the reactions.

Flux Data [Data b]
To obtain a set of flux data, we selected a group of metabolic

models from BioModels Database [1] that are yeast-specific and

contain glucose as the primary carbon source (models 61 [43], 64

[44], 172 [45], 176 [46], and 177 [46]; see Supporting Table 2 in

File S1). Each model was run to steady state from its operating

state and the resulting flux for each reaction was noted. Where

more than one model provided flux values for the same reaction,

the median value was used. This provides an approximation of the

flux when yeast is grown using extracellular glucose as the sole

carbon source. The directions of allowed flux through the

transport reactions were kept as described in the original Yeast

4.0 model.

Flux Balance Analysis [Step 1]
A flux distribution was computed by Geometric FBA [32], an

algorithm that iteratively reduces the solution space based on the

principle of minimal sum of fluxes. The resulting fluxes are at

steady state and thermodynamically feasible, unless the imposed

flux constraints force futile cycles, and should yield a more

biologically realistic result because of the extra constraints used for

computation. The flux data (see Data b) were used to constrain the

lower and upper flux bounds of the associated reactions during

Geometric FBA calculation. The Geometric FBA solution has to

adhere as closely as possible to the constrained fluxes, whilst also

satisfying the chosen objective function of the system, which was to

maximise growth. The confidence in a flux value can be expressed

by allowing smaller or larger upper and lower bounds around the

given value. Larger bounds should be allowed for reactions

showing a significant change in pathway position (i.e. when a

reaction previously located in a linear chain is now a branching

point).

Export Network of Interest [Step 2]
From the resulting flux distribution, we removed all reactions

with vanishing fluxes. The pathways represented within the model

can be seen in Supporting Table 1 in File S1. Reactions with

negative fluxes were reversed with respect to sign of rate and

stoichiometric coefficients to produce positive fluxes for all

reactions. The reversal is not strictly necessary but simplifies the

computations used in further steps of the workflow. This step

reduced the network to a central subnetwork of flux-carrying

reactions. As more data are obtained, the network can be

expanded. To further reduce the network in size, reactions may

also be omitted using a finite cut-off value for the fluxes (e.g. 10{5

mM/s). In these instances, the Geometric FBA needs to be rerun,

using the reduced network as an input, to ensure there is still a

solution to the system. The reduced flux solution should also be

retested for thermodynamic feasibility, which is vital to ensure that

the flux scaling in Step [5] will be possibly.

Kinetic and Thermodynamic Constants [Data c]
Where appropriate, the equilibrium constants were taken from

models available in BioModels Database that use glucose as their

primary carbon source (BioModels 61 [43], 64 [44], 172 [45], 176

[46], and 177 [46]; see Supporting Table 5 in File S1). These

values were used as fixed data points. All transport reactions were

set to have equilibrium constants of 1. The Michaelis constants

were initially assigned values equal to the steady-state concentra-

tion of their corresponding metabolite. This helped generate

sensible upper and lower constraint bounds, these were used

during parameter balancing. Constants for allosteric regulators

were taken as averages of those found in the BRENDA database

[47], the values used can be found in Supporting Table 7 in File

S1.

Metabolite Concentrations [Data d]
Intracellular and extracellular metabolite concentrations were

taken from yeast-specific models in BioModels Database that use

glucose as the primary carbon source (see Supporting Table 3 in

File S1). Unknown intracellular concentrations were set equal to

the median value of known intracellular concentrations,

0.549 mM. These are listed in Supporting Table 3 in File S1.

For the extracellular concentrations, the median value of all

extracellular concentrations in Supporting Table 4 in File S1 was

used (24.5 mM). Some extracellular concentrations were manually

adjusted (see Supporting Table 6 in File S1)). Protons and

phosphate were assumed to have fixed concentrations within the

system.

Calculating consistent equilibrium constants [Step 3]. A

full set of equilibrium constants was computed for addition into the

model using the method outlined in parameter balancing.

Unknown constants were allowed to vary between 10% above

the reaction’s mass action ratio and an upper bound of 1|106. To

prevent violation of the thermodynamic laws, the Wegscheider

conditions for equilibrium constants must be satisfied. For

instance, in a network consisting of a simple closed cycle,

multiplying all equilibrium constants must yield a value of 1. We

used a least-squares approach to parameterise the equilibrium

constants such that the following Wegscheider conditions were

satisfied:

NT
0 log Keq~0, ð1Þ

where N0 is a null space matrix of the stoichiometric matrix,

containing a complete set of stationary flux vectors as its columns,

and Keq is the vector of equilibrium constants.

Balancing the Kinetic Constants [Step 4]
For creating a complete and feasible set of kinetic constants and

their uncertainty ranges, we used parameter balancing [25]. The

kinetic constants are mutually dependent due to thermodynamic

constraints (e.g. the ratio of catalytic constants of a reaction can be

calculated from the equilibrium constant and the Michaelis

constants through the Haldane relationship). Thus, on the one

hand, the parameter set can be complemented for missing values.

On the other, different data values may be in conflict and require

adjustment. Parameter balancing exploits these dependencies and

searches for a most plausible set of kinetic constants, based on

Bayesian parameter estimation and on the current and limited

collection of kinetic constants available. To resolve underdeter-

mined values, it uses prior distributions of every type of parameter

(such as Michaelis constants or catalytic rate constants; for the

exact values, see [25]). Since independent priors can capture only

some types of kinetic constants (the mutually independent ones),

we use pseudo values [13], in addition, to represent prior

knowledge on other, dependent kinetic constants. Although priors

and pseudo values are provided with large standard variations,

they can still raise the reliability of the estimate in comparison to

not using any values at all. Eventually, because of the constraints

between parameters, the estimate of a parameter – e.g. some

Michaelis constant in the model – will not only depend on data for

this Michaelis constant, or on the prior of Michaelis constants in
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general, but also on known equilibrium constants, catalytic

constants, and their priors. The estimation is performed within a

Bayesian framework and results in a posterior distribution, from

which the mean and median values - as well as the corresponding

standard deviations - can be obtained as point estimates for each of

the kinetic constants.

The central step in parameter balancing, finding the posterior

mode of the kinetic constants vector within predefined boundaries is

a convex optimisation problem, so gradient-based optimisation

algorithms can be used. Nevertheless, since all parameters of a model

are coupled by constraints, the calculation can become demanding

for larger networks. To reduce the computational effort, we broke

down the network into single reactions and balanced the Michaelis

constants and catalytic constants for each of them individually. As

shown in Fig. 2, a network can be split into single reactions and

plugged together again, without losing its thermodynamic feasibility,

but only if the shared quantities are held fixed. Therefore, the

equilibrium constants needed to be predetermined (in Step [3]) and

accepted as fixed values during parameter balancing.

Assigning Kinetic Rate Laws [Step 5]
The values obtained from parameter balancing can be used as

kinetic constants in the rate laws of our model. For this task, we

chose the common modular rate law [20], a generalised form of

the reversible Michaelis-Menten kinetics applicable to any reaction

stoichiometry. Regarding a reaction AzB'2C, for instance, we

can calculate the rate v in mM/s as

v~Vm
: 1

kM
A
:kM

B

ab{
c2

Keq

� �

(1z
a

kM
A

)(1z
b

kM
B

)z(1z
c

kM
C

)2{1

ð2Þ

where

Vm = maximal reaction velocity a, b, c = concentrations (mM)

kM
A = dissociation constant of A

a

kM
A

= reactant constants of A

Keq = equilibrium constant

This rate law represents a random-order enzyme mechanism,

the terms of the denominator, when expanded, each represent one

possible binding state of the enzyme. The common modular rate

law resembles the convenience kinetics [18] with only slight

modifications. As an exception, the rate laws for biomass, growth,

and lipid production reactions (all operating at the same flux rate)

were replaced by linlog rate laws, or, whenever the rate law

yielded negative values, by a value of 0 (i.e. a rate law akin to

max½0,linlograte�).

Adjusting the Maximal Velocities to Steady-state Fluxes
[Step 6]

The desired flux through each reaction at steady state had

already been calculated in Step [1], and the later steps of the

methodology have ensured that the directions of each reaction rate

is the same as the pre-calculated fluxes. Therefore, to match the

rates to the steady-state fluxes, the maximal velocities Vm can

simply be rescaled by positive factors. This ensures that the model

is at steady state at the point of construction.

Metabolic Control Analysis (MCA)
Metabolic control analysis is a technique for studying how system

variables such as fluxes and concentrations are affected by small

changes in system parameters. It uses control coefficients, of which

there are two types: flux control coefficients CJ
Vi

and concentration

control coefficients CS
Vi

. They measure how local perturbations of

reaction rates affect the steady-state flux (J) or steady-state

concentration (S) of the system and are defined as follows:

CJ
Vi

~
L ln J

L ln pi

L ln vi

L ln pi

� �{1

ð3Þ

CS
Vi

~
L ln S

L ln pi

L ln vi

L ln pi

� �{1

ð4Þ

where pi is a parameter affecting exclusively the ith reaction, vi is the

rate as a function of the concentrations and system parameters, and

J and S are steady-state fluxes and concentrations as functions of

the system parameters. Control is a distributed systemic property. If

there is a change in control at one point, it will be compensated for

elsewhere in the network. The reactions that exert the largest

control can be expected to define the behaviour of the system most

heavily. Further information can be found in Heinrich and Schuster

[39]. We define the general flux control exerted by reaction i by the

root sum of squares of all its flux control coefficients

C�i ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
J

CJ
vi

� �2
s

: ð5Þ

The 5% of reactions with the highest C�i were considered high-

control reactions.

Supporting Information

File S1 Main supplementary text that includes tables of
all data included in the models, figures of simulations
for the models, and extra notes on method implemen-
tation.

(PDF)

File S2 SBML file containing the yeast model, built
without regulatory information.

(XML)

File S3 SBML file containing the yeast model, built with
regulatory information.

(XML)

File S4 Excel file containing detailed steady state fluxes
and concentrations obtained from the primary model
(File S2).

(XLSX)
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