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Abstract

Background: Most attempts to address undernutrition, responsible for one third of global child deaths, have fallen behind
expectations. This suggests that the assumptions underlying current modelling and intervention practices should be
revisited.

Objective: We undertook a comprehensive analysis of the determinants of child stunting in India, and explored whether the
established focus on linear effects of single risks is appropriate.

Design: Using cross-sectional data for children aged 0–24 months from the Indian National Family Health Survey for 2005/
2006, we populated an evidence-based diagram of immediate, intermediate and underlying determinants of stunting. We
modelled linear, non-linear, spatial and age-varying effects of these determinants using additive quantile regression for four
quantiles of the Z-score of standardized height-for-age and logistic regression for stunting and severe stunting.

Results: At least one variable within each of eleven groups of determinants was significantly associated with height-for-age
in the 35% Z-score quantile regression. The non-modifiable risk factors child age and sex, and the protective factors
household wealth, maternal education and BMI showed the largest effects. Being a twin or multiple birth was associated
with dramatically decreased height-for-age. Maternal age, maternal BMI, birth order and number of antenatal visits
influenced child stunting in non-linear ways. Findings across the four quantile and two logistic regression models were
largely comparable.

Conclusions: Our analysis confirms the multifactorial nature of child stunting. It emphasizes the need to pursue a systems-
based approach and to consider non-linear effects, and suggests that differential effects across the height-for-age
distribution do not play a major role.
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Introduction

Child undernutrition is the cause of one third of deaths in

children under five [1]. It produces serious health, social and

economic consequences throughout the life course [2–4] as well as

across generations [5], making it the leading risk factor among

children under five worldwide [6]. Low height-for-age or stunting

reflects a failure to reach linear growth potential, and is a key

indicator of chronic undernutrition. Globally, depending on the

precise definition and estimate used, between 171 million [7,8]

and 314 million [9] children under five are currently classified as

stunted, with 90% of this burden occurring in 36 African and

Asian countries [1]. Between 1985 and 2011 the prevalence of

moderate-to-severe stunting has declined from 47% to 30% [9],

but progress has been highly uneven, and stunting rates in the

most affected world regions have largely remained static [9,10].

To date, most of the large-scale programmes to address stunting

have fallen behind expectations. Systematic reviews of the

effectiveness of some of the major nutrition interventions, such

as promotion of breastfeeding [11], promotion of complementary

feeding through education or food provision [3,12–14], and

supplementation with single or multiple nutrients [15,16] usually

show significant impacts on behaviour but modest and context-

dependent impacts on height gain or stunting prevalence [17].

Moreover, few children in the developing world currently benefit

from optimal breastfeeding practices, as well as sufficient dietary

diversity and meal frequency [7]. In contrast, the history of most

industrialized countries suggests that virtually all stunting can be
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averted, making the failure to make rapid progress all the more

disconcerting. Therefore, it is essential to revisit the assumptions

that underlie current intervention practices.

It is broadly accepted that child stunting is the outcome of

multiple risk factors. Nevertheless, much of the modelling to assess

presumed cause-effect relationships in observational epidemiology

and effectiveness research tends to reduce this complex interplay of

risk factors through focusing on single risks and interventions. The

recent emphasis on the relevance of systems approaches in

epidemiology [18–22] implies, however, that the determinants of

stunting must be examined in their entirety, if we do not want to

risk incorrect estimates of risk factors and interventions as a result

of oversimplifications in modelling approaches. Furthermore, it

has been suggested that the impact of risk factors (and

interventions) on the lower tail of the distribution might differ

considerably from their impact on population means [12];

therefore a careful exploration of such differential effects is

merited. Finally, the assumption that many ‘‘established’’ risk

factors exert their effect in a linear way is being challenged by

emerging evidence of non-linear effects [23].

In light of the above, this study aims to undertake a

comprehensive analysis of the determinants of child stunting,

and to explore whether the three above-described common-

practice simplifications in modelling approaches are appropriate.

More specifically, the objectives are to (i) capture the intercon-

nectedness between multiple risk factors through an integrated

analysis, (ii) explore whether differential effects emerge across the

height-for-age distribution, and (iii) test whether non-linear effects

play a role. To do so, we developed a conceptual diagram of

potential determinants, and applied the innovative statistical

approach of additive quantile regression with boosting estimation

to data from the Indian National Family Health Survey (NFHS).

With an estimated stunting prevalence of 51% and 61 million

stunted children, India is the most affected country in the world

[1] and improvements in the last two decades have been almost

negligible [24].

Materials and Methods

Conceptual diagram and corresponding literature
We pursued an evidence-based approach to mapping the

complex interplay of factors that determine whether a child

becomes stunted or not. Drawing on the well-known UNICEF

framework [25,1] and a priori reasoning, we conducted extensive

literature searches and structured our findings in a diagram of

immediate, intermediate and underlying determinants of child

stunting comprising sixteen main groups of determinants

(Figure 1). In theory, a comprehensive analysis should consider

all of these determinants.

Age and sex are critical non-modifiable factors [3,26]. The most

important modifiable immediate causes of stunting are inadequate

caloric and nutrient intake and uptake [25]. Intrauterine growth restriction

(IUGR) is also known to affect long-term growth and development

[27–29].

Large families and scarce, poorly distributed resources may limit

food access and prompt household food competition. Various studies

have found crowding [30], number of children living in a

household [27], birth order [30], and birth interval [31,32] to

be associated with stunting.

While improved water, sanitation and hygiene practices protect

against stunting [33–35], indoor air pollution from solid fuel use has

been suggested as a risk factor [30,36,37]. Environmental tobacco

smoke (ETS) shows positive, negative and null associations

depending on the country [38].

The World Health Organization (WHO) recommends that

infants be exclusively breastfed for six months [39], and that

subsequently breastfeeding be continued alongside the gradual

introduction of nutritiously diverse and safe solids at an

appropriate frequency [40,24]. Numerous studies have found

significant effects of breastfeeding practices and complementary feeding

practices on stunting [41–45,11–14].

Micronutrient deficiencies, in particular vitamin A [46], iron [47],

zinc [16], and iodine [48], may also contribute [25,49]. It is,

however, unclear whether supplementation of single micronutri-

ents is effective in promoting healthy growth, whereas supple-

mentation with multiple micronutrients has shown encouraging

results [50,51,15].

Recurrent infections, such as diarrhea [52], acute respiratory

infections [53], and helminthes [54,55] along with chronic diseases

such as HIV/AIDS [56,57], may also increase risk, as these

conditions can reduce appetite, hinder uptake of nutrients or

increase metabolic requirements and nutrient loss [58].

Availability, accessibility and affordability of appropriate

healthcare during pregnancy, birth, the postnatal period and

continuing into childhood [59,60] determines a health system’s

ability to prevent, diagnose and treat chronic undernutrition [61].

Household characteristics, measured as wealth [62,63,60], religion

[27], social hierarchy [64], maternal [64,65] and paternal

education [65], occupation [66], and household decision-making

roles [67,68], are major underlying determinants.

Maternal characteristics, such as age [69,60], stature [70–73,60],

nutritional status [74], physical and psychosocial health, also play

a role. For example, children born to HIV-infected [75] or

depressed mothers [76,77] are at greater risk of being stunted than

children of healthy mothers.

Stunting prevalence varies widely both between [69] and within

countries [78]. Relevant regional characteristics include urban/rural

location and the capacity to produce food (e.g. local climate, land

use [79,66]; and distribute food (e.g. road infrastructure, markets).

Population growth, land degradation and increasing climate

variability are all predicted to strain food production and increase

the burden of child undernutrition [80].

Data and variables
We used data from the Indian NFHS for the years 2005/2006,

a large, well-established, nationally representative survey based on

a multi-stage cluster sample design that provides high-quality

information on the health and nutrition of women and children

[81]. The National Family Health Survey is the Indian equivalent

of the Demographic and Health Surveys, a series of standardised

surveys which are routinely conducted in more than 70 developing

countries. All data are in the public domain and can be

downloaded, after registration, from http://www.measuredhs.

com. In our analysis we focused on children aged 0–24 months,

as stunting prevalence progressively increases until it reaches a

plateau at around 24 months [1,3,26] and as it becomes very

difficult to reverse stunting after this critical time window [82].

Stunting is measured by a Z-score of standardized height-for-age

according to the WHO child growth standards [83]; stunted or

severely stunted children are those with a Z-score below -2 or -3,

respectively [1].

Figure 1 served as a basis for identifying relevant variables

within each group of determinants; all variables, as well as their

definitions and empirical distributions in the final dataset are

shown in Table 1. We carefully investigated all potential variables

to populate a determinant from the diagram and chose suitable

variables or proxies based on descriptive statistics. The final

dataset contains variables to populate most groups, but measures

Determinants of Child Stunting in India
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or suitable proxies of IUGR, nutrient intake and uptake, chronic

diseases and recurrent infections were not available. For other

groups, we could not assess all characteristics of interest, for

example in relation to maternal psychosocial health, zinc and

ETS. We examined various measures of curative and preventative

healthcare, e.g. possession of a health card, health facility visit in

past three months, care-seeking for episodes of respiratory

infections, or diarrhoea during the two weeks preceding the

survey. We ultimately settled for the number of antenatal visits as a

proxy for care during pregnancy and childbirth, and constructed a

vaccination index based on vaccinations against measles, polio,

tuberculosis (BCG) and diphtheria, pertussis and tetanus (DPT) as

a proxy for care during childhood.

We constructed a three-level variable for breastfeeding and two

variables for complementary feeding (Table 1). Thereby, food

quantity was assessed as meal frequency in the previous 24 hours.

Food diversity was measured as the number of food groups a child

had consumed in the previous 24 hours, with eight groups defined

as food made from grains; food made from roots; food made from

beans, peas, lentils, nuts; fruits and vegetables rich in vitamin A;

other fruits and vegetables; meat, fish, poultry, eggs; cheese,

yoghurt, other milk products; and other food [84]. Grouping of

both complementary feeding variables was based on empirical

frequencies in our dataset to obtain sufficiently large group sizes.

We defined our study population as the youngest child aged 0–

24 months living in each household; not-de jure residents were

excluded, as several determinants relate to the household

environment. Starting from 17039 children, we excluded 2779

children due to missing outcome and 2084 due to missing

covariates. The latter were mainly attributable to seven covariates

with 50 or more missing values: caste (640 missing values),

partner’s occupation (212), partner’s education (165), drinking

water (50), vaccination index (280), number of antenatal visits

(153), vitamin A (450), and iodine (118). Our final dataset

comprised 12 176 observations; the proportion of missing data was

thus about 29%.

Statistical modelling
We undertook additive quantile regression based on boosting

estimation [85], an innovative statistical approach that allows the

three underlying research objectives to be investigated simulta-

neously.

N Quantile regression models quantiles of the outcome as a

function of covariates, and therefore enabled us to explore

Figure 1. Schematic diagram of the multiple determinants of child stunting, structured by layer (i.e. immediate, intermediate and
underlying determinants) and groups of determinants (e.g. maternal characteristics, household food competition, intrauterine
growth restriction).
doi:10.1371/journal.pone.0078692.g001
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Table 1. Overview of variables and their empirical distributions contained in the final dataset with N = 12 176
observations, arranged by groups of determinants from Figure 1.

Variable Values/Description Number Percentage

Stunting

Z-score for height-for-age Mean: 21.37, Median: 21.44, Sd: 1.79, Range: [26, 6]

Child is stunted No 7699 63.2%

(Z-score#22) Yes 4477 36.8%

Child is severely stunted No 10089 82.9%

(Z-score#23) Yes 2087 17.1%

Non-modifiable factors

Child age [months] Mean: 12.46, Median: 13, Sd: 6.62, Range: [0, 24]

Child sex Male 6317 51.9%

Female 5859 48.1%

Maternal characteristics

Maternal age [years] Mean: 25.66, Median: 25, Sd: 5.21, Range: [15,49]

(at interview)

Maternal BMI [kg/m2] Mean: 20.10, Median: 19.52, Sd: 3.26, Range: [12.04, 40.34]

(at interview)

Household characteristics

Household wealth Poorest 2180 17.9%

(Composite measure of a Poorer 2226 18.3%

household’s living standard Middle 2463 20.2%

based on ownership of 33 Richer 2726 22.4%

assets; households are Richest 2581 21.2%

grouped in five quintiles)

Religion of household head Hindu 8683 71.3%

Muslim 1714 14.1%

Christian 1232 10.1%

Sikh 224 1.8%

(Neo-)Buddhist 137 1.1%

Other 186 1.5%

Caste/tribe of household head Scheduled caste 2222 18.2%

Scheduled tribe 2098 17.2%

Other backward class 4188 34.4%

None of them 3668 30.1%

Maternal education [years] Mean: 5.40, Median: 5, Sd: 5.16, Range: [0, 20]

Partner’s education [years] Mean: 7.21, Median: 8, Sd: 5.07, Range: [0, 22]

Partner’s occupation Services 4933 40.5%

Household & domestic 697 5.7%

Agriculture 3361 27.6%

Clerical 1752 14.4%

Prof./Tech./Manag. 497 4.1%

Did not work 936 7.7%

Mother is currently working No 9045 74.3%

Yes 3131 25.7%

Sex of household head Male 10958 89.8%

Female 1247 10.2%

Determinants of Child Stunting in India
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Table 1. Cont.

Variable Values/Description Number Percentage

Regional characteristics

State of residence 29 states of India, see Figure 4a

Urban/rural location Urban 4429 36.4%

Rural 7747 63.6%

Household food competition

Number of household members Mean: 6.68, Median: 6, Sd: 3.16, Range: [2,35]

Birth order Mean: 2.64, Median: 2, Sd: 1.82, Range: [1,14]

(including dead children)

Preceding birth interval [months] Mean: 26.53, Median: 25, Sd: 25.39, Range: [0, 250]

Child is twin or multiple birth No 12037 98.9%

Yes 139 1.1%

Water, sanitation and hygiene

Drinking water in household Unimproved 2164 17.8%

(according to WHO/UNICEF Improved 6879 56.5%

classification) Piped 3133 25.7%

Sanitation facility in household Unimproved 8345 68.5%

(according to WHO/UNICEF Improved 3831 31.5%

classification)

Indoor air pollution

Main cooking fuel Straw/crop/animal dung 1969 16.2%

Coal/charcoal/wood 6598 54.2%

Kerosene 388 3.2%

Gas/electricity 3221 26.4%

Curative and preventive healthcare

Vaccination index None (0) 1093 9.0%

(Cumulative recommended Low (1–3) 2106 17.3%

vaccine shots against Medium (4–6) 2364 19.4%

BCG (1), DPT (3), polio (4) High (7–9) 6613 54.3%

and measles (1))

Number of antenatal visits Mean: 3.91, Median: 3, Sd: 3.44, Range: [0, 26]

Breastfeeding practices

Breastfeeding No breastfeeding 1578 13.0%

Breastfeeding + complementary feeding 9450 77.6%

Exclusive breastfeeding 1148 9.4%

Complementary feeding practices

Food diversity Low (0–2) 7166 58.9%

(Number of food groups Medium (3–4) 3466 28.5%

consumed during last 24 High (5–8) 1544 12.7%

hours other than breast milk)

Meal frequency Low (0–1) 4145 34.0%

(Number of meals consumed Medium (2–3) 5822 47.8%

during last 24 hours High (4–9) 2209 18.1%

other than breast milk)

Determinants of Child Stunting in India
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whether covariates exert differential effects across the Z-score

distribution, in particular towards the lower tail. In contrast,

most analyses of the determinants of undernutrition have used

logistic regression models for dichotomized versions of the Z-

score (e.g. stunted vs. not stunted) or linear regression models

for the continuous Z-score.

N The use of an additive predictor allowed us to explore linear,

potentially non-linear, age-varying and spatial effects of the

numerous covariates in a flexible way. Additive quantile

regression extends conventional linear quantile regression by

including flexible functional covariate effects in the predictor

while maintaining the assumption of an additive structure. For

example, the association between a continuous covariate and

the outcome is left unspecified before the analysis and its

functional shape is then estimated by, e.g., penalized splines.

Most analyses to date have ignored the fact that selected

covariates may exert their effects in non-linear and age-varying

ways.

N Boosting, a computer-intensive inference method for highly

complex models, is currently one of the few possibilities to

estimate an additive quantile regression model. As boosting

combines parameter estimation and variable selection in one

single step, a large number of covariates can be included in the

model without requiring subsequent steps of variable selection,

as would be the case in classical estimation of quantile or

logistic regression. Thereby, boosting estimation enabled us to

capture the complex interplay of multiple risk factors in one

single model.

We used the following model to assess the impact of stunting

determinants on four quantiles of the Z-score:

Qt(Yi Dxi,ui,vi,zi)~gti~bt0zbt1xi1z . . . zbtkxik

zft1(zi1)z . . . zftp(zip)

zvi1gt1(agei)z . . . zvimgtm(agei)

zft,spat(ui)

The additive predictor gt i models the conditional quantile

function Qt(Yi Dxi,ui,vi,zi) of the outcome Y for a fixed quantile

parameter t[(0,1) and observation i~1,:::,n. We specified four

quantile parameters, namely t[ 0:05,0:15,0:35,0:50f g. The two

values t~0:15 and t~0:35 were chosen based on the empirical

frequencies for stunting (37%) and severe stunting (17%) in our

dataset (Table 1), where this choice allows results to be compared

across quantile and logistic regression models. t~0:50 and

t~0:05 represent the median and an extreme value, respectively.

The flexible additive predictor gt i is quantile-specific and

comprises linear effects bt 0,bt 1,:::,bt k for categorical covariates

x1,:::,xk, and linear or smooth non-linear effects ft 1,:::,ft p for

continuous covariates z1,:::,zp. The shapes of the functions

ft 1,:::,ft p are determined as linear or non-linear in a data-driven

way [86] and estimated by the established approach of penalized

splines [87]. Also specified are non-linear age-varying effects

gt 1(age),:::,gt m(age) for different levels of the feeding variables

v1,:::,vm; these flexible interaction terms allow meaning and effect

of breastfeeding and complementary feeding to vary with age [39].

Further interaction terms were not considered. For the categorical

variable u, corresponding to 29 Indian states, a smooth spatial

function ft,spat is estimated based on a Gaussian Markov random

field [88] to account for spatial autocorrelation and unobserved

heterogeneity.

Model estimation was undertaken separately for each t using a

component-wise functional gradient descent boosting algorithm

[89]. The optimal number of iterations was determined by five-

fold cross-validation. The step length was set to 0.2 and each base

learner had similar degrees of freedom [90]. Model estimation was

repeated on 100 bootstrap samples of the dataset to obtain 95%

bootstrap confidence intervals [q̂qj,2:5%,q̂qj,97:5%] where q̂qj,2:5%

denotes the estimated 2.5 % quantile of b̂bt j , j = 0,1,…,k. All

analyses were undertaken with the add-on package mboost [91,92]

in the statistical software R [93].

To allow for a comparison with established approaches to

investigate child stunting, we also conducted logistic regression

analyses for the binary variables stunting and severe stunting. We

specified the same flexible predictor and used boosting estimation

as described above for quantile regression. This was done to

ensure that the conceptual difference between quantile and logistic

regression remained as the only explanation for any discrepancies

in results.

Results

Table 2 shows the results of the 35% and 15% Z-score quantile

regression; detailed results of the 50% and 5% Z-score quantile

regression are available upon request. (Please note guidance on

how statistical significance was assessed in our analysis.) Table 3
summarizes the results of logistic regression for stunting and severe

stunting. All findings on effects of single variables described in text,

tables and figures are fully adjusted for other variables.

Table 1. Cont.

Variable Values/Description Number Percentage

Micronutrient deficiencies

Child ever received iron No 11464 94.2%

supplements Yes 712 5.8%

Child ever received vitamin A No 7724 63.4%

supplements Yes 4452 36.6%

Iodine-in-salt test result No iodine 2447 20.1%

(at interview) Less than 15 parts per million 2775 22.8%

15 parts per million or more 6954 57.1%

doi:10.1371/journal.pone.0078692.t001
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Table 2. Estimated effects and 95% bootstrap confidence intervals for boosting quantile regression models for the
35% Z-score quantile (columns in grey) and the 15% Z-score quantile; see Figures 2 and 3 for detailed results of
continuous covariates. 1,2

Variable Values/Description

Quantile regression for 35%
Z-score quantile

Quantile regression for 15%
Z-score quantile

b0.35 95% CI(b0.35) b0.15 95% CI(b0.15)

Non-modifiable factors

Child age [months] , Linear, negative , Linear, negative

Child sex Male – – – –

Female 0.166 [0.103, 0.234] 0.209 [0.130, 0.285]

Maternal characteristics

Maternal age [years] Non-linear, inverse U Non-linear, inverse U

Maternal BMI [kg/m2] Non-linear, positive Non-linear, positive

Household characteristics

Household wealth Poorest – – – –

Poorer 0.025 [20.077, 0.110] 0.035 [20.041, 0.129]

Middle 0.058 [20.014, 0.161] 0.001 [20.067, 0.079]

Richer 0.089 [20.016, 0.205] 0.075 [20.014, 0.207}

Richest 0.224 [0.069, 0.383] 0.214 [0.060, 0.367]

Religion of household head Hindu – – – –

Muslim 0.003 [20.064, 0.086] 0.003 [20.075, 0.101]

Christian 0.034 [20.023, 0.139] 0.089 [20.001, 0.222]

Sikh 0.021 [20.009, 0.116] 0.068 [20.001, 0.180]

(Neo-)Buddhist 0.000 [20.032, 0.034] 20.006 [20.085, 0.066]

Other 20.006 [20.064, 0.028] 20.030 [20.132, 0.028]

Caste/tribe of household head Scheduled caste – – – –

Scheduled tribe 0.088 [0.005, 0.224] 0.037 [20.060, 0.156]

Other backward class 0.112 [0.034, 0.214] 0.115 [0.011, 0.213]

None of them 0.165 [0.062, 0.294] 0.167 [0.049, 0.302]

Maternal education [years] , Linear, positive , Linear, positive

Partner’s education [years] , Linear, positive , Linear, positive

Partner’s occupation Services – – – –

Household & domestic 0.035 [20.021, 0.132] 0.055 [20.002, 0.179]

Agriculture 0.028 [20.031, 0.104] 0.042 [20.015, 0.136]

Clerical 0.013 [20.039, 0.079] 0.005 [20.059, 0.077]

Prof./Tech./Manag. 0.037 [20.015, 0.132] 20.011 [20.105, 0.069]

Did not work 0.009 [20.062, 0.082] 20.009 [20.092, 0.049]

Mother is currently working No – – – –

Yes 20.078 [20.152, 20.001] 20.044 [20.122, 0.018]

Sex of household head Male – – – –

Female 0.029 [20.033, 0.124] 0.023 [20.037, 0.113]

Regional characteristics

State of residence Spatial, see Figure 4b Spatial

Urban/rural location Urban – – – –

Rural 20.002 [20.074, 0.071] 0.025 [20.076, 0.113]

Household food competition

Number of household members Non-linear, inverse U Non-linear, inverse U

Birth order Non-linear, negative Non-linear, negative

Preceding birth interval [months] Non-linear, positive Non-linear, positive

Child is twin or multiple birth No – – – –

Yes 20.866 [21.107, 20.456] 20.890 [21.173, 20.497]

Water, sanitation and hygiene

Determinants of Child Stunting in India
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Here, we focus on the results of the 35% Z-score quantile

regression, which corresponds to the empirical frequency for

stunting (37%) in our dataset and therefore allows the results to be

compared with those of logistic regression for being stunted.

Importantly, except for the indoor air pollution group, at least one

variable in each of the eleven assessed groups of determinants

shows a statistically significant association with the 35% Z-score

quantile. With respect to our research objectives, this suggests that

an integrated analysis of the multiple immediate, intermediate and

underlying determinants of stunting is merited.

Table 2. Cont.

Variable Values/Description

Quantile regression for 35%
Z-score quantile

Quantile regression for 15%
Z-score quantile

b0.35 95% CI(b0.35) b0.15 95% CI(b0.15)

Drinking water in household Unimproved – – – –

Improved 20.026 [20.093, 0.015] 20.004 [20.056, 0.051]

Piped 20.007 [20.078, 0.026] 0.003 [20.036, 0.043]

Sanitation facility in household Unimproved – – – –

Improved 0.092 [0.041, 0.159] 0.114 [0.031, 0.227]

Indoor air pollution

Main cooking fuel Straw/crop/animal dung – – – –

Coal/charcoal/wood 20.040 [20.090, 0.015] 20.031 [20.105, 0.027]

Kerosene 20.020 [20.081, 0.007] 20.056 [20.164, 20.001]

Gas/electricity 0.055 [20.009, 0.170] 0.076 [0.001, 0.179]

Curative and preventive healthcare

Vaccination index None (0) – – – –

Low (1–3) 20.015 [20.079, 0.033] 0.010 [20.053, 0.073]

Medium (4–6) 20.026 [20.081, 0.043] 20.031 [20.100, 0.033]

High (7–9) 0.062 [0.004, 0.137] 0.080 [0.007, 0.175]

Number of antenatal visits Non-linear, inverse U Non-linear, inverse U

Breastfeeding practices

Breastfeeding No breastfeeding – – – –

Breastfeeding + complementary
feeding

Non-linear, negative by age Non-linear, negative by age

Exclusive breastfeeding Non-linear, negative by age Non-linear, negative by age

Complementary feeding practices

Food diversity Low (0–2) – – – –

Medium (3–4) Constant, positive by age Constant, positive by age

High (5–8) , Linear, positive by age , Linear, positive by age

Meal frequency Low (0–1) – – – –

Medium (2–3) Constant, zero by age Constant, zero by age

High (4–9) , Linear, positive by age , Linear, positive by age

Micronutrient deficiencies

Child ever received iron No – – – –

supplements Yes 20.025 [20.123, 0.045] 20.049 [20.168, 0.035]

Child ever received vitamin A No – – – –

supplements Yes 0.076 [0.005, 0.140] 0.046 [0.000, 0.121]

Iodine-in-salt test result No iodine – – – –

Less than 15 parts per million 20.035 [20.093, 0.058] 20.063 [20.134, 0.014]

15 parts per million or more 0.097 [0.037, 0.164] 0.095 [0.036, 0.162]

1Significant effects are shown in bold. An effect of a categorical covariate is rated as significant if the corresponding 95% bootstrap confidence interval does not contain
zero. An effect of a continuous covariate is rated as significant if the effects from all 100 bootstrap samples are estimated to be below/above zero for at least one
interval within the covariate range.
2The effects of categorical covariates can be interpreted as their effect on the respective Z-score quantile relative to the reference category. For example, the 35%
quantile of the Z-score for girls is significantly increased by 0.166 compared to the 35% quantile of boys, given all other covariates are similar.
doi:10.1371/journal.pone.0078692.t002
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Table 2 shows the effects for categorical covariates and their

95% bootstrap confidence intervals, and summarizes the shape of

the function for continuous variables. The following categorical

covariates have at least one significant category compared with the

reference category: child sex, household wealth, caste of household

head, mother is currently working, child is twin, sanitation facility,

vaccination index, vitamin A and iodine. For example, the 35% Z-

score quantile for children from the richest households is

significantly increased by 0.224 [0.069, 0.383] compared to

children from the poorest households. Being a twin has a very

large negative effect of 20.866 [21.107, 20.456].

Figure 2 shows the effects of continuous covariates estimated

from the full model and 100 bootstrap iterations. With the

exception of number of household members, all continuous

variables show significant non-zero effects in all bootstrap samples.

Child age shows the largest absolute effect size: the 35% Z-score

quantile decreases by almost two units from birth until the age of

24 months.

Non-linear functions are estimated for maternal age and BMI,

birth order, preceding birth interval and the number of antenatal

visits (Figure 2). The effect of maternal age increases linearly

until 30 years, then remains constant and gradually decreases from

45 years. Height-for-age increases monotonically with greater

Figure 2. Linear or smooth non-linear effects of continuous covariates from 35% quantile regression for the full model (black line)
and 100 bootstrap iterations (grey lines).
doi:10.1371/journal.pone.0078692.g002
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maternal BMI, with the slope reducing at 25 kg/m2. Birth order

shows a linearly decreasing effect until the 6th child and then

remains constant, while lengthening the interval between births is

associated with increased height-for-age up until 100 months. The

effect of the number of antenatal visits has a slight inverse U-

shape, where low and high numbers of antenatal visits are

associated with smaller 35% quantiles than medium numbers (8–

15 visits). With respect to our research objectives, the observed

non-linear functions emphasize that selected determinants of

stunting exert their effects in non-linear ways.

Figure 3 depicts the age-varying effects of feeding variables.

The effect of breastfeeding on the 35% Z-score quantile clearly

varies with age: any breastfeeding compared to no breastfeeding

exerts a positive effect until 9 months followed by a negative effect

beginning at 12 months; the increasing effect of exclusive

breastfeeding after 14 months is based on small numbers and

shows large variation. Compared to low food diversity, high

diversity exerts a significantly negative effect until the age of 12

months, and a significantly positive effect thereafter; medium food

diversity does not differ significantly from the reference category.

No significant differences in relation to meal frequency are

observed.

Figure 4 displays the empirically observed 35% Z-score

quantiles for 29 Indian states, showing stark differences in stunting

(Figure 4a), and the estimated spatial effect on the 35% Z-score

quantile for state of residence (Figure 4b). Less pronounced

differences in Figure 4b compared to Figure 4a imply that

model covariates offer a partial explanation for regional differ-

ences.

There are no fundamental differences between the results for

the 35% Z-score quantile and those for other quantiles (see

Table 2 for 15% Z-score quantile). The majority of categorical,

continuous and age-varying variables described above also show

significant effects of the same direction and of a similar size for the

15% and 50% Z-score quantiles; for the extreme 5% Z-score

quantile, some of these variables are no longer significant. Two

Figure 3. Non-linear age-varying effects of feeding variables estimated by 35% quantile regression (full model). The dotted horizontal
line at zero represents the respective reference category.
doi:10.1371/journal.pone.0078692.g003

Figure 4. Empirical 35% Z-score quantile of child stunting by region (a), and smooth spatial effect estimated by 35% quantile
regression for the 29 Indian states (b).
doi:10.1371/journal.pone.0078692.g004
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Table 3. Estimated effects and 95% bootstrap confidence intervals for boosting logistic regression models for the
binary variables stunting and severe stunting.1,2,3

Variable Values/Description Logistic regression for stunting
Logistic regression for severe
stunting

bstunted 95% CI(bstunted) bsevSt 95% CI(bsevSt)

Non-modifiable factors

Child age [months] , Linear, positive , Linear, positive

Child sex Male – – – –

Female 20.080 [20.123, 20.037] 20.120 [20.171, 20.068]

Maternal characteristics

Maternal age [years] Non-linear, U-shape Non-linear, U-shape

Maternal BMI [kg/m2] Non-linear, U-shape Non-linear, negative

Household characteristics

Household wealth Poorest – – – –

Poorer 0.007 [20.045, 0.063] 20.044 [20.104, 0.026]

Middle 20.011 [20.058, 0.031] 20.056 [20.129, 20.002]

Richer 20.041 [20.115, 0.019] 20.119 [20.235, 20.030]

Richest 20.130 [20.244, 20.027] 20.221 [20.353, 20.085]

Religion of household head Hindu – – – –

Muslim 20.045 [20.114, 0.010] 20.004 [20.058, 0.059]

Christian 20.037 [20.119, 0.038] 20.017 [20.087, 0.033]

Sikh 20.046 [20.124, 0.004] 20.013 [20.060, 0.014]

(Neo-)Buddhist 20.023 [20.126, 0.033] 20.016 [20.093, 0.020]

Other 0.041 [20.002, 0.118] 0.026 [20.014, 0.103]

Caste/tribe of household head Scheduled caste – – – –

Scheduled tribe 20.030 [20.100, 0.021] 20.038 [20.120, 0.026]

Other backward class 20.066 [20.126, 20.009] 20.078 [20.132, 20.025]

None of them 20.112 [20.188, 20.047] 20.134 [20.224, 20.064]

Maternal education [years] , Linear, negative , Linear, negative

Partner’s education [years] , Linear, negative , Linear, negative

Partner’s occupation Services – – – –

Household & domestic 20.030 [20.090, 0.010] 20.056 [20.152, 0.008]

Agriculture 20.006 [20.042, 0.032] 20.055 [20.111, 20.012]

Clerical 20.011 [20.047, 0.038] 20.030 [20.093, 0.026]

Prof./Tech./Manag. 20.014 [20.064, 0.032] 0.016 [20.030, 0.090]

Did not work 0.001 [20.045, 0.049] 0.015 [20.026, 0.085]

Mother is currently working No – – – –

Yes 0.043 [0.000, 0.086] 0.040 [0.000, 0.093]

Sex of household head Male – – – –

Female 20.023 [20.081, 0.003] 20.006 [20.067, 0.036]

Regional characteristics

State of residence Spatial Spatial

Urban/rural location Urban – – – –

Rural 20.045 [20.093, 0.000] 20.021 [20.071, 0.000]

Household food competition

Number of household members Non-linear, U shape Non-linear, U shape

Birth order Non-linear, positive , Linear, positive

Preceding birth interval [months] Non-linear, negative Non-linear, negative

Child is twin or multiple birth No – – – –

Yes 0.420 [0.251, 0.579] 0.566 [0.385, 0.750]

Water, sanitation and hygiene
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categorical variables, however, only show statistical significance in

analyses of one quantile: mother is working (35% Z-score quantile)

and main cooking fuel (15% Z-score quantile). The above

described non-linear effects are very similar across all quantiles,

even for the 5% Z-score quantile. The only difference with regard

to linearity vs. non-linearity is detected for maternal education

(linear for 15% and 35%, non-linear for 5% and 50%).

Likewise, the differences between the results for quantile and

logistic regression models are limited (Table 3; please note

guidance on interpretation of effect estimates in logistic vs.

quantile regression). Most statistically significant variables across

the four quantiles also show significance in logistic regression

analyses. Exclusive breastfeeding, birth order, number of antenatal

visits and vitamin A, however, show no effects on stunting and

Table 3. Cont.

Variable Values/Description Logistic regression for stunting
Logistic regression for severe
stunting

bstunted 95% CI(bstunted) bsevSt 95% CI(bsevSt)

Drinking water in household Unimproved – – – –

Improved 0.019 [20.005, 0.063] 20.005 [20.045, 0.029]

Piped 0.010 [20.025, 0.068] 20.006 [20.053, 0.019]

Sanitation facility in household Unimproved – – – –

Improved 20.057 [20.111, 20.011] 20.049 [20.112, 20.001]

Indoor air pollution

Main cooking fuel Straw/crop/animal dung – – – –

Coal/charcoal/wood 0.014 [20.018, 0.044] 0.005 [20.036, 0.055]

Kerosene 0.018 [20.028, 0.058] 0.124 [0.019, 0.238]

Gas/electricity 20.088 [20.168, 20.015] 20.065 [20.145, 0.001]

Curative and preventive healthcare

Vaccination index None (0) – – – –

Low (1–3) 20.005 [20.074, 0.038] 20.004 [20.076, 0.037]

Medium (4–6) 20.004 [20.086, 0.044] 0.006 [20.099, 0.052]

High (7–9) 20.072 [20.151, 20.013] 20.059 [20.152, 20.005]

Number of antenatal visits , Linear, negative Non-linear, U shape

Breastfeeding practices

Breastfeeding No breastfeeding – – – –

Breastfeeding + complementary
feeding

Non-linear, positive by age Non-linear, positive by age

Exclusive breastfeeding , Linear, positive by age , Linear, positive by age

Complementary feeding practices

Food diversity Low (0–2) – – – –

Medium (3–4) Constant, zero by age Constant, negative by age

High (5–8) , Linear, negative by age , Linear, negative by age

Meal frequency Low (0–1) – – – –

Medium (2–3) Constant, zero by age Constant, zero by age

High (4–9) Constant, zero by age Constant, zero by age

Micronutrient deficiencies

Child ever received iron No – – – –

supplements Yes 0.022 [20.016, 0.089] 0.030 [20.007, 0.138]

Child ever received vitamin A No – – – –

supplements Yes 20.036 [20.077, 0.000] 20.020 [20.070, 0.000]

Iodine-in-salt test result No iodine – – – –

Less than 15 parts per million 0.011 [20.043, 0.044] 0.025 [20.013, 0.058]

15 parts per million or more 20.056 [20.107, 20.020] 20.066 [20.118, 20.022]

1Significant effects are shown in bold; please see Figure 2, footnote 1, on how statistical signifance is assessed.
2The effect of a covariate in logistic regression relates to the log-odds ratio for being stunted or severely stunted (in contrast to quantile regression where an effect
relates to the respective quantile of the Z-score). For example, the log-odds ratio for being stunted for girls is 20.080 smaller compared to boys, given all other
covariates are similar.
3Absolute values of effects from Table 3 cannot be compared to those from Table 2, but reversed effect signs indicate concordant results from quantile and logistic
regression.
doi:10.1371/journal.pone.0078692.t003
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severe stunting. In contrast, main cooking fuel is statistically

significant in both logistic regression models.

With respect to our research objectives, the mostly consistent

results across different Z-score quantiles and modelling approaches

suggest that risk factors do not appear to show differential effects

across the height-for-age distribution.

Discussion

Key findings
We employed an evidence-based, systematic approach to

identify all likely determinants of child stunting and to capture

the interconnectedness between multiple risk factors within the

system. For each of the eleven groups of determinants we

conceptualized in Figure 1 and were able to populate with

variables from the Indian NFHS, we found at least one variable

with a statistically significant effect in all quantile and logistic

regression models – except for the indoor air pollution group,

which only showed a significant effect in three out of six regression

models. This emphasizes the broad range of causes of child

stunting, encompassing more distal maternal, household socio-

economic and regional characteristics as well as more proximate

environmental, nutrition, infection-related and healthcare-related

determinants. It suggests many potential entry-points for inter-

vention and offers some insights regarding high-risk groups. Yet,

our analysis also implies that a less comprehensive approach may

overlook key determinants of stunting, potentially resulting in

incorrect effect estimates in analyses of risk factors or leading to

interventions that do not sufficiently take context into account.

Looking more closely within groups of determinants, our

analysis confirms the importance of child age and sex as non-

modifiable determinants and highlights household wealth, greater

maternal education and greater maternal BMI as major protective

factors, given the large and statistically significant effects of these

variables. The findings regarding household characteristics, such

as household wealth and maternal education [62–65], and

maternal nutrition status [70–72] mirror those in the literature.

Our research also draws attention to twins as a potentially

overlooked risk group [75]; the very large significantly negative

effect is remarkable, as only 1% of children in the NFHS dataset

are twins or multiple births. On the other hand, none of the

models detected statistically significant effects of religion of

household head, partner’s occupation, sex of household head,

urban/rural location, number of household members, drinking

water, meal frequency by age, or iron supplementation, which

contrasts with previous reports [30,33,34,41,42,43,46,47,48,78].

This may be due to the poor quality of the proxy measures we

employed or differences in the population distribution of variables

[94]. Most importantly, it may reflect the fact that in a more

comprehensive model, the effect of some variables is captured by

other related variables.

Statistical modelling was realized by additive quantile regression

to explore whether differential effects emerge across the height-for-

age distribution and to investigate the presence of non-linear

effects. The results across the four quantile and two logistic

regression analyses were largely comparable, suggesting that the

impact of most of the variables on lower tails of the height-for-age

distribution does not differ from their impact on the population

mean. We attribute this lack of differential effects to the symmetric

shape of the height-for-age Z-score distribution which is indepen-

dent of covariates. Therefore, using the more established logistic

regression instead of quantile regression is likely to be appropriate

in most analyses of the determinants of child stunting. Importantly,

this research has demonstrated that maternal age, maternal BMI,

and birth order exert their effect in a non-linear way; for maternal

age and BMI these findings are in line with previous results [23].

Thus, assuming linearity in statistical modelling could lead to

incorrect conclusions. To avoid inappropriate oversimplification,

we propose that logistic or quantile regression models of stunting

determinants should take a systems-based approach to analysis

and explicitly consider potential non-linear effects.

Strengths and limitations of this study
Data quality. An inherent limitation of cross-sectional data is

their snapshot nature, which makes establishing a temporal

sequence of events and drawing causal inferences impossible.

Moreover, while the NFHS includes suitable variables for most

determinants of stunting, we could not model the impact of

immediate determinants, were unable to populate the groups of

determinants chronic diseases and recurrent infections and could

only partially assess micronutrient deficiencies, healthcare, mater-

nal or regional characteristics. Similarly, some of the proxies we

used in our analysis may not provide an accurate estimate of the

underlying concept of interest (e.g. type of cooking fuel as a proxy

for indoor air pollution). Consequently, effect sizes for individual

variables should be interpreted with caution. Even though the

NFHS is considered a high-quality dataset, the logical conse-

quence of assessing a large number of potential determinants was a

high proportion of missing data (about 29%). Large numbers of

missing values in selected variables, in particular in the outcome of

interest, may have introduced selection bias. Indeed, compared to

children with Z-score information, children for whom the outcome

variable was missing were more likely to be younger and a twin

(factors that increase stunting risk), as well as more likely to be

born to mothers with greater maternal BMI and to live in

wealthier and urban households (factors that decrease stunting

risk). All differences were small, and are likely to increase

uncertainty in effect estimates for these variables, thereby biasing

results towards the null. Nevertheless the large-scale, standardized

and nationally representative nature of the NFHS, a response rate

of eligible women of 94.5% [84] and coverage of a broad range of

health risks makes this data source ideally-suited for a compre-

hensive analysis of stunting determinants. Also, a recent method-

ological study suggests that cross-sectional studies can yield reliable

estimates for risk factors that vary more across space at a fixed

point in time than at a fixed location across different points in time

[95].

Evidence-based approach. Based on earlier work in this

field [25], a priori reasoning and extensive searches of the

literature, we derived a schematic diagram of the multiple

determinants of stunting. One limitation of this diagram is that

it does not explicitly cover macro-level factors, such as good

governance, peace and stability or climate change [18,79], factors

that are likely to be relatively constant within a given country but

that may be major underlying causes for cross-country differences

in child undernutrition [94]. In addition, we neither examined the

hierarchical structure contained within this diagram nor the

pathways and relationships between individual determinants.

Nevertheless, we believe that our approach to identifying all likely

determinants of stunting and to populating as many of these as

possible using an existing dataset is novel and takes up recent calls

to incorporate systems thinking in epidemiology [19–22,96].

Statistical methods. Statistical modelling was realized by

the innovative statistical approach of additive quantile regression

based on boosting estimation since this method allowed us to

simultaneously investigate our three research objectives. As

extension of classical linear quantile regression, the flexible

predictor of additive quantile regression enables potentially
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non-linear functional shapes of continuous covariates to be

determined in a data-driven way and to account for spatial

autocorrelation by including smooth spatial effects. Boosting

combines parameter estimation and variable selection in one

single estimation step, making it ideally suited to models with a

large number of covariates, since subsequent steps of variable

selection are not required. An inherent limitation of boosting is the

lack of standard errors which makes the use of re-sampling

methods, such as bootstrap, necessary to assess the variability of

effect estimates. As a consequence, with boosting statistical

significance cannot be assessed in a traditional way (i.e. based on

test statistics with well-known distributions). In our analysis, we

instead derived statistical significance from the bootstrap results.

For a categorical covariate, for example, significance was defined

as having at least one significant category compared with the

reference category; and overall tests could not be conducted. A

strength of boosting estimation is that it can be applied

independently of the scale of the outcome and of the correspond-

ing regression model, i.e., linear, quantile, or binary regression, as

was demonstrated in our logistic regression analysis. On the other

hand, an important limitation of our statistical modelling approach

is that it does not explicitly account for the hierarchy implied by

the conceptual diagram.

Implications for research and practice
Clearly, this research is located at the very beginning of a

lengthy, cyclical process to develop and implement complex

interventions, which comprises formative research and piloting as

well as randomized controlled trials and implementation research

[97]; and some of the insights might be specific for the Indian sub-

continent. Do the insights gained impact in any way on how we

might design and implement interventions more successfully?

The multi-factorial nature of child stunting offers many entry-

points for technical and policy solutions and suggests that,

ultimately, the impact of any intervention is influenced by the

combined effects of all of these groups of determinants within the

system. If we fully accept this notion, the finding that many single

interventions show rather limited health impact is not surprising.

Indeed, initial findings from the Millennium Villages project

suggest that a combination of nutrition-specific, health-based

approaches with food system- and livelihood-based interventions

can achieve substantial reductions in childhood stunting [98],

although the approach to analysis likely overstates the impact of

the intervention [99]. Embracing systems thinking, it also becomes

clear that the design and implementation of interventions must not

take place out of context and that ‘‘context’’ goes beyond a broad

distinction between food-secure and food-insecure populations

[17,100]. A range of socio-economic, cultural and climatic factors

at household, community and national levels impacts the choice of

universal versus targeted approaches [101,102,60] and other

specific aspects related to the design and delivery of intervention

packages.

Revisiting the determinants of child stunting is timely in view of

recent calls to set up a national nutrition strategy for India, which

would combine food and nutrition programmes with broad

investments in health, sanitation, agriculture and women’s status

[101], emphasizing multi-sectoral coordination to assure that

‘‘every link in the chain of malnutrition (is) considered’’ [102]. It is

also relevant with respect to the global hunger summit hosted

during the London Olympics 2012 and commitments to invest in a

range of measures to reduce child malnutrition prior to the Rio

Olympics in 2016. We hope that the insights offered here will add

food for thought in relation to how these pledges are put into

practice.
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