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Abstract

Analysis of network dynamics became a focal point to understand and predict changes of complex systems. Here we
introduce Turbine, a generic framework enabling fast simulation of any algorithmically definable dynamics on very large
networks. Using a perturbation transmission model inspired by communicating vessels, we define a novel centrality
measure: perturbation centrality. Hubs and inter-modular nodes proved to be highly efficient in perturbation propagation.
High perturbation centrality nodes of the Met-tRNA synthetase protein structure network were identified as amino acids
involved in intra-protein communication by earlier studies. Changes in perturbation centralities of yeast interactome nodes
upon various stresses well recapitulated the functional changes of stressed yeast cells. The novelty and usefulness of
perturbation centrality was validated in several other model, biological and social networks. The Turbine software and the
perturbation centrality measure may provide a large variety of novel options to assess signaling, drug action, environmental
and social interventions.
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Introduction

In the last decade the network approach became a widely used

methodology to study complex systems. As an example, protein

structure networks, where network nodes represent amino acids,

and edges symbolize their physical distance, are increasingly used

to describe conformational changes, formation of protein com-

plexes, drug binding and enzyme action [1–3]. Recently several

programs have been introduced for the construction of protein

structure networks from 3D structural data and for their analysis

[4,5]. Protein-protein interaction networks (interactomes) provide

a great help to understand the molecular mechanism of cellular

functions, the development of diseases and drug design [6]. In

protein-protein interaction networks such as BioGRID [7],

STRING [8], and DIP [9], nodes are proteins, and edges denote

their physical interactions.

Network dynamics is necessary to understand the changes of

complex systems, and therefore became a hot topic of network

studies [10,11]. A number of programs have been developed for

the calculation of certain aspects of network dynamics, such as

network simulation tools based on Boolean dynamics [12–16], the

random-walk based ITM-Probe [17], the law of mass action-based

PerturbationAnalyzer [18], or the biological system modeling tool,

BIOCHAM [19]. However, to our knowledge, no stand-alone

program exists, which can easily integrate any dynamical models

together with any types of starting perturbations, and can also

provide the complete time-domain simulation results, not only the

summative end-result. Recently the complex network dynamics

simulation tool, Conedy was introduced [20]. Conedy is a Python

extension enabling researchers already using computational

dynamics to add networks to their repertoire. However, a

complete toolkit is still missing having built-in algorithms, analysis

tools and visualization, to enable life and network scientists to add

network dynamics to their studies.

Our in-house developed program, Turbine, is able to accom-

modate a large variety of network dynamic simulations. Any real-

world network can be imported to the program and perturbations

can be introduced at any nodes or node-combinations at the

beginning, at any time during the simulation, individually,

repeatedly, or continuously. This allows the analysis of the effect

of different environmental changes on network dynamics. Com-

putational optimizations allow the simulation of large networks (in

the range of millions of nodes and edges) on a standard desktop-

grade computer. The initial phase of Turbine development was

mentioned in an earlier conference lecture summary [21]. Here

we introduce the fully developed program (freely downloadable

from here: http://turbine.linkgroup.hu), and show that its results

on the importance of hubs and inter-modular nodes in the

propagation of perturbations reflect well both our intuitive

expectations and former knowledge. We defined a new measure

of dynamic network centrality, and termed it as perturbation

centrality. Perturbation centrality correctly identified substrate

binding sites and amino acids participating in allosteric signaling in

protein structure network networks. Changes of perturbation

centrality were in agreement with the known functional changes of

the yeast protein-protein interaction network after stress. The
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novelty and usefulness of perturbation centrality was validated in

several other model, biological and social networks. Turbine is an

integrative and versatile tool to simulate network dynamics and to

predict the effects of environmental changes, signaling stimuli,

drugs or social interventions.

Results

In the simulations using our network dynamics program called

Turbine, we used a model termed ‘‘communicating vessels’’. The

basic idea behind this model was that intensive physical variables

(e.g. temperature) tend to perform an equalization-like dynamics

behaving like communicating vessels (see the detailed description

in Methods). The communicating vessels model gives an

exponential decay of perturbations (see Supplementary Re-
sults of Text S1), which is in agreement with several earlier

findings [22,23].

Modules limit perturbation propagation
The intuitive impression that modules limit the information

spread in complex networks was described in multiple papers, and

was shown in many simulations [24–27]. The equations of the

communicating vessels model (where every affected node dissi-

pates an equal amount of energy in every time-step of the

simulation) suggest that the more nodes are affected by a given

perturbation, the faster the perturbation becomes dissipated.

Taken together these two considerations, our expectation was that

a network with rather distinct modules (termed as pronounced

modules) will propagate and dissipate perturbations slower than a

network with tightly interconnected modules (termed as fuzzy

modules). To test whether the communicating vessels model of

Turbine shows this property, we used the benchmark graph

generating tool of Lancichinetti and Fortunato [28] to generate

unweighted and undirected scale-free, modular benchmark

networks (hereafter called as benchmark graphs) with different

ratios of inter-modular edges (Table S7 of Text S1). The

benchmark graph with pronounced or fuzzy modules had 5% or

40% of inter-modular edges, respectively. We have used a new

measure termed ‘‘fill time’’ for comparison. The fill time of node i

is the time needed to raise the energy level of 80% of the nodes

above 1 unit while continuously adding energy to node i.

Figure 1A shows fill times calculated on 7 random generations

of these benchmark graphs using the same perturbations starting

from each node in separate simulations. Fill times of all nodes and

all 7 benchmark graphs with different random seeds were

averaged. As expected, sparse inter-modular edges of the

pronounced modules delayed the propagation of perturbation,

resulting in a 4.8 times larger fill time as compared to those

observed in benchmark graphs with fuzzy modules (Figure 1A).

Supplementary Results in Text S1 show that fill time is highly

correlated with closeness centrality, making fill time useful as a

verification of the model rather than a novel centrality measure.

Next we assessed the propagation of single perturbations using

the same model, but adding a dissipation term to the communi-

cating vessels dynamics. Figures 1B through 1E are illustrations

of the propagation of dissipated perturbations using image

snapshots of the Turbine viewer program after 50 time-steps of

the simulation. The starting module of the benchmark graphs with

pronounced modules trapped the initial perturbation, if the size of

the perturbation was sufficiently high (1,000,000 units,

Figure 1D). This ‘module encapsulation’ effect was entirely

missing from the benchmark graphs with fuzzy modules

(Figures 1C and 1E), and was also not observable, when the

starting perturbation was low intensity (10,000 units). Thus,

roughly the same number of nodes was affected by the

perturbation in benchmark graphs having either pronounced

(Figure 1B) or fuzzy modules (Figure 1C) if the initial

perturbation was low-intensity (10,000 units). On the contrary, a

high-intensity starting perturbation (1,000,000 units) affected

much less nodes in benchmark graphs having pronounced

modules (Figure 1D) as compared to those having fuzzy modules

(Figure 1E). After applying a high intensity perturbation to

benchmark graphs with fuzzy modules almost all nodes became

perturbed after the 50 time-steps shown (Figure 1E).

The right two sets of bars of Figure 1A show the differences in

perturbation dissipation in a quantitative manner. Here a measure

termed ‘‘silencing time’’ was calculated as the first time step when

all nodes had an energy value less than 1. The same perturbation

was started from each node of the 7 random representations of

benchmark graphs in separate simulations, and their silencing

times were averaged for all nodes and for all the 7 graphs. Bars

with capital letters refer to the benchmark graphs shown on

Figure 1B through 1E. Benchmark graphs with pronounced

modules dissipated low intensity perturbations only slightly slower

than benchmark graphs with fuzzy modules (cf. bars ‘‘B’’ and ‘‘C’’

on Figure 1A). This is in agreement with the approximately same

number of nodes affected after 50 time-steps in the same pair of

simulations (cf. Figures 1B and 1C). On the contrary, high

intensity perturbations were dissipated dramatically (2.6 times)

slower by benchmark graphs with pronounced modules as

opposed to those with fuzzy modules (cf. bars ‘‘D’’ and ‘‘E’’ on

Figure 1A). These results clearly indicated that pronounced

modular structures trap perturbations in agreement with earlier

results [27]. The difference between the behavior of low-, and

high-intensity perturbations arises from the fact that perturbations

are decaying exponentially with the distance from their origin (for

a proof see the analysis of Text S1). Thus, when the perturbation

is of relatively low-intensity (compared to the size of the module

and the dissipation rate) it is dissipated without reaching the

boundaries of its module of origin. In the case of high-intensity

perturbations, a significant amount of energy transverses the

boundary of its module of origin, which makes the modular-

encapsulation effect observable. Module encapsulation of pertur-

bations was also tested using the random-walk based ITM-Probe

method [17], with very similar results (see Supplementary
Results, Table S7 of Text S1, and Figures S1 through S3 of

Text S1).

Definition of perturbation centrality as the reciprocal of
silencing time

Prompted by the utility of silencing time to characterize the

propagation and dissipation of perturbations (Figure 1), and

utilizing our former observation that the reciprocal of fill time was

correlated with closeness centrality (Table S1 of Text S1), we

defined a centrality-type measure for dissipated perturbations, and

termed it as perturbation centrality. Our aim was to conceive a

measure that takes into account both local (weighted degree) and

more global (modular position) perturbation properties. It was also

important that the measure should be easy to understand and

calculate, and that its properties should be almost independent of

the size of the network. As a result of our initial studies (Table S2
of Text S1) we have found that setting the initial perturbation

value to 10*n units (n being the number of nodes in the network)

achieves all of these goals. Thus, perturbation centrality of node i

was defined as the reciprocal of silencing time retrieved by using a

Dirac delta type starting perturbation of 10*n units, where n is the

number of nodes in the network, using a dissipation value of 1.

Silencing time of node i was the first time when all of the nodes

Novel Perturbation Centralty Measure by Turbine
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had an energy value less than a pre-set minimal threshold after an

initial perturbation started from node i. We selected this threshold

as ‘‘1’’, the minimum sensible value with the dissipation also being

set to 1 (note that the dissipation value is the minimal threshold,

since after reaching this value all energy of the network will be

dissipated in the next step).

Following the above definition, we have tried to find the

location of our newly conceived perturbation centrality measure

on the ‘‘centrality landscape’’ by testing its correlation with

established centrality measures in selected networks. We have

tested perturbation centrality against closeness centrality, which is

the average geodesic distance from the given node to all other

nodes; betweenness centrality, the number of shortest paths

between any two nodes passing through the tested node;

community centrality [29], a measure high in the cores of network

communities and PageRank, an iterative measure coined by Brin

and Page [30], where nodes ‘‘vote’’ on each other via their edges in

proportion with their degree. We have also tested the correlations

between perturbation centrality and degree (as well as weighted

degree), since these measures can also be interpreted as local

centrality measures. These correlations between perturbation

centrality and other centrality-type measures of different real-

world networks are shown in Table 1. There was a considerable

correlation between perturbation and closeness centralities.

However, the strength of this correlation was noticeably less than

that between the reciprocal of fill time and closeness centrality

(average correlations were 67% and 89.5%, respectively, with

explained change, R2 values of 45% and 80%, respectively). A

similarly high correlation was observable between perturbation

and community centralities, as well as between perturbation

centrality and weighted degree suggesting that nodes in key

community locations and/or hubs may be among the best

dissipators of perturbations. Correlations between perturbation

centrality and either PageRank or betweenness centrality were

smaller (but noticeable) than that between perturbation and

closeness centralities.

On one hand, data of Table 1 indicate that perturbation

centrality is a more local centrality measure than closeness

centrality. On the other hand perturbation centrality is a more

global centrality measure than weighted degree or PageRank.

Thus perturbation centrality is a novel, mesoscopic-type centrality

measure characterizing the information transfer capability of a

given node (or edge: see Supplementary Results and Figure
S10 of Text S1) in a network. A visual representation of the

relationship between perturbation centrality and the other

centrality measures shows a unique position of perturbation

centrality further supporting the novelty of perturbation centrality

(Figure S4 of Text S1).

Figure 1. Difference in perturbation propagation between benchmark graphs with pronounced and fuzzy modules. Two times 7
randomly selected scale-free, modular benchmark graphs [28] were generated as described in Supplementary Methods and Table S7 of Text S1
with ratios of inter-modular edges of 0.05 (,300 of ,6,000 edges were inter-modular) and 0.4 (,2400 of ,6,000 edges were inter-modular), termed
as ‘‘pronounced modules’’ and ‘‘fuzzy modules’’, respectively. Panel A: average fill times and silencing times, separately for the ‘‘fuzzy’’ and the
‘‘pronounced’’ group of networks. Fill times and silencing times were determined as described in Methods. Continuous perturbation intensity for fill
time was 10,000 units, while initial perturbation intensities for silencing times were 10,000 or 1,000,000 units at low intensity or at high intensity
perturbations, respectively. The three asterisk signs mark statistically significant differences with a= 0.001. Dark red bars and light blue bars represent
pronounced modules and fuzzy modules, respectively. Bar letter codes refer to Panels showing snapshots of perturbations with identical conditions.
Panels B through E show image snapshots created by the Turbine viewer after 50 time-steps of the simulation, using a heat-based color map. (The
order of colors marking the lowest to highest perturbation is: black R red R orange R yellow R white). Perturbation values were scaled
logarithmically. Panels B and C show the effect of low intensity starting perturbations (S = 10,000), while Panels D and E show the effect of high
intensity starting perturbations (S = 1,000,000). Panels B and D show benchmark graphs with pronounced modules, while Panels C and E show
benchmark graphs with fuzzy modules.
doi:10.1371/journal.pone.0078059.g001
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Hubs and inter-modular nodes have a central role in
perturbation dissipation

Next we investigated which types of nodes are best for

dissipating perturbations. On one hand, we observed large

differences in the average perturbation efficiency of modular

networks with differing ratios of inter-modular nodes (Figure 1).

On the other hand, hubs have been proven to have a high

information transmission efficiency [31,32]. Based on these

considerations we defined 4 node categories: 1.) intra-modular

non-hubs; 2.) intra-modular hubs; 3.) inter-modular non-hubs and

4.) inter-modular hubs. We defined hubs as nodes with degrees in

the top 10%, and inter-modular nodes as nodes with at least 40%

inter-modular edges. Intra-modular non-hubs correspond to roles

R1 and R2 (ultra-peripheral and peripheral nodes) in the previous

representation of Guimerà et al. [33]; intra-modular hubs

correspond to role R5 (provincial hubs), while inter-modular

non-hubs and inter-modular hubs correspond to roles R3/R4

(non-hub connectors and kinless nodes) and R6/R7 (connector

and kinless hubs), respectively. Figure 2 shows that, in agreement

with our expectations, inter-modular non-hubs had a larger

perturbation centrality than intra-modular non-hubs in bench-

mark networks with pronounced modules. Importantly, in

networks with pronounced modules inter-modular non-hubs had

larger perturbation centrality than intra-modular hubs. On the

contrary, in benchmark networks with fuzzy modules hubs in any

modular position had a larger perturbation centrality than non-

hubs. These observations are again in agreement with expectations

and earlier findings [27]. The explanation of these findings is that

in fuzzy modules the modular structure did not restrict the

propagation of perturbations, so it is not surprising that intra-

modular hubs dissipated perturbations faster than inter-modular

non-hubs.

Importantly, there was a large (87%) difference between the

perturbation centrality of intra-modular hubs versus the effect of

inter-modular non-hubs in a wide variety of real-world networks

(Supplementary Results and Table S8 of Text S1),

suggesting that from a perturbation perspective real-world

networks resemble the benchmark graphs with fuzzy modules

more, than the benchmark graphs with pronounced modules.

(Note that the same observation was obtained, when we compared

the low-intensity and high-intensity silencing times – see Table S2
of Text S1).

Perturbation centrality uniquely identifies all key regions
of Met-tRNA synthase

Prompted by the general applicability of the perturbation

centrality measure to characterize real-world networks, next we

compared the perturbation centralities with structural and

functional properties of nodes in two types of biological networks

in detail. The comparison of substrate-free with substrate-bound

forms of proteins gives an important system to study the changes in

perturbation differences in the respective protein structure

networks.

Figure 3 shows residues with top 20% increase of different

centralities upon substrate binding of Met-tRNA synthase. Red

and yellow symbols of Figure 3A represent residues with highly

increased perturbation centrality. Residues marked with yellow

symbols are within a distance of 4.5Å from the tRNAMet. Note

that perturbation centrality increase highlights the active site and

both binding sites of the tRNA. On the contrary, residues with

highly increased closeness centrality (Figure 3B) are smeared

around the active site, and residues with the highest increase of

betweenness centrality (Figure 3C) are scattered all around the

protein. The fact that perturbation centrality was increased most

at the two substrate binding sites of tRNAMet upon binding,

indicates that substrate-induced changes in protein structure help a

better spread of perturbations caused by substrate binding. This

self-amplification may be an important contributor to the

propagation of binding-induced conformational changes and

allosteric mechanisms.

Table 1. Correlation between perturbation centrality and other centrality measures.

Networksa
Closeness
centrality

Betweenness
centrality

Community
centralityb PageRankc Degree Weighted degree

Benchmark graphs with pronounced modules 0.79 0.31 0.30 0.08 0.26 0.26

Benchmark graphs with fuzzy modules 0.79 0.76 0.83 0.67 0.83 0.83

Substrate-free Met-tRNA synthetase protein structure network 0.86 0.44 0.26 0.16 0.38 0.34

Substrate-bound Met-tRNA synthetase protein structure network 0.87 0.44 0.25 0.18 0.41 0.37

Filtered Yeast Interactome 0.09 0.33 0.80 0.47 0.67 0.85

Database of Interacting Proteins yeast interactome (release 2005) 0.62 0.56 0.84 0.73 0.66 0.72

Database of Interacting Proteins yeast interactome (release 2010) 0.67 0.41 0.63 0.47 0.52 0.65

E. coli metabolic network 0.72 0.31 0.97 0.67 0.59 0.99

B. aphidicola metabolic network 0.70 0.40 0.98 0.78 0.72 0.99

School-friendship network 0.68 0.43 0.69 0.58 0.68 0.71

Mean and standard error 0.67 (0.063) 0.44 (0.043) 0.65 (0.090) 0.48 (0.081) 0.57 (0.056)0.69 (0.087)

Perturbation centrality was compared to other centrality measures calculated as described in Supplementary Methods of Text S1. Spearman correlations above
r = 0.7 are marked with bold letters, correlations below r = 0.3 are marked with italics. Highest correlations were observed between perturbation centrality versus
closeness centrality, community centrality [29] and weighted degree. This underlines the observations that besides geodesic distance (closeness centrality), modular
position and degree also contribute to good perturbation properties. Note that measured correlations between perturbation and closeness centralities are much
weaker than the correlations between the reciprocal of fill time and closeness centrality (mean is 0.895 in Table S1 compared to 0.67 here, p = 0.000487, Wilcoxon rank-
sum test; correlations with closeness centrality failed the Shapiro normality test with p = 0.0019)
aNetwork descriptions are given in Supplementary Methods and Table S7 of Text S1.
bCommunity centrality was calculated using the LinkLand community detection method of the ModuLand family as described by Kovács et al. [29].
cPageRank values were calculated using the algorithm of the igraph library [59].
doi:10.1371/journal.pone.0078059.t001
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The tight secondary structures of a-helices had larger pertur-

bation efficiency than the more flexible loops. Importantly,

perturbation centrality proved to be better at distinguishing

secondary structures, signaling amino acids, as well as amino acids

whose importance was proven experimentally than betweenness or

closeness centralities (Figures S6 through S8 and Table S9 of

Text S1).

Various stress types induce different perturbation
dissipating regions of the yeast interactome

As a continuation of the characterization of substrate-induced

changes in protein structure networks, we assessed perturbation

centralities in a well-characterized change of the interactome. In

our earlier studies stress-induced changes in mRNA expression

resulted in a marked re-configuration of yeast interactome

modules [34,35]. Here we calculated perturbation centralities for

all nodes in the Database of Interacting Proteins yeast interactome

(release 2005), using stress-induced mRNA changes [36,37] to

calculate the edge-weights of the stressed yeast interactome as

described before [35]. The observation of Mihalik and Csermely

[35] that communities of the interactome become more separated

under heat shock is expected to induce a lower average

perturbation centrality (due to the module encapsulation effect

shown before hindering the propagation of perturbations). Indeed,

a major change was observed: the average perturbation centrality

of the heat-shocked interactome was 6.07*1024, 40.5% lower than

the average perturbation centrality of the unstressed interactome

(1.02*1023, a= 0.05, p = 2.2*10216, Wilcoxon rank-sum test).

We also observed a marked difference of the proteins with

highest perturbation centrality in heat-shock compared to the

other stress types. Only 42 of the 100 unstressed top perturbation

centrality nodes appeared in the top 100 nodes of heat-shocked

cells. However, 65 of the unstressed top nodes appeared in the

oxidatively-stressed interactome, and 68 in the osmotically-stressed

interactome. At the same time, 77 of the top 100 perturbation

centrality nodes were the same in the oxidatively- and the

osmotically-stressed interactome, while the number of matching

nodes was only 30 and 34, when we compared the oxidatively- and

the osmotically-stressed interactome against the heat-shocked

interactome, respectively. These results are visualized in the

Venn-diagram of Figure 4. These data prompted us to perform a

Figure 2. Average perturbation centralities for different node types in benchmark graphs. Scale-free, modular benchmark graphs [28]
were created as described in Supplementary Methods and Table S7 of Text S1. Average perturbation centralities were calculated as described
in Methods using a starting perturbation of 40,000 units, since the benchmark networks contained 4,000 nodes. 4 node types were discriminated:
intra-modular non-hubs, inter-modular non-hubs, intra-modular hubs and inter-modular-hubs, where hubs were nodes having a degree in the top
10%, and inter-modular nodes were nodes with more than 40% inter-modular edges. Different letters on top of the bars mark significantly different
groups with a= 0.01 (Wilcoxon rank-sum test). Dark red bars show results obtained using 7 randomly selected benchmark graphs with the ratio of
inter-modular nodes set to 0.05, termed as pronounced modules, while light blue bars display data for 7 randomly selected benchmark graphs (with
the same seed nodes as the ones used for pronounced modules) with ratio of inter-modular nodes set to 0.4, termed fuzzy modules.
doi:10.1371/journal.pone.0078059.g002
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detailed investigation of the functions of the top perturbation

dissipator proteins in unstressed and stressed yeast interactomes.

Functional assessment of key perturbation dissipator
proteins in unstressed and stressed yeast interactomes

For the assessment of the function of proteins having the highest

perturbation centrality in the yeast interactome before and after

various types of stresses, we used the g:Profiler tool [38], which

performs a statistical enrichment analysis to find over-representa-

tion of Gene Ontology terms, biological pathways, or regulatory

DNA elements in a set of genes or proteins. Only those terms were

taken as significant, where the p-value was less than 0.05 after

applying Bonferroni correction. Using this method, the top 100

nodes having the largest perturbation centrality in the unstressed

interactome had 11 enriched terms, which was extended

differently in heat shock and oxidative/osmotic stress (Table S3
of Text S1).

The enrichment analysis on the nodes having the top 100

largest increase in perturbation centrality in heat-shock, oxidative

and osmotic stress resulted in 28, 22 and 34 enriched terms,

respectively. Carbohydrate metabolism, trehalose metabolic process and

glycogen metabolic process were upregulated in all types of stresses,

which is in agreement of previous findings [39]. Importantly, the

term response to stimulus appeared in all three types of stresses, and

response to stress appeared in heat-shock and osmotic stress (Table
S4 of Text S1). Assessment of the function of proteins having the

largest decrease in their perturbation centralities in various stress

conditions indicated the down-regulation of ribosome synthesis and

protein translation after stress (Table S5 Text S1), which are also

well-known changes in stress [40].

Our results on protein structure and protein-protein interaction

networks highlight the usefulness of perturbation centrality to

identify functionally important nodes in biological networks, and

show that the preferred way of comparing perturbation centralities

in two similar networks is to compare the largest changes rather

than the largest absolute values.

Discussion

We introduced a new method for the analysis of network

dynamics. This new software called ‘‘Turbine’’ (http://turbine.

linkgroup.hu) substantially extends the preliminary version of the

program published as a conference summary [21]. A dynamic

model termed ‘‘communicating vessels’’ was created to assess the

propagation of perturbations in networks. To characterize network

properties, two new measures were defined. ‘‘Fill time’’ charac-

terizes the propagation-efficiency of un-dissipated perturbations.

‘‘Perturbation centrality’’ of a node is defined as the reciprocal of

the time characterizing the dissipation of a perturbation starting

from the given node in the network. Both the reciprocal of fill time

and perturbation centrality were shown to be centrality-type

measures. Fill time correlated well with closeness centrality. On

the contrary, perturbation centrality could not be substituted with

any standard network centrality measure. Perturbation centrality

correctly identified hubs and bridges (inter-modular nodes) as key

determinants of the speed of perturbation dissipation. Nodes

having a high importance in the information transmission in

protein structure networks and in protein-protein interaction

networks were also characterized by high perturbation centrality

values.

Network dynamics has already been assessed using a number of

computational tools. Boolean dynamics [12–16] is a binary model,

where every node can assume either an active or an inactive state,

making Boolean dynamics a generalization of cellular automata on

complex networks. Despite its simplicity, Boolean dynamics has

been very successful in modeling cellular signaling networks, and

Figure 3. Substrate binding-induced perturbation centrality changes mark important residues of E. coli Met-tRNA synthetase.
Protein structure networks of the substrate-free and substrate-bound forms of E. coli Met-tRNA synthetase protein were generated as described in the
Supplementary Methods of Text S1. Perturbation centralities and the underlying protein structure network of Met-tRNA synthetase were
calculated and visualized by the Turbine program as described in Methods, and were overlaid on the 3D image of the substrate-bound form of the
protein (and its tRNAMet complex) generated with PyMOL [58] using ray-tracing. The bottoms of the images show the structure of tRNAMet. The
purple molecule in the middle of the protein structure is the substrate Met-AMP marking the active site of the enzyme, the white sphere on the right
is the Zn2+ ion. Red signs of Panels A, B and C mark amino acids having the highest increase of perturbation, closeness and betweenness centralities
(top 20%) of the substrate-bound form compared to the substrate-free form, respectively. Yellow signs mark those contact amino acids, which are
directly bound to the tRNAMet, evidenced by an atomic distance of less than 4.5Å between any atom of the residue and the tRNAMet, excluding
hydrogens. To avoid overcrowding the image, only those contact amino acids are shown, which have a high increase of their centrality. A separate
image showing all tRNAMet-binding amino acids is shown in Figure S9 of Text S1. Note that red-labeled amino acids having the largest increase of
perturbation centrality upon substrate binding (Panel A) are clustered around the active site and around both tRNA-binding sites, thus successfully
discriminate all important parts of the protein. Amino acids showing the highest change in closeness centrality (Panel B) are smeared around the
active site (which also occurs to be near the geometric center of the protein). Amino acids showing the highest change in betweenness centrality
(Panel C) are scattered all around the protein.
doi:10.1371/journal.pone.0078059.g003
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identifying underlying causes of pathogenic responses [13,41].

However, there are also a handful of programs for non-Boolean

dynamics. ITM-Probe [17] is based on random-walks; Perturba-

tionAnalyzer [18] is a Cytoscape plug-in using the law of mass

action; BIOCHAM [19] and Conedy [20] are more complex

network dynamic tools. Turbine combines several advantages of

the former options with large versatility, richness of output data,

efficient use of memory and fast running time enabling the analysis

of large networks (Table S6 of Text S1). Turbine is able to

accommodate a large number of other dynamical models than the

communicating vessel model used in this paper. Turbine can

handle multiple, repeated or continuous perturbations introduced

at the beginning of the simulation or at any later time-steps.

Moreover, the network structure may also be changed during the

simulations.

Despite its apparent simplicity, the communicating vessels

model well recapitulated the expected dissipation pattern of hub

and inter-modular node perturbations on modular, scale-free

benchmark graphs (Figures 1 and 2). These results were in

agreement with the early assumption of May in 1972 [42] that

modular patterns retain the information within a single module

and minimize its impact to other modules thus stabilize networks,

and they were also in agreement with data published later [24–27].

Encouraged by these findings, we defined a novel type of

dynamic centrality measure, and termed it as perturbation

centrality. Perturbation centrality of node i is the reciprocal of

the silencing time of node i with a starting excitation of 10*n,

where n is the number of nodes in the network, setting both the

dissipation and the silencing threshold to 1. Furthermore, the

silencing time of node i is the time needed to dissipate the

perturbation starting from node i at every node below a low

residual perturbation threshold. The perturbation centrality

measure has a rather straightforward centrality-type meaning.

Intuitively thinking, the more central node i is, the more nodes are

reached by the perturbation started at node i. Thus perturbation

started from a more central node is dissipated faster – since every

node dissipates an equal amount of energy in each step – and so

has a smaller silencing time than a perturbation started from a less

central node.

Silencing time is not a continuous measure thus the precision of

perturbation centrality has a lower bound. However, the

parameters of the simulations were set achieving a rather good

compromise between calculation speed and the resolution of

perturbation centrality. Typical perturbation centrality values

ranged from 0.33 (highest) to 0.0001 (lowest) depending on the

analyzed network. These values corresponded to silencing times 30

and 10000. Note that the lowest perturbation centrality one can

get depends on the number of simulated time-steps, i.e. the lowest

perturbation centrality in an experiment with 2000 time steps is 1/

2000 = 0.0005. The n*10 starting energy (where n is the number of

nodes) and the 1 dissipation rate parameters of the perturbation

centrality were chosen in order to achieve that nodes in most

networks can be characterized by silencing time values between 10

and 10000 steps. This translates to a perturbation centrality value

between 0.1 and 0.0001 Thus, these parameters made a good

Figure 4. Visualization of the difference among the three top 100 sets of proteins having the highest perturbation centrality in the
DIP (2005) yeast interactome. Perturbation centralities were calculated for three stressed variations of the DIP (2005) yeast interactome according
to Methods. The properties of the network as well as the method of generating its stressed versions are described in the Supplementary
Methods. The sizes of the different areas of the diagram are roughly proportional to the number of proteins in the respective combination of the
three sets. Numbers also show the number of proteins in different sets. This quantitative Venn diagram was generated using the Google Charts API.
(https://developers.google.com/chart/image/docs/gallery/venn_charts). The red, green and blue circles show the sets of top 100 proteins having the
highest perturbation centrality in the heat-shocked, osmotically- stressed and oxidatively- stressed networks, respectively. This figure illustrates the
fact mentioned in the Section ‘‘Various stress types induce different perturbation dissipating regions of the yeast interactome’’ that the most
important proteins in heat shock are substantially different from the most important proteins in the other two tested stress types (i.e. in osmotic and
oxidative stresses).
doi:10.1371/journal.pone.0078059.g004
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compromise between the total time of simulation and the

resolution of the perturbation centrality measure.

All correlations between perturbation centrality and other

centrality measures were weaker than the high correlation between

the reciprocal of fill time and closeness centrality (cf. Tables 1
and Table S1 of Text S1; see Figure S4 of Text S1 for a

graphical representation). Thus perturbation centrality may

capture novel dynamics-related features of central nodes (or in a

very similar fashion, edges: see Supplementary Results and

Figure S10 of Text S1). In several case studies on protein

structure networks and yeast protein-protein interaction networks

we showed that this indeed may be the case. The distribution of

perturbation centrality values was different in different networks,

which may give an additional layer of network characterization

(Figure S5 of Text S1).

Perturbation properties of protein structures revealed by the

Turbine model were in agreement with intuitive insights. The tight

secondary structures of a-helices had large perturbation efficiency,

while the more flexible loops had a lower efficiency of propagating

and dissipating perturbations (Figure S6). Perturbation centrality

discriminated secondary structures slightly better than closeness

centrality and much better than betweenness centrality (Figures
S7 and S8 of Text S1). Moreover, perturbation centrality,

uniquely of the three tested centralities, highlighted all important

segments of Met-tRNA synthase. The substrate binding-induced

local increase in perturbation centralities may indicate a self-

amplifying cycle, where substrate-induced changes might help a

better spread of perturbations caused by substrate binding. Amino

acids involved in allosteric communication in Met-tRNA synthe-

tase [43], as well as amino acids with experimentally verified

importance in its function [43] had significantly higher than

average perturbation centrality in the protein structure network of

the enzyme (Figure S6; p = 6*1028 and 9.5*1028 for amino acids

involved in communication; bound and free conformation,

respectively; p = 0.0018 and 0.0022 for amino acids with

experimentally verified importance; bound and free conformation,

respectively using Wilcoxon rank-sum test, a= 0.0125 adjusted

with Bonferroni correction). These findings are in agreement with

a number of earlier studies suggesting that perturbation efficiency

plays a key role in intra-protein allosteric signaling, as well as

showing that both binding sites and inter-domain, bridging amino

acids play an especially important role in this process [44–47].

Differences between perturbation centralities in the interac-

tomes of unstressed and stressed yeast (Tables S4 and S5 of

Text S1) were in agreement with our earlier data on the modular

rearrangements of the yeast interactome upon stress [34,35] and

with experimental data showing the down-regulation of yeast

ribosome biogenesis and mRNA translation [40], as well as the up-

regulation of carbohydrate metabolism [39] after stress.

Considering the above results, the Turbine network dynamics

tool and the perturbation centrality measure may have a number

of highly interesting future applications. Studies on perturbations

of various real world networks were used to assess network

robustness [48]. Perturbation analysis was used in the identifica-

tion of drug target candidates, including multi-target drugs or allo-

network drugs [11,49–52]. Sequential perturbations have been

suggested as a key modality of anti-cancer therapies [48]. Input

signals with different dynamical profiles cause several non-trivial

phenomena in signaling networks, such as kinetic insulation [53].

All these possibilities may be assessed by Turbine in the future and

can be extended to ecosystems, social networks (infection spread,

viral marketing) and engineered networks (power grids, Internet,

etc.).

In conclusion, here we introduced Turbine, a new method for

the analysis of network dynamics, and used it to study the

propagation of perturbations in modular benchmark graphs and

several types of real-world networks. We applied a dynamic model

based on the concept of communicating vessels, and defined a new

measure of dynamic network centrality, called as perturbation

centrality. Hubs, inter-modular bridges and signal transducing

amino acids were identified as nodes of high perturbation

centrality, and were in agreement with a large number of earlier

data. Changes of perturbation centrality in stressed yeast

interactomes well described known functional changes after stress.

The Turbine method and perturbation centrality open a large

variety of options for future studies on network robustness,

signaling mechanisms, drug design, as well as management of

ecosystems, social and engineered networks.

Methods

Brief description of the Turbine program
An in-house designed program package, Turbine (http://

turbine.linkgroup.hu) was used for the simulation of network

perturbations. Turbine is a MATLAB and R-compatible toolkit

for the analysis of network dynamics (including perturbations).

Turbine contains multiple sub-programs written in C++, and a

viewer written in C# to enable visual interpretation of the results.

The program is using its own binary data and network format for

performance reasons, but converters from multiple file formats,

such as the Pajek network format or the MATLAB/Octave data

format are also part of the default toolkit.

Turbine is based on a generalization of the systems theory

approach [54] to complex networks. In the program we assign a

state variable to all parameters of a network, which are expected to

change during the simulation. Every node or edge has a separate

value of every defined state variable. The effects of the state

variables on each other (the evolution of the system in time) are

determined by the particular network dynamics model used. In systems

theory, this model is a set of ordinary or partial differential

equations describing the change of the state variables in time,

taking into account the effects of other state variables on the

current component. In Turbine, any algorithm can be used as a

model, making the user capable of simulating virtually any

dynamics in any network. In the model, the user has to define the

values of the state variables for the next step based on the values in

the current step, which translates to creating a C++ function

named PerStep(), which should return the values of the state vector

for the (n+1)th time step given all preceding values in the 1st

through nth time steps. Of course, a model file may opt not to use

all this information, and indeed, the communicating vessels model

only uses the state vector of the previous, nth step, as it will be

described in the difference form of the model equations of the

communicating vessels model described in the following section.

Turbine models are stored as extendable and replaceable DLL

files. Multiple default models – such as ‘‘ripple’’ for testing wave-

like propagation, ‘‘gossip’’ for testing binary probabilistic infor-

mation spreading, and ‘‘XY’’ modeling the evolution of the

Prisoner’s Dilemma game in a network – are supplied with the

Turbine program package available at our website: http://

turbine.linkgroup.hu. Selecting a model for a given network

requires background knowledge on the nature of the dynamics of

the complex system represented by the network. In the future, we

plan to introduce more specialized dynamics such as ‘‘integrate-

and-fire’’ for neural networks to make model selection simpler.

For running a simulation, the user has to define the 1.) time of

the individual steps (called as step-time); 2.) the total analysis time,
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which together with the step-time determines the number of

performed iterations, and 3.) the starting values of the state

variables. It is also possible to introduce perturbations to the

system during the simulation. A perturbation can be applied to

every state variable, separately for each node or edge, and the

value corresponding to the perturbation at the current time step is

added to the current value of the node’s or edge’s instance of the

state variable. This way, any combination of node and edge

perturbations can be added to the system (e.g. single, multiple,

sequential or continuous), at any time, which allows the user to test

the response of the network to any environmental effects, such as

different drugs or drug-combinations, or any intrinsically gener-

ated effects, such as gene expression noise. The detailed

description of the Turbine program, its User Guide and freely

downloadable versions of Turbine, as well as their source codes are

available at our web-site: http://turbine.linkgroup.hu.

The communicating vessels model
In the simulations of this paper, a model with only one state

variable (energy) was used, to assess the dissipation of information

(e.g. physical perturbations) in complex networks. The basic idea

behind the model was that intensive physical variables (e.g.

temperature) tend to perform an equalization-like dynamics

behaving like communicating vessels. In the communicating

vessels model network nodes represent the vessels and edges

represent their connecting pipes. The algorithm of the model is as

follows: in each time-step, every node transfers a proportion of its

available energy through every available edge, proportional to 1.)

the duration of the time-step; 2.) the weight of the edge

(corresponding to ‘pipe diameter’); and 3.) the difference of the

state variables on the two ends of the edge (corresponding to ‘pipe

pressure’). There was a ‘vaporization’ effect, meaning that a

constant amount of the available energy of every node could be

dissipated in every step, which is an important property of most

dynamical systems including molecular networks. Based on the

above considerations, the differential form of the equation of the

communicating vessel model is the following:

dS

dt
~{

Xl

i~0

S{Si

2
wi

� �
{D0

where S is the value of the state variable (energy) of the starting

node of the edge, Si is the state variable (energy) of the node on the

other end of the current edge, wi is the weight of the current edge,

l is the number of edges (degree) of the current node, and D0 is the

dissipation coefficient, which is kept constant for all nodes.

The differential form is only equal to the discrete difference

equations which the algorithm uses if the step-time is infinitesimal.

However, analyzing differential equations are often much easier,

and this form is more familiar for systems theorists. For the sake of

completeness, we have also included the difference equation form

calculated by the algorithm below:

S tz1½ �~{
Xl

i~1

S t½ �{Si t½ �
2

wi

� �
{D0

Variable names match the ones of the differential form: S is the

value of the state variable (energy) of the starting node of the edge,

Si is the state variable (energy) of the node on the other end of the

current edge, wi is the weight of the current edge, l is the number

of edges (degree) of the current node, and D0 is the dissipation

coefficient, which is kept constant for all nodes. This difference

form of the equation shows an important criterion when choosing

edge weights: the (absolute value of the) sum of weighted out-

degrees should not exceed the reciprocal of the step-time (1/Dt) for

any node, otherwise more energy will be propagated outwards

than the amount contained in the node which – besides violating

the conservation of energy – can destabilize the whole simulation.

We have created a plugin for Turbine (normalize mflow) which can

normalize any network to meet this criteria, keeping relative edge

weights intact. This criterion can be summarized in the following

equation:

{1ƒDt
Xl

i~1

wiƒ1

The described equations (and the algorithm) of the communi-

cating vessels model can be naturally extended to directed graphs.

This modification can be attained by separating the energy

transfer on the inbound and outbound edges, like the following:

dS

dt
~{

Xo

j~1

S

2
wj

� �
z
Xi

j~1

Sj

2
wj

� �
{D0

where S is the value of the state variable (energy) of the current

node, o is out-degree of the node, wj is the weight of the current

edge, Sj is the state variable (energy) of the current neighbor, i is

the in-degree of the current node, and D0 is the (constant)

dissipation coefficient. This model also allows the assessment of

information propagation, silencing times and perturbation cen-

trality in directed real-world networks such as the Internet, citation

networks, or biological signaling networks.

This model provides a good starting point for the simulation of

most network dynamics, if more detailed information is not

available about the mechanism of the actual dynamic process. The

DLL file containing the communicating vessels model is included

with all Turbine packages, and is available on our web-site:

http://turbine.linkgroup.hu.

Turbine simulations
Scripts for running all simulations with the exact parameters

and networks used are downloadable from our web-site: http://

turbine.linkgroup.hu.

Calculation of fill time, silencing time and perturbation
centrality

Two types of tests were conducted on the target networks using

the communicating vessels model described above. In the

calculation of fill time one node was excited with 10,000 units of

energy in each time step, and a D0 = 0 constant dissipation was set.

The speed of the propagation of the perturbation starting at the

given node was characterized by the fill time of the network, which

was defined as the time during the simulation when more than

80% of the nodes in the network had an energy value larger than

1. The fill time measure was calculated for each node of the

network.

In the calculation of silencing time and perturbation centrality

one node was excited with a given amount of energy at the start of

the simulation, which was 10,000, 40,000 or 1,000,000 units as stated

in the individual simulations, and a D0 = 1 constant dissipation was

set. Silencing time was defined as the first time, when all of the

nodes had an energy value less than a pre-set threshold, which was
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1 in all of our experiments. The speed of the dissipation of the

perturbation starting at the given node was characterized by the

perturbation centrality, defined as the reciprocal of the silencing

time of an n*10 sized Dirac-delta-type perturbation, where n is the

number of nodes in the network, with the dissipation and the

threshold for the silencing time set to 1 (the reasons of this choice

can be found in Table S2 of Text S1). All measures were

calculated for each node of the network.

Turbine plug-ins to calculate the silencing time, the fill time, a

script to calculate the perturbation centrality measure, as well as

the User Guide can be downloaded from the web-site: http://

turbine.linkgroup.hu.

Generating protein structure networks from structure
information

Protein structure networks from the substrate-free and sub-

strate-bound form of methionyl-tRNA synthetase enzyme (Met

tRNA synthase [43]), as well as the substrate-free (1PO5, [55]) and

imidazole-bound (1SUO, [56]) form of rabbit cytochrome P450

2B4 were built with the RINerator software [5], using the PDB

files received from the authors of [43] in the case of MetRS, and

using the published 1PO5 and 1SUO structures from the Protein

Data Bank. The absolute value of interaction strengths was used

for network building, since the companion program of RINerator

called Probe returns negative interaction strengths for repulsive

interactions, but our perturbation propagation model is assumed

to only depend on the strength of the interaction rather than its

repulsive or attractive nature.

Characterization of proteins important in perturbation
propagation in resting and stressed yeast cells

For the functional characterization of proteins having the

highest perturbation centralities (or highest changes in perturba-

tion centralities) in resting yeast cells or yeast cells after various

types of stresses, term enrichment analysis was performed using

the R plugin of the g:Profiler [38] web service. g:Profiler uses terms

from Gene Ontology, KEGG, and several pathway databases.

Significant enrichment was stated when the p-value of a term was

strictly less than 0.05 after applying Bonferroni correction for

multiple testing.

Statistical methods
Statistical analyses including the calculation of means, medians,

standard deviations, Welch two-sample t-tests, Wilcoxon rank-sum

tests and correlation analyses were done using the R package [57].

Supporting Information

Text S1 This supporting information (Text S1) contains
10 Supplementary Figures, 9 Supplementary Tables,
Supplementary Results, Supplementary Methods as well
as 39 Supplementary References.

(PDF)
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33. Guimerà R, Nunes Amaral LA (2005) Functional cartography of complex

metabolic networks. Nature 433: 895–900.
34. Palotai R, Szalay MS, Csermely P (2008) Chaperones as integrators of cellular

networks: changes of cellular integrity in stress and diseases. IUBMB Life 60: 10–

18.
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