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Novel Multiscale Modeling Tool Applied to Pseudomonas
aeruginosa Biofilm Formation
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Abstract

Multiscale modeling is used to represent biological systems with increasing frequency and success. Multiscale
models are often hybrids of different modeling frameworks and programming languages. We present the MATLAB-
NetLogo extension (MatNet) as a novel tool for multiscale modeling. We demonstrate the utility of the tool with a
multiscale model of Pseudomonas aeruginosa biofilm formation that incorporates both an agent-based model (ABM)
and constraint-based metabolic modeling. The hybrid model correctly recapitulates oxygen-limited biofilm metabolic
activity and predicts increased growth rate via anaerobic respiration with the addition of nitrate to the growth media.
In addition, a genome-wide survey of metabolic mutants and biofilm formation exemplifies the powerful analyses that
are enabled by this computational modeling tool.
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Introduction

Multiscale modeling is a broad class of hybrid modeling
techniques that attempt to represent physical systems that
span multiple spatial or time scales. Spatial and time scales are
particularly interdependent in biological applications and there
is increasing utility for multiscale models that capture this
interdependency [1]. A recent example is a model of vascular
adaptation that combines an agent-based model (i.e. cellular
level) with a continuum biomechanical model (i.e. tissue level)
[2,3]. Using this model, Hayenga et al. identify causal factors in
arterial adaptation to sustained increases in blood pressure.
These predicted factors are active at different spatial scales
and include cell growth and tissue remodeling. This remodeling
in turn occurs as a function of the changes in production and
removal of collagen and smooth muscle cells due to
hemodynamically-induced stresses, emphasizing the highly
multiscale nature of the biological system and the need for
mathematical models that integrate data from disparate spatial
and temporal scales [2].. Multiscale models show significant
potential for representing the inherent complexity of biological
systems, generating testable hypotheses to understand
fundamental mechanisms.

The hybrid nature of many multiscale models creates a need
for software tools in which to implement the models. Different
software packages offer unique strengths (e.g. R provides vast
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statistics capabilities [4], NetLogo provides a rich environment
for agent-based modeling [5], and MATLAB offers a wealth of
engineering tools [6]). It is often advantageous to implement
separate portions of a model in the most appropriate language
and to combine the results dynamically. Dynamically combining
model results between software platforms can be achieved with
packages written for that purpose. Examples of current
packages that perform this function are the NetLogo-R
extension by Thiele and Grimm [7] and R.matlab by Bengtsson
[8]. As multiscale models are built with increasingly diverse
computational components, more tools will be needed that
facilitate dynamic integration of disparate software tools.

Here, we present a novel software tool that fills a need in
biomedical and biological multiscale modeling. The MATLAB-
NetLogo extension (MatNet) provides new functions within
NetLogo that allow data passing between NetLogo and
MATLAB, and the calling of any valid, one-line MATLAB
commands from within NetLogo. The need for this tool is
demonstrated by publications that have used NetLogo and
MATLAB (as the most appropriate software platforms) to
implement biomedical multiscale models [2,3,9]. The new tool
presented herein facilitates future dynamic integration of these
software platforms.

To demonstrate the utility of this tool, we present a multiscale
model of Pseudomonas aeruginosa biofilm growth. P.
aeruginosa is a common opportunistic pathogen that forms
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biofilms on medical implants [10] and in the lungs of cystic
fibrosis patients [11], and is a model organism for biofilm
formation. In our model, we combine an existing ABM of biofilm
development [12,13] with a genome-scale metabolic model of
P. aeruginosa metabolism [14]. This biofilm model is multiscale
in its incorporation of biofilm-level spatial information such as
structural remodeling and nutrient diffusion, as well as cell-level
details of metabolic functions such as nutrient uptake and
growth yields. The ABM, originally developed in C++, was
implemented in NetLogo to exploit the existing framework and
flexibility it offers as an ABM platform [15]. Metabolic modeling
was implemented in MATLAB as done previously [16]. The
resulting model reproduces known biofilm structure from limited
oxygen diffusion. The model further demonstrates the utility of
MatNet by generating hypotheses for how gene-level
perturbations influence biofilm structure.

Methods

Agent-Based Model of Biofilm Structure

Here, we briefly describe the structure and processes of the
ABM and refer the reader to our publicly-available model as
well as corresponding citations for further details. The rules for
the two-dimensional ABM of biofilm growth were implemented
in NetLogo essentially as described by Pizarro et al. [12,13].
The purpose of the ABM is to capture emergent biofilm
structure that results from growth and dispersion of individual
bacterial cells. The biofilm is represented as a two-dimensional
cross-section divided into squares. Each square represents a
region of liquid growth media. As such, each square contains
variables that represent nutrient levels in that area, and
nutrients are allowed to diffuse from higher to lower
concentrations. Each agent in the simulation represents
bacteria. Agents diffuse randomly unless adjacent to “biofilm”.
“Biofilm” is defined in the simulation as agents directly adjacent
to the bottom surface of the simulated space, or adjacent to a
chain of agents that terminates at the bottom surface. Agents in
the biofilm do not move except as a result of division. Bacterial
agents undergo binary division once the nutrients consumed
exceed a pre-defined threshold. Only one agent may occupy a
square; therefore, once an agent divides into two, the new
agent is placed in a randomly-selected adjacent square, and if
that square is occupied, the next agent is displaced to a
random adjacent square. This process, termed “shoving”, is
continued until no square contains more than one agent.

The key difference in our model from the Pizarro et al.
formulation is a change from representative “food particles” to
concentrations of all 105 extracellular metabolites used in the
genome-scale metabolic network reconstruction of P.
aeruginosa [14]. Each metabolite diffuses independently as a
function of the molecular mass. Metabolites diffuse more slowly
through regions of the ABM space defined as biofilm (60% of
aqueous rate for gases, and 25% of aqueous rate for all other
metabolites) [17].

The multiscale modeling of the biofilm is an iterative process
involving analysis in MATLAB and NetlLogo. First, constraints
on exchange fluxes for the FBA problem in MATLAB are scaled
to local nutrient concentrations. This simplifying assumption
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can be relaxed with more detailed flux constraints implemented
as such data is available. However, these simplified constraints
are sufficient to illustrate the value of the modeling tool
presented here. After solving the FBA problem in MATLAB,
local nutrient concentrations are calculated and returned, along
with the growth rate, to the NetLogo environment. The nutrient
concentrations are wupdated in NetLogo, agents with
accumulated biomass divide in two and rearrange according to
the shoving rule, nutrients diffuse, and the new nutrient
concentrations are passed to MATLAB. These steps constitute
one time step of the simulation, which simulates a 5 minute
interval of biofilm growth. A single simulation of 200 time steps
simulates biofilm growth over a period of ~17 hours.

Our implementation of the biofilm model in NetLogo displays
the same behavior as the Pizarro et al. model (Figure S1).
Because the ABM was independently validated previously
[12,13], it will not be further validated here except as pertains to
the hybrid metabolic and agent-based models.

Genome-Scale Metabolic Network Reconstruction

P. aeruginosa metabolism was modeled using the previously
published genome-scale metabolic reconstruction [14]. The
model was analyzed with functions from the COBRA Toolbox
[18] implemented previously in MATLAB. The COBRA Toolbox
utilized the Gurobi optimizer [19]. Metabolite concentrations in
each occupied square of the ABM were used to constrain
uptake rates in the model. Discrete solutions for each cell
agent at each time point were found using flux balance analysis
(FBA) [20]. Cell agent biomass and metabolite concentrations
were updated using dynamic FBA [21].

Metabolic Model Constraints

Initial conditions simulating glucose minimal media were
generated by including negative, non-zero lower bounds for the
extracellular metabolite exchange reactions: Iron (Fe and Fe;,),
Oxygen (0O,), D-Glucose (CgH;,04), Cadmium (Cd), Carbon
Dioxide (CO,), Sulfate (H,O,S), Copper (Cu), Water (H,0),
Manganese (Mn), Cobalt (Co), Ammonium (NH,+), Sodium
(Na), Nitrogen (N,), Magnesium (Mg), Orthophosphate
(H,O,P), and Zinc (Zn). For the anaerobic respiration
simulation, an additional negative, non-zero lower bound was
included for the Nitrate (HNO;) exchange reaction. The
metabolic model and accompanying constraints were
previously described [14] and were not further validated here
except as pertains to the hybrid model.

Software Availability

MatNet, example code, and the biofilm model are available
from:

http://bme.virginia.edu/csbl/downloads.php

Simulation Specifications

Simulations were performed on a 64-bit Sony Vaio laptop
with 6 GB of RAM and a 2.8 GHz dual-core processor running
Windows 7, NetLogo version 5.0.3 and MATLAB version
2012b. The duration of single simulations of biofilm growth
ranged from 5 to 15 hours, depending on model settings.
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Figure 1. MATLAB-NetLogo Extension (MatNet) diagram and example code. MATLAB and NetLogo are both Java-based
applications and are able to pass data via the Java Serial library. The user is insulated from the details of data passing, and can call
MATLAB functions (native or user-defined) from within NetLogo using simple commands. In the example above, a list of numbers is
created in NetLogo and passed to MATLAB where the numbers are summed. The answer is retrieved from MATLAB and displayed

in NetLogo.
doi: 10.1371/journal.pone.0078011.g001

Results and Discussion

Novel Multiscale Modeling Tool

MatNet was written in Java, utilizing the NetLogo Extensions
APl (Figure 1). NetLogo and MATLAB pass data using the
Java Serial library. MATLAB is opened as a background
process and runs a server script that is an implementation of a
finite state machine. The architecture was based on R.matlab
[8] and the NetLogo-R extension [7]. This extension adds nine
commands or “primitives” for sharing and evaluating data with
MATLAB from within NetLogo (see “User Guide” in Material
S1). The resulting extension provides a simple interface
between the NetLogo and MATLAB platforms that allows users
to exploit the strengths of both languages in their models
(Figure 1). While the following multiscale analysis is a
biomedical example, this tool could readily find application in
other fields for which integrated MATLAB and NetLogo
analyses are of value such as ecology [31], finance [32], or
behavioral science [33].

Individual simulations were performed over 5 to 15 hours.
We evaluated the computational time for each of the functions
in a given simulation. A large fraction of the simulation run time
is claimed by the metabolite diffusion simulations in NetLogo
and the repeated FBA simulations in MATLAB. The slower run
time of these steps is expected, given that both processes are
called frequently during each time step, and both are
computationally intensive. While an appreciable portion of the
computational time was spent passing data between MATLAB
and NetLogo, this computational time is attributable to the high
frequency with which these functions were called. The passing
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of data between the two environments via MatNet did not add
undue computational overhead. Among all the functions in the
simulation, each MatNet function was listed among the fastest
on a per-function-call basis.

Oxygen-Limited Metabolic Activity in a P. aeruginosa
Biofilm Model

The ABM correctly recapitulates oxygen-limited metabolic
activity in a biofilm. Biofilm formation was simulated under
glucose minimal media conditions. Metabolic activity was
defined as an increase in biomass (> 0.01 mass dry weight)
associated with a particular agent in the two-dimensional
space. Metabolites were allowed to diffuse in from the top to
mimic fresh media being washed over the biofilm as done by
Pizarro et al [12,13]. Oxygen at the top was held at a constant
0.21 mM [21]. All simulations showed reduced metabolic
activity in the interior of the biofilm, and increased metabolic
activity at the surface. An evaluation of the exchange reaction
fluxes in the metabolic models indicated oxygen as the limiting
metabolite (Figure 2B), consistent with findings from Xu et al.
who report oxygen-limited growth in P. aeruginosa biofilms
(Figure 2C) [22]. Furthermore, metabolic activity (as measured
by protein synthesis) is restricted to a layer of cells at the
biofim surface (Figure 2C) as previously reported [22].
Therefore, this model of biofilm growth correctly recapitulated
known characteristics of P. aeruginosa biofilm.
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Figure 2. Oxygen-dependent metabolic activity in P. aeruginosa biofilms. (A) Progression of biofilm growth in a multiscale
model with the associated time step (time steps represent 5 minute intervals). Each circle represents a cluster of P. aeruginosa
cells. (B) Snapshot from multiscale biofilm model in glucose minimal media at time step 2000. (C) in vitro P. aeruginosa biofilm
cross section grown in glucose MOPS media for four days (modified from Xu et al. [22]). The oxygen gradient through the biofilm
limits metabolic activity. Only with high O, (near the surface) can cells actively synthesize protein. The multiscale model
recapitulates this pattern of oxygen-limited metabolic activity throughout the biofilm.

doi: 10.1371/journal.pone.0078011.g002
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Figure 3. ABM simulations of nitrate-dependent growth rates. (A) Predicted biofilm formation in the presence of nitrate (NO;)
shows higher proportion of active cells when compared to glucose minimal media control (Figure 2). (B) Predicted biofilm growth
with and without nitrate (3 independent runs each). Addition of nitrate is predicted to increase biofilm growth rate by enabling
anaerobic growth deeper in the biofilm. Note that for simulations in glucose minimal media (blue lines), slower growth increases the
impact of random cell spacing and resultant heterogeneous nutrient usage such that the model resulted in differing final cell counts

for the same 15 hour simulation times.
doi: 10.1371/journal.pone.0078011.g003

Nitrate Promotes Anaerobic Respiration and Increased
Biofilm Growth Rate

Our multiscale model recapitulated increased biofilm growth
rate in nitrate-supplemented media. Addition of nitrate (NO;) to
the in silico growth media increased biofilm growth rate by
approximately 10-fold, as determined by the change in cell
agent counts over the first 263 time steps (Figure 3B). Nitrate
relieves the oxygen limitation in P. aeruginosa by allowing
anaerobic growth via denitrification [22,23]. Denitrification, or
anaerobic respiration, is the process whereby nitrate (NO;) is
reduced to dinitrogen (N,), and nitrate replaces gaseous
oxygen as the terminal electron acceptor. Anaerobic respiration
prolongs active growth deeper in the biofilm after oxygen is
removed from the microenvironment. The model prediction of
increased growth rate was subsequently validated via literature
search; Borriello et al. report increased biofilm growth with the
addition of nitrate [24]. Although a direct comparison is not
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possible due to different growth conditions than those
simulated in the model, the results reported by Borriello et al.
serve as a qualitative validation for the model predictions. This
validated model prediction demonstrates that hybrid ABM-
metabolic models can display predictive emergent behavior
that is physiologically relevant.

in silico Gene-Deletion Screen

An in silico gene-deletion screen predicts the influence of
individual genes on biofilm growth. Genes were deleted from
the metabolic model by constraining reaction flux to zero. All
possible single-gene deletions were evaluated in MATLAB
using FBA. From the results of this analysis, a subset of
metabolic models was selected to represent a range of growth
phenotypes (lethal, sub-optimal and wild-type). A multiscale
model was generated for each mutant background selected
and was evaluated for 200 time steps on nitrate-supplemented
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Figure 4. Single-gene deletion screen. Models of several single-deletion mutants were evaluated for biofilm formation after 200
time steps in nitrate-supplemented glucose minimal media. The wild-type (WT) model serves as a positive control. AlysS is known
to be lethal, and provides a negative control. As such, the six initial cells seeded in the model never produced any additional
biomass. (A) Snapshots of each multiscale simulation at time step 200. (B) Proportions of active and inactive biomass for each ABM
at time step 200. AsdhD, AaceE and AatpD grew more slowly than wild-type. Agcd and Apgm appeared to have significant growth
defects (final biomass only slightly more than that initially seeded). This screen is an example of a powerful analysis that is enabled
by the multiscale simulations integrating spatial modeling with NetLogo and the metabolic network analysis performed in MATLAB.

doi: 10.1371/journal.pone.0078011.g004

glucose minimal media (Figure 4). Qualitative behavior was
clearly evident by time step 200, which was chosen
consequently as a stopping point. Note that with MatNet a
genome-wide gene deletion screen and the resulting
phenotypic differences of a multicellular system can quickly
and easily be explored, thus providing useful hypotheses to
guide experimental design.

We present the hybrid model results for nine models: wild-
type, AsdhD, AnasA, Agcd, AwbpL, AaceE, Apgm, AatpD, and
AlysS. The wild-type model served as a positive control, while
AlysS served as a negative control (lysS encodes a tRNA
synthetase and is an essential gene on nitrate-supplemented
glucose minimal media). Reduced growth was predicted for
AsdhD, AaceE and AatpD. sdhD plays a role in aerobic
respiration [25] and its deletion restricts growth by limiting cells
to anaerobic respiration. atpD encodes a subunit of ATP
synthase. aceE encodes a pyruvate dehydrogenase and its
deletion uncouples the citric acid cycle from glycolysis.
Severely restricted growth (only slightly more biomass was
found at time step 200 than what was initially seeded into the
system) was predicted for Agcd and Apgm. gcd encodes a
glucose dehydrogenase and de Werra et al. report that on
glucose minimal media, mutant strains without gcd initially grow
very slowly [26]. pgm encodes a phosphoglycerate mutase.
The AnasA model is of interest because nasA encodes a
nitrate transporter, and yet the model predicts near-wild-type
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growth on nitrate-supplemented media. Further investigation
showed that the metabolic reconstruction contains two
independent nitrate transport pathways. In the AnasA model,
nitrate is taken into the cell via a separate nitrate ABC
transporter encoded by PA2294, PA2295, PA2296, or PA2327,
PA2328, PA2329. The results of the AnasA model are of
further interest because they highlight the utility of this
multiscale modeling approach to explore the interplay of gene
function and biofilm microenvironment heterogeneity. While
some model predictions were validated through literature
search, the unsupported predictions stand as hypotheses
awaiting experimental validation. The purpose of this screen is
simply to demonstrate the power of our hybrid model to survey
genome-wide, gene-level perturbations on biofilm-level
phenotype.

Conclusion

This model framework correctly recapitulated known biofilm
characteristics and yielded useful predictions that may guide
future experimental design. Future development of the models
presented here could include an accounting of extracellular
polymeric substances in the ABM [27-30], the addition of rules
linking specific genes to biofilm growth, and the inclusion of
gene regulation in the metabolic model. Another potential
biological process highly amenable to hybrid modeling using
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MatNet is quorum sensing, in which spatial information of the
cells contributes to the signaling and gene regulation of the
bacteria. Models of quorum sensing could also be integrated
with the biofilm model, facilitating an interrogation of the
transition from a planktonic to biofilm state. The current work
demonstrates that even simplified multiscale models can
capture important biological behaviors that would be difficult or
impossible to predict otherwise, and that our tool enables
powerful cross-platform modeling that could be of value in
multiple biomedical and other applications.

Supporting Information

Figure S1. Oscillating biofilm thickness. Our
implementation of the agent-based model as described by
Pizarro et al demonstrates the same oscillatory behavior that
they report. This is due to the degradation of the lower levels of
biofilm over time, which eventually causes entire segments of
biofilm to slough off, leading to cyclic variation in biofilm
thickness.
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