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Regional Brain Atrophy and Functional Connectivity
Changes Related to Fatigue in Multiple Sclerosis
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Abstract

Fatigue is one of the most frequent symptoms in multiple sclerosis (MS), and recent studies have described a
relationship between the sensorimotor cortex and its afferent and efferent pathways as a substrate of fatigue. The
objectives of this study were to assess the neural correlates of fatigue in MS through gray matter (GM) and white
matter (WM) atrophy, and resting state functional connectivity (rs-FC) of the sensorimotor network (SMN). Eighteen
healthy controls (HCs) and 60 relapsing-remitting patients were assessed with the Fatigue Severity Scale (FSS).
Patients were classified as fatigued (F) or nonfatigued (NF). We investigated GM and WM atrophy using voxel-based
morphometry, and rs-FC changes with a seed-based method and independent component analysis (ICA). F patients
showed extended GM and WM atrophy focused on areas related to the SMN. High FSS scores were associated with
reductions of WM in the supplementary motor area. Seed analysis of GM atrophy in the SMN showed that HCs
presented increased rs-FC between the primary motor and somatosensory cortices while patients with high FSS
scores were associated with decreased rs-FC between the supplementary motor area and associative
somatosensory cortex. ICA results showed that NF patients presented higher rs-FC in the primary motor cortex
compared to HCs and in the premotor cortex compared to F patients. Atrophy reduced functional connectivity in SMN
pathways and MS patients consequently experienced high levels of fatigue. On the contrary, NF patients experienced
high synchronization in this network that could be interpreted as a compensatory mechanism to reduce fatigue
sensation.
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Introduction

Fatigue is defined as an overwhelming sense of tiredness,
lack of energy, or exhaustion [1]. It is one of the most disabling
symptoms in patients with multiple sclerosis (MS), affecting
between 50% and 80% of them [2]. Fatigue experienced by
patients with MS seems to be distinct from fatigue in healthy
individuals or those with other neurological diseases [3], and
carries a major physical and psychological burden [4]. The
pathogenesis of fatigue in MS is not fully understood, likely due
to the multifactorial etiology of fatigue in these patients [4].

Magnetic resonance imaging (MRI) studies have contributed
to describe possible factors related to this disabling symptom.
Although initial studies yielded conflicting results [5,6], recent
reports have described an association between fatigue and
higher lesion load as well as gray matter (GM) atrophy [7-11].
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Regarding whether or not lesion load or GM atrophy in specific
brain areas could play a role in the occurrence and clinical
characteristics of fatigue, volumetric studies have described
alterations in frontal motor areas and certain subcortical areas,
such as the thalamus and basal ganglia, that may be especially
relevant [12—-14]. Accordingly, it has been proposed that MS
lesions at circuits relating to motor and premotor functions, and
their afferent and efferent connections with several subcortical
areas, could be the main substrate of fatigue in this clinical
population [13]. Evidence for such dysfunction of the motor
networks has been also provided by functional MRI (fMRI)
studies in which fatigued patients showed increased activation
in those circuits while performing a motor task [15,16]. More
recently, these studies have been devoted to exploring patterns
of spontaneous and synchronized activity in different brain
regions during resting-state fMRI. Activity of these resting-state
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networks (RSNs) resembles that of neuroanatomical networks
involved in specific sensory, motor, and cognitive functions,
and it is thought that this activity does not only reflect intrinsic
brain functional organization but also serves to stabilize brain
ensembles [17]. One of the RSNs is the sensorimotor network
(SMN), which is related to functional activity in the
sensorimotor system and is therefore a network that may be
relevant to the emergence of fatigue-related symptoms.
Although activity of the SMN has been studied in MS patients
in relation to their motor impairment [18-20], there are no
studies addressing a possible relationship between SMN
synchronization and fatigue in these patients.

We hypothesized that variability in the organization and
activity of motor networks could be related to the fatigue
symptoms observed in MS patients. To test this hypothesis, we
applied VBM and connectivity analyses on the RSNs trying to:
1) observe possible differences between fatigued (F) and
nonfatigued (NF) patients compared to healthy controls (HCs)
in GM and white matter (WM) volume, and their possible
relationship with scores on an assessment of fatigue; 2)
evaluate if the relationship between structural damage in motor
areas and functional connectivity alterations within the SMN
may account for fatigue; and 3) discern possible differences
among the three groups of the study in intrinsic resting-state
functional connectivity (rs-FC) of the SMN.

Materials and Methods

Participants

We recruited 60 relapsing-remitting MS patients diagnosed
according to the McDonald criteria [21] and 18 HCs with no
previous history of neurological dysfunction. Recruited patients
had no history of neurological or psychiatric disorders other
than MS, and no receiving steroids-based treatment or
experiencing a clinical relapse in the previous 2 months or
other concomitant therapy as antidepressant or therapy for
fatigue. MS disability was evaluated with the Expanded
Disability Status Scale [22] and fatigue was assessed using the
Fatigue Severity Scale (FSS) [23]. Depression symptomatology
was assessed with the Chicago multiscale depression
inventory (CMDI). According to previous studies [10],, patients
who obtained an FSS score of greater than or equal to 4 were
considered F (N = 32), whereas those with an FSS score of
less than 4 were considered NF (N = 28).

Standard protocol approvals and patient
consents. Approval was received from the local ethical
standards committee on human experimentation of Universitat
Jaume | and Hospital General and written informed consent
was obtained from all subjects.

MRI Acquisition

The fMRI session consisted of resting-state data acquired on
a 1.5 T scanner (Siemens Avanto, Erlangen, Germany). A total
of 270 volumes were recorded over 9 minutes using a gradient-
echo T2*-weighted echo-planar imaging sequence (TR/TE =
2000/30 ms, matrix = 64 x 64 x 30, voxel size = 3.5 x 3.5 x 4.02
mm, flip angle = 90°). Participants were instructed to keep their
eyes closed, stay motionless and relaxed without falling asleep,
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and think of nothing in particular. Prior to the functional
sequences, a sagittal high-resolution three-dimensional (3D)
T1-weighted sequence was acquired (TR = 11 ms, TE = 4.9
ms, FOV = 24 cm, matrix = 256 x 224 x 176, voxel size =1 x 1
x 1 mm).

Lesion Volume and Brain Volume Measurements

GM and WM volumes, and intracranial volume (ICV) for
every participant were obtained from 3D T1 images using the
unified segmentation approach of Statistical Parametric
Mapping (SPM) 8 software (Wellcome Trust Centre for
Neuroimaging, London, UK).

In all patients, T1-hypointense lesions were manually
identified and were semiautomated painted as regions of
interest (ROIs) with the Jim software (Version 5.0, Xinapse
Systems, Northants, UK; http://www.xinapse.com) using the T1
sagittal images converted to axial. We used the T1 acquired
images as previously described by Ceccarelli et al., (2012) [24]
to be more precise detecting the lesions because in this case,
176 images were acquired. Lesion masks for each patient were
created (transforming the ROIs into independent images) using
the same Jim software and then binarized using ImCalc
module in SPM v.8. We also created lesion probability maps
from all the 3D binary masks using a threshold of 0.1, showing
voxels in which a lesion was presented in at least 10% of the
patients [25].

After this, we used Lesion Filling tool [26] of the FMRIB
Software Library (FSL, www.fmrib.ox.ac.uk/fsl) [27]. This tool
takes the binary lesion masks together with the T1 sagittal
images and creates a new structural image with lesion areas
“filled” with intensities of neighborhood white matter voxels.
These new images were used to improve the segmentation
process of VBM analysis to obtain a more accurate GM and
WM volumes.

Then images were reoriented along the anterior-posterior
commissure. Optimized VBM was performed on the 3D lesion
filled images using Diffeomorphic Anatomical Registration
Through Exponential Lie Algebra (DARTEL) included in SPM v.
8.The reoriented images were segmented into GM, WM, and
cerebrospinal fluid images in native space, and then generated
by a rigid transformation. The resolution of the aligned images
was specified as 1.5 x 1.5 x 1.5 mm3. The study-specific GM
and WM templates were then created by the aligned images
from all patients and controls. The procedure began with the
generation of an original template, computing the average of all
aligned data, followed by the first iteration of the registration for
each participant in turn. Thus, a new template was created and
the second iteration began. After six iterations, the template
was generated, which was the average of the DARTEL
registered data. During iterations, all images were warped to
the template, yielding a series of flow fields and parameterized
deformations, which were employed in the modulation step.
Since this was processed in native space, it was necessary to
transform all the normalized, modulated data into Montreal
Neurological Institute (MNI) space. After the space
transformation, all these images were smoothed using an
isotropic Gaussian kernel with 8-mm full width at half
maximum.
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The distribution of brain atrophy and differences among
groups were assessed using an ANCOVA for GM and WM,
including age, gender, and ICV as nuisance covariates. Finally,
linear regression analyses were used to assess the relationship
between WM and GM atrophy and FSS scores in all MS
patients as a whole but also in F and NF patients separately.

For all analyses, we used a family-wise error correction for
multiple comparisons at the cluster level (p < .05) determined
by Monte Carlo simulations conducted with the AlphaSim utility
in REST software (http://www.restfmri.net/), implementing a
voxel-wise threshold of p < .001 in combination with a cluster-
size criterion of 132 voxels for GM and 146 voxels for WM [28].

RSN Analysis

The rs-FC analysis was performed with two methods: a
seed-based rs-FC method using the GM atrophy in
sensorimotor areas as seeds to study whether the structural
change causes a functional change in these areas, and
independent component analysis (ICA) to show the differences
in rs-FC of the network associated with the SMN. Both
methods required specific preprocessing that is described in
the supplementary material.

Seed-Based Rs-FC Analysis

We tested the relationship between GM atrophy and rs-FC
using regions of interest obtained in the VBM results
(specifically in the contrast between F patients and HCs) in
areas that we considered part of the sensorimotor cortex that
includes the bilateral supplementary motor area (SMA), lateral
primary motor cortex (PMC), and bilateral thalamus (see VBM
results and seed-based Rs-FC results). After preprocessing,
these regions of interest were resliced to the same
normalization space of rs-fMRI data for subsequent rs-FC
analysis. We computed voxel-wise rs-FC maps to disentangle
the networks evoked by the seed regions. This method allowed
us to study the rs-FC (Pearson’s correlation) of the seed region
with all other voxels in the whole brain for each participant.
Individual r-maps were normalized to z-maps using Fisher's Z
transformation. A one-sample t-test for each region was
performed by entering the z-maps to detect brain areas
showing significant rs-FC across participants and to obtain
functional connectivity maps for each group (see seed-based
Rs-FC results). To examine the changes in rs-FC between
groups we performed a between-subjects ANOVA. Finally, we
examined a possible relationship between rs-FC and FSS
scores using a regression analysis. To avoid a possible
confounding effect due to excessive head motion [29], we
calculated the mean FD [30] using DPARSF (see
Supplementary information), which was used as a covariate in
each and all ANOVAs used to evaluate between-groups
comparisons. We also performed an ANOVA with the mean FD
to assess possible differences in head motion between the
three groups.

Rs-FC Analysis of RSNs

Intrinsic activity measured with rs-fMRI is organized in a
limited number of RSNs and this finding has been replicable
across studies [31,32]. To obtain these predefined RSNs, we
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performed an ICA for all participants, implemented in Group
ICA of fMRI Toolbox (GIFT) software (http://
icatb.sourceforge.net) [33]. A group-level spatial ICA using an
infomax ICA algorithm [34] was utilized to extract 20
independent components (ICs). We identified one IC as the
SMN (see Results and supplementary material) and used this
RSN to show the differences in rs-FC of the network
associated with motor areas among groups with a between-
subjects ANOVA.

All rs-FC results were presented using family-wise error
corrected for multiple comparisons at the cluster level (p < .05)
determined by whole-brain Monte Carlo simulations conducted
with AlphaSim implemented in REST (voxel-wise threshold of p
< .005; cluster-size criterion of 12 voxels).

Results

Table 1 summarizes demographic, clinical, and MRI
characteristics of each group of participants. ICV was
significantly larger in HCs than in both subgroups of MS
patients. On the other hand, F patients had higher scores in the
EDSS scale as well as in all CDMI subscales. F patients
exhibited higher scores than HC in all CDMI scales except in
that measuring vegetative symptoms. In addition, no significant
differences head motion values between groups (p > 0.10)
were observed. FSS and EDSS scores were not significantly
correlated (F patients: rho=0.062, p=0.73; NF patients: rho=
0.16, p=0.39).

VBM Results

Compared to HCs, NF patients exhibited a higher degree of
GM atrophy in the right paracentral gyrus (SMA), different
areas of the bilateral temporal and occipital lobes, the right
precuneus, and bilateral thalamus (see Figure 1A). Compared
to the HC group, F patients exhibited GM atrophy in the
paracentral gyrus (SMA), bilateral precentral gyrus (PMC),
bilateral occipital lobe, precuneus, and posterior cingulate
gyrus (see Figure 1B). Differences between both patient
subgroups were observed in the left cerebellum (MNI -11 -74
-39, k = 379, t = 4.02) where F patients showed a reduction of
GM volume compared to NF patients (see Figure 1C). No
differences were observed in the reverse contrasts.

In comparison to the HC group, WM structural changes in NF
patients achieved statistical significance in several WM areas
of the bilateral frontal lobe, right middle cingulate gyrus,
bilateral posterior cingulate gyrus, bilateral temporal and
occipital lobes, around the left thalamus, and bilateral corpus
callosum (see Figure 1A). Compared to HCs, F patients
showed WM alterations that extended into a larger number of
brain regions in the frontal (including the motor areas and
insula), temporal, occipital, and parietal lobes. F patients also
showed WM atrophy around the bilateral thalamus, bilateral
corpus callosum, and WM of cingulate gyrus (anterior, middle,
and posterior parts), and WM of the bilateral brainstem, and
cerebellum (see Figure 1B). On the other hand, compared to
the NF group, F patients showed WM atrophy in left frontal
areas (k = 1381) that included the left medial frontal gyrus of
the SMA (MNI -9 5 55, t = 4.55), left superior frontal gyrus (MNI
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Table 1. Main demographic, clinical and MRI characteristics from all participants.

HC n=18 NF n= 28 F n=32 HCvs.NF HCvs.F NFvs.F
Gender (male / female) 10/8 10/18 11/21 n.s. n.s. n.s.
Age mean (SD) [range] 31.06 (5.67) [22-44] 34.96 (5.87) [20-44] 37.72 (5.90) [22-47] n.s. .001 n.s.
Years of evolution disease mean (SD) [range] 5.14 (3.69) [1-14] 7.44 (5.15) [1-14] n.s.
FSS mean (SD) 2.21(0.96) 5.6 (0.85) .000
EDSS mean (SD) [range] 1.96 (1.20) [0-5] 3.20 (1.68) [1-6] .002
CMDI Mood Scale mean (SD) 22 (7.44) 21.21 (7.04) 32.14 (12.11) n.s. .003 .000
CMDI Evaluative Scale mean (SD) 17 (3.76) 17.14 (4.2) 25.41 (10.1) n.s. .001 .000
CMDI Vegetative Scale mean (SD) 32.11 (8.67) 25.75 (7.21) 38.59 (10.52) n.s. n.s. .000
CDMI Total Score mean (SD) 71.11(16.02) 64.11(16.23) 96.14 (29.90) n.s. .002 .000
T1 LV (ml) mean (SD) 3.16 (3.97) 6.03 (14.02) n.s. n.s.
ICV ml mean.(SD) 1261.24 (102.63) 1141.34 (121.98) 1101.16 (144.74) .011 .000 n.s.

Abbreviations: HC = healthy controls; NF = non fatigued; F = fatigued; CMDI = Chicago multiscale depression inventory; LV= lesion volume; ml = milliliters: intracranial

volume=ICV; n.s= non significant
doi: 10.1371/journal.pone.0077914.t001

-14 14 55, t = 3.99), left precuneus (MNI -18 -71 24, t= 3.6, k =
273), bilateral brainstem (right, MNI 3 -24 -40; left, MNI -2 -24
-40), and WM of the left cerebellum (MNI -12 -44 -44; k = 2976;
see Figure 1C). No differences were observed in the reverse
contrasts. For further details see Table S1 and Table S2.

The regression analysis showed that high FSS scores were
associated to reduced WM volumes (that is, with a significant
degree of atrophy) in the left SMA (MNI -11 -20 50 r=-.41) see
Figure 1D.

Seed-Based Rs-FC Results

We selected four regions of interest within sensorimotor
brain areas that differed between the F group and controls in
the VBM analyses (see Figure 2A) and we used them as seeds
to perform rs-FC analyses. The functional connectivity maps
obtained for each group in each seed appear in Figure 2B.
Results of comparisons among groups only showed that MS
patients presented decreased of rs-FC between the left PMC
(MNI -47 -15 41; t= 4.15, k= 961) and left primary
somatosensory cortex (MNI -42 30 27; t= 4.22, k= 41)
compared to controls (see Figure 2C). No other differences
among groups were observed.

Seed regression analysis within MS patients using FSS
scores as a covariate of interest showed that higher FSS
scores were associated with lower rs-FC between the bilateral
SMA (MNI 8 -21 48) and bilateral PMC (MNI 3 -39 66 and -6
-39 66; r = -.39; see Figure 2D).

Results of Rs-FC Analysis of RSNs

The RSN of intrinsic connectivity was constructed using ICA,
identifying 8 RSN (illustrated Figure S1 and Table S3). Based
on networks reported in previous studies [31,32,35-37], we
classified 8 RSNs that are reported in the Supplementary
Material. The SMN was selected as the network of interest and
comprised the precentral and postcentral gyri, medial frontal
gyri, SMA, PMC, thalamus, and caudate of the basal ganglia
and cerebellum. Comparison of groups using ANOVA
demonstrated that NF patients showed significantly greater rs-
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FC of the right precentral gyrus and PMC (MNI 63 -4 19 t=
2.87, k= 19) than controls. Compared to F patients, NF also
showed increased rs-FC in the left precentral gyrus, in this
case associated with the premotor cortex (MNI -54 -10 22 t=
3.77, k=24); see also Figure 3). No other differences among
groups were observed.

Discussion

The purpose of the present study was to investigate the
neural correlates of fatigue in people with MS. Our results
indicate that F patients presented more extensive GM and WM
atrophy in areas related to motor functions such as the SMA,
PMC, cerebellum, and brainstem. Another important finding
was that fatigue scores were also associated with rs-FC levels
in the pathways connecting these brain areas involved in
processing sensory and motor information Thus, F patients
displayed decreased levels of rs-FC in these pathways while
NF patients displayed increased levels.

The results provided by the VBM analysis showed that F and
NF patients presented GM atrophy in the SMA, but GM volume
reduction also extended to the PMC as well as to the posterior
part of the cingulate gyrus and cerebellum in F patients. WM
atrophy was more widespread than GM atrophy, but
differences between both patient subgroups were also found in
the SMA and other areas of the SMN. Thus, our findings
confirm the important role of atrophy at the frontoparietal SMN
in the perception of fatigue. This putative relationship had
already been described in previous studies [8,10,38,39] and
now finds further support from the significant correlation
between FSS scores and WM volume reduction in the left
SMA, observed in our study. We additionally found that F
patients presented a reduction of GM and WM volume in other
areas involved in sensory and motor functions such as the
cerebellum and brainstem.

The pathogenesis of fatigue in MS is not well understood,
probably because different factors may influence this symptom
[11]. Nevertheless, it seems reasonable to suggest that atrophy
localized in frontoparietal sensory and frontoparietal motor
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t value

t value

WM volume

FSS score

Figure 1. Overlay map of gray matter (GM; t values in yellow) and white matter (WM; t values in blue) atrophy distribution
and lesion probability maps (t values in red) presented using family-wise error corrected for multiple comparisons. (Monte

Carlo p <.001).

A) Nonfatigued patients compared to healthy controls. B) Fatigued patients compared to healthy controls. C) Fatigued patients
compared to nonfatigued patients. D) Correlation between high Fatigue Severity Scale (FSS) scores and reduction of WM volume in
the left supplementary motor area in all MS patients. Images are presented in neurological convention. See text for further details.

doi: 10.1371/journal.pone.0077914.g001

networks could produce retrograde degeneration of axons that
results in dysfunctional connections within the SMN. We tested
this hypothesis by analyzing rs-FC within four brain areas
belonging to the SMN at which F patients exhibited a significant
degree of atrophy. Rs-FC between the left PMC and left
primary somatosensory cortex was reduced in F and NF
patients compared to HCs. Further, when using FSS scores as
a covariate of interest, we identified an inverse correlation
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between fatigue levels and rs-FC between the bilateral SMA
and bilateral PMC. The SMA and PMC are involved in
processes related to the control of movement and previous
studies have described in the SMA higher activity in F than in
NF patients during the execution of motor tasks [40].

We extended our analysis of rs-FC to all pathways related to
the SMN and not only to areas where GM atrophy was
observed in F patients. Interestingly, we found that compared
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t value

Bilateral SMA

B Bilateral PMC

Connectivity value
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Figure 2. Results of the seed analysis presented using family-wise error corrected for multiple comparisons (Monte Carlo
p <.005, k = 12). A) Regions of interest obtained from the volumetric results that were part of the sensorimotor network: bilateral
supplementary motor area (SMA), left primary motor cortex (LPMC), right primary motor cortex (RPMC), and bilateral thalamus. B)
Maps evoked with a seed region analysis for each group of the study: healthy controls (HC), nonfatigued patients (NF), and fatigued
patients (F). C) ANOVA results of the seed analysis showing decreased of connectivity between the LPMC and left primary
somatosensory cortex (LPSC) in MS patients compared to HC; D) High Fatigue Severity Scale (FSS) scores associated with

decreased connectivity between the bilateral SMA and bilateral PMC in all MS patients. See text for further details.

doi: 10.1371/journal.pone.0077914.g002

not only to F patients but also to HCs, NF patients showed
significant increases of rs-FC between the right precentral
gyrus and PMC as well as between the left precentral gyrus
and premotor cortex. These data converge again with fMRI
studies suggesting a relationship between MS fatigue and brain
activity disturbances in different areas involved with
sensorimotor functions. More specifically, Rocca et al., (2009)
[16] showed that, while performing a complex motor task, MS
patients with fatigue displayed decreased activation of similar
areas where we observed decreased rs-FC, namely the
precentral and postcentral gyri. In this way, and although we
must interpret these results with caution, the increased rs-FC
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observed in NF patients with respect to the other groups
(particularly the HC group) may reflect a compensatory
mechanism associated with subclinical fatigue.

It is important to note that previous studies have suggested
that fatigue in MS patients is also related to structural
abnormalities of the basal ganglia and thalamus as well as their
extensive interconnections with other brain areas [12,39].
Similarly, another study [16] observed increased activation of
the basal ganglia in fatigued MS patients performing a complex
task. According to these precedents, we expected to find
differences between F and NF patients in atrophy, and also rs-
FC in the basal ganglia or thalamus as well as in the cortico-
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Figure 3. Results on the sensorimotor resting-state
network presented using family-wise error corrected for
multiple comparisons (Monte Carlo p < .005, k = 12). A)
Increased synchronization in nonfatigued patients (NF)
compared to healthy controls (HC) observed in the right
precentral gyrus. B) Increased synchronization in NF patients
compared to fatigued (F) patients observed in the left
postcentral gyrus. See text for further details.

doi: 10.1371/journal.pone.0077914.g003

basal ganglia-thalamocortical loops. Although we observed
more atrophy in the thalamus of F than NF patients, these
differences did not reach statistical significance. Moreover, we
did not observe volumetric or rs-FC differences in the basal
ganglia.

There is a possible limitation in our study that might be worth
considering here, which is the fact that F patients displayed
higher EDSS scores than NF patients. However, we do not
think that physical disability might account for the fatigue
differences found between both MS patients subgroups. This
conclusion is based in the fact that we did not find any
correlation between FSS and EDSS scores in any of these
subroups of MS patients. Future studies should be addressed
to observe a possible association between sensoriomotor
alterations and fatigue in a wider sample of MS with different
EDSS scores.

In summary, the present results are unprecedented in
showing a relationship between fatigue and rs-FC changes
related to atrophy. We observed that reduced rs-FC also
extended to other areas of the SMN where no differences in
atrophy were observed between F and NF patients but that
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might be responsible for poor integration of the sensory and
motor pathways. Fatigue sensation seems to be related to
decreased synchronization between the right precentral gyrus
and PMC as well as between the left precentral gyrus and
premotor cortex. Interestingly, enhanced rs-FC in this network
was observed in MS patients reporting low levels of fatigue.
This enhanced connectivity may act as a compensatory and
adaptive functional change necessary to maintain “normal”
vigor sensation in some MS patients.

Supporting Information

Material S1. Resting state networks (RSN) analysis.
(DOC)

Figure S1. Spatial maps of eight resting state networks
(RSNs) construct using independent component analysis
(ICA).
(TIFF)

Table S1. Areas showing differences in gray matter
volume (GM) between groups according to fatigue. Results
are presented at corrected multiple comparisons (Monte-Carlo,
p<0.001), k=132. Abbreviations: NF non fatigued patients, F
fatigued patients, HC healthy controls, R right, L left,
Supplementary motor area (SMA); Primary motor cortex
(PMC).

(PDF)

Table S2. Areas showing differences in white matter
volume (WM) in between groups according to fatigue.
Results are presented at corrected multiple comparisons
(Monte-Carlo, p<0.001), k=146. Abbreviations: NF non fatigued
patients, F fatigued patients, HC healthy controls, R right, L left;
Supplementary motor area (SMA).

(PDF)

Table S3. Anatomical regions of Sensorimotor Network
(SMN) identified on three groups using Independent
Component Analysis (ICA). Corrected at FWE p < 0.05.
Abbreviations: HC = healthy controls; NF = non fatigued; F =
fatigued; R = right; L = left; BA = Brodmann Area.

(PDF)
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