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Abstract

Monitoring and describing the physical movements and body postures of animals is one of the most fundamental
tasks of ethology. The more precise the observations are the more sophisticated the interpretations can be about the
biology of a certain individual or species. Animal-borne data loggers have recently contributed much to the collection
of motion-data from individuals, however, the problem of translating these measurements to distinct behavioural
categories to create an ethogram is not overcome yet. The objective of the present study was to develop a
“behaviour tracker”: a system composed of a multiple sensor data-logger device (with a tri-axial accelerometer and a
tri-axial gyroscope) and a supervised learning algorithm as means of automated identification of the behaviour of
freely moving dogs. We collected parallel sensor measurements and video recordings of each of our subjects
(Belgian Malinois, N=12; Labrador Retrievers, N=12) that were guided through a predetermined series of standard
activities. Seven behavioural categories (lay, sit, stand, walk, trot, gallop, canter) were pre-defined and each video
recording was tagged accordingly. Evaluation of the measurements was performed by support vector machine (SVM)
classification. During the analysis we used different combinations of independent measurements for training and
validation (belonging to the same or different individuals or using different training data size) to determine the
robustness of the application. We reached an overall accuracy of above 90% perfect identification of all the defined
seven categories of behaviour when both training and validation data belonged to the same individual, and over 80%
perfect recognition rate using a generalized training data set of multiple subjects. Our results indicate that the present
method provides a good model for an easily applicable, fast, automatic behaviour classification system that can be
trained with arbitrary motion patterns and potentially be applied to a wide range of species and situations.
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Introduction

The outstanding developments in technology (such as
miniaturization or digital information processing) over the past
few decades have provided scientists with new, yet unexploited
opportunities for studying undisturbed animal behaviour apart
from direct human observation. The application of suitable
animal-borne sensor tags, referred to as bio-logging [1-3] offers
the possibility of collecting physical (e.g., position, movement
patterns) [4-7] and biological (e.g., body temperature, heart
rate) [8,9] data about the tagged animal and/or even its
environment [10-12]. The main original aim of bio-logging was
to take measurements from undisturbed free-ranging wild
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animals in order to find out previously unattainable details
about their lives [6,10,13]. The gathered information proved to
be important in conservation issues [12,14,15], and is even
relevant in the case of domestic animals to help the
improvement of husbandry methods [16-18].

Monitoring and describing the physical movements and body
postures of animals to create species specific ethograms is the
first crucial step towards understanding animal behaviour. With
the help of bio-logging the whole process of studying the
structure of behaviour can become automated. Thus the need
for direct visual observation by skilled human investigators to
generate ethograms could be decreased. This does not only
help to overcome situations when the subject of interest is
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beyond the limits of human vision (e.g., nocturnal, free-ranging
wild animals, working dogs out of sight) but also offers a more
objective way of quantifying animal activity with a significantly
increased amount of available data, enhancing comparison
across individuals and species. Additionally, it opens up new
channels of measurements, e.g., to make interpretations about
the energy expenditure of living creatures [18,13,19-21].
However, this range of new opportunities implies significant
methodological challenges that are yet to be overcome, such
as applying the most suitable type of sensor device(s) and
finding adequate ways of analysing the measured data.

When targeting automated behaviour identification, animal-
attached accelerometers have the potential for being good
indicators and discriminators of a variety of activities.
Accelerometers can measure both static and dynamic body
accelerations (DBA) [6,22] along one [5] or more axes
[6,23,24]. Such instruments have already been successfully
used on a wide range of species by researchers investigating
terrestrial [5,23,25,26], underwater [3,24,27] or even airborne
locomotion [28-31].

Increasing the number of attached sensors enables for a
more detailed monitoring of individual behaviour. One
possibility is to combine an accelerometer with a gyroscope, a
device measuring angular velocity. To the authors’ present
knowledge there have only been a few attempts so far to use
information based on data from both accelerometers and
gyroscopes in order to determine animal movement
characteristics [7,22,32]. However, some evidence already
suggests that gyroscope measurements can @ aid
accelerometer-based movement analysis in dynamic, high-
frequency motion situations [32].

The main advantages of accelerometers and gyroscopes as
sensors for motion analysis are the following: i) they are small,
lightweight, energy efficient and cheap, compared to image-
analysis based motion recognition systems; ii) they can provide
high frequency data about the motion of the subject at up to a
few kHz, compared to e.g., a GPS (Global Positioning System)
with a maximum of 5-10-20 measurements per second; iii)
unlike GNSS (Global Navigation Satellite System) or GSM
(Global System for Mobile Communications) chips that rely on
a complex global infrastructure of satellites or radio stations to
measure the position or velocity of the target, inertial sensors
can function without any external aid. On the other hand,
gyroscope and accelerometer data will always be local, relative
and short term, compared to global position/velocity data, such
as from a GPS. However, taking into account all these
features, we propose that a combined system of accelerometer
and gyroscope allows for the robust identification of behaviour
categories of freely moving animals.

The domestic dog (Canis familiaris) is an ideal subject for
bio-logging experiments because it naturally lives together with
humans. Also, increasing our knowledge about their remote
activities could potentially be used for further improving their
contribution to human needs in various situations (e.g., guard
dogs, search and rescue dogs). Animal-attached tri-axial
accelerometers have been used before to study aspects of
laboratory, companion or working dogs’ behaviour. Most of the
work is linked to veterinary medicine and aims at recording
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locomotor activity rhythms [26,33] to determine the degree of
daily activity [34-36], consequential maintenance energy
requirements [21] or investigating gait patterns [37] as part of
kinematic motion analysis [38]. Preliminary open-field trials on
a few individuals were made to gain sensor information on
dog’s location, movements, orientation, or pose [7,39]. To the
authors’ present knowledge there have been no systematic
investigations using an accelerometer and a gyroscope as an
animal-borne multiple sensor tag aiming at the detailed
automated classification of the behaviour in freely moving
dogs.

The present study is based on a custom-made multiple
sensor data-logger device with a tri-axial accelerometer and a
tri-axial gyroscope [40] originally developed for tracking homing
pigeons [41]. We extended the logger’s software framework to
be used specially for our behaviour tracking purposes. Our
objective was to create automatic ethograms of freely moving
dogs on open field, using supervised learning algorithms
trained with inertial sensor data. We have collected motion data
as well as video recordings of the behaviour of 24 dogs
belonging to two different breeds (Belgian Malinois and
Labrador Retrievers). Videos were coded by a trained human
observer, and her behaviour classifications together with the
sensor data were used to train the support vector machine
(SVM) based supervised learning algorithm. Various validation
experiments were run in order to determine the robustness of
the application and the data base collected.

We hypothesized that behaviour identification would be most
successful when using training data collected from the same
individual. Tests for existing comparable differences across
individuals and breeds (Malinois and Labrador Retrievers) were
targeted as well. We found that our system of the multiple
sensor data-logger and its software framework provides a good
solution for creating an automatic dog ethogram and is
sensitive to individual differences in motion characteristics.

Materials and Method

Ethics statement

Non-invasive studies on dogs are currently allowed to be
done without any special permission in Hungary by the
University Institutional Animal Care and Use Committee
(UIACUC, Eo6tvds Lorand University, Hungary). The currently
operating Hungarian law “1998. évi XXVIII. Toérvény” — the
Animal Protection Act — defines experiments on animals in the
9" point of its 3¢ paragraph (3. §/9.). We also obtained a
written statement (XIV-1-001/526/2012) from the Food chain
Safety and Animal Health Directorate Government Office
based on the decision of the Scientific Ethic Council of Animal
Experiments. According to this statement and the
corresponding definition by law, our non-invasive observational
study is not considered as an animal experiment.

Owners with their dogs from Pannon Search and Rescue
Dog Team and others responding to our advertisement at the
department’s homepage (http://kutyaetologia.elte.hu)
volunteered to participate.
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Subjects

Our subjects were 24 healthy adult dogs from the two
different dog breeds Malinois (N=12, 9 males and 3 females;
age range: 1.5-10 years, mean age: 4.0 years, SD=2.8 years)
and Labrador Retrievers (N=12, 6 males and 6 females, age
range: 1.5-9 years, mean age: 5.3 years, SD=2.2 years). Both
breeds are frequently used in search and rescue missions.
Each individual was examined by a veterinarian prior to the
enrolment to the study and was found to be in healthy body
condition, free of any orthopaedic and neurological disorder.
Additional criteria for enrolment of a dog was being trained
enough to walk without leash freely on open field and perform
several tasks reliably under the guidance of the handler.

Inertial data logger

Inertial data was gathered with a custom-designed miniature
GPS/INS (Inertial Navigation System) logger [40,41] capable of
recording tri-axial accelerometer (+6g, 16 bit, +10 LSB noise)
and tri-axial gyroscope (x 500 °/s, 16 bit, 20 LSB noise) data
at 100Hz, synchronized with GPS data at 10Hz. Loggers were
pre-calibrated with an XSens MTi-G device [42] to compensate
for linear sensitivity, axis misalignment and cross-axis error, but
were not temperature compensated. For this study GPS data
only served as a synchronization method for precise timing and
as an independent measurement source for validation
purposes, using the velocity data. The logger was later
connected to a computer via USB cable and the collected data
was downloaded for off-line analysis.

Data collection (protocol)

Data was collected in Hungary between October 2011 and
April 2012 at 10 different open field locations in Budapest and
in its vicinity. All outdoor terrains were plain and grassy with no
major surface roughness and covered approximately at least
the size of a tennis court.

The data collecting procedure consisted of 4 phases; (1)
Preparation, (2) Sensor synchronisation, (3) Behaviour
recording and (4) Sensor synchronisation. The whole
procedure was repeated from phase 2 to 4 two consecutive
times with each individual on the same occasion separated by
a resting phase of 10-15 minutes.

1. Preparation. The dogs were equipped with the inertial data
logger device by means of a standard adjustable harness
designed and prepared specially for this purpose to fit each
individual appropriately without causing any discomfort during
locomotion. The data logger always stayed at a fixed
anatomical position, dorsally midway between the two scapulae
with its longer side perpendicular to the vertebral column
(Figure 1). A firm plastic case prepared for this purpose was
permanently attached to the harness where the logger could be
placed, fixed and also removed from easily. From five available
loggers we chose randomly for each measurement.

2. Sensor synchronisation. Once the harness with the
activated logger was mounted on the dog, uninterrupted video
camera recording began with a synchronisation phase. To get
the precise time of the video recording another data logger was
attached to a laptop to display the actual Coordinated Universal
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Time (UTC) measured by the logger's GPS module. The laptop
screen displaying the time in UTC was video recorded. GPS
and inertial data were synchronized in the logger itself, but as
an additional, independent source of synchronisation, the data
logger attached to the dog’s harness was also filmed while
shaken manually several times in both cranio-caudal and
latero-lateral directions relative to the dog.

3. Behaviour recording. Right after the synchronisation
phase, each dog was lead through a predetermined series of
activities by its handler, which lasted approximately 10 minutes.
Since the dogs were moving freely on open field, a continuous
strict control for their behaviour was not always possible and
was neither expected. The handlers were asked to instruct their
dogs to perform the following tasks in a predetermined order,
allowing for any desired reward for good performance in
between (e.g., play, food and praise): sit, lay, stand, run, trot,
walk, bark and search. The dog’s behaviour was recorded by a
hand-held video camera. For detailed description and
illustration of the different activities, see the Supporting
Information (Table S1 and also Video S1).

4. Sensor synchronisation: at the completion of the recording
of the dog’s activities, a second synchronisation phase
followed, with first shaking the logger device and then
recording the displayed actual time in UTC as described
previously.

We performed two subsequent measurements with our
subjects resulting in two independent sets of data belonging to
each subject; two video recordings (Video 1 and Video 2) and
the corresponding data collected by sensors on the logger
(GPS, accelerometer and gyroscope). Later on subtitles were
added about the behaviour (Subtitle1 and Subtitle2) to each
video recording. For a short illustration of the data collecting
procedure see the Supporting Information (Video S1).

Video recording, subtitling, behaviour categories

In addition to the inertial measurements, a hand-held video
camera was used to record the scene (image size: 1280x720,
frame rate: 30 frame/s). During the off-line data analysis
process, video recordings were manually synchronized to the
inertial data using the synchronization patterns from the
measurement protocol. Commercial subtitle editor software,
Subtitle Workshop Version 2.51 [43] was used to tag the video
recordings with predefined motion pattern categories of the dog
behaviour.

We defined seven basic non-overlapping behavioural
categories we wished to include in our discriminative analysis,
which were: stand, sit, lay, walk, trot, canter and gallop. For the
purpose of later analysis we enrolled them into four ad-hoc
activity level categories (for the definition of each category and
the corresponding activity levels, see Table S1). Motion pattern
tags referring to the defined categories were added to the
proper time period of each individual video recording with the
subtitle editor software. Only the objectively definable sections
of the videos, i.e., only the clearly distinguishable dog
behavioural elements were tagged, resulting in interrupted but
unequivocally subtitled recording. For illustration of the
labelled, raw data measured by the sensors see Figure 2. All
video recordings were tagged by the same, main coder and
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Figure 1. lllustration of the device and the relevant axes of the accelerometer and gyroscope. (A) Photo of a subject dog
wearing the inertial data logger device fixed to an adjustable harness. The logger always stayed at a fixed anatomical position,
dorsally midway between the two scapulae. (B) Photo of the actual logger device combined with the illustration of the main axes.
The purple axes represent the Earth-fixed, local North-East-Down Cartesian coordinate system (NED), the orange axes belong to
the body-fixed coordinate system (BFCS), which is fixed to the device and the subject. The x axis of the accelerometer (a,) points
towards the head of the dog, the y axis (a,) points towards the right side, while the z axis (a,) points towards the body. The axes of
the gyroscope are similar, roll, pitch and yaw represent the rotations about the BFCS axes x, y, z, respectively. (C) In a steady
position (sitting) as shown on panel B the accelerometer measures only the gravitational acceleration (g with black arrow). Its
components in the BFCS are shown, g, (red) and g, (blue), while in the current example g,=0.

doi: 10.1371/journal.pone.0077814.g001

50% of the recordings used for the latter calculations (Video 1 Data analysis

and Video 2 of five Labradors and five Malinois) were Figure 3 provides an overview of the workflow of data

additionally tagged by a secondary coder. assessment and analysis. The time-stamped subtitie database
(created by the main coder) served as the training data source
for the offline supervised learning algorithm, while the raw
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Figure 2. Snapshots of the raw data measured by the
gyroscope (A) and the accelerometer (B). Figure shows a
half-minute period of a measurement collected from a freely
moving dog equipped with the data logger device. The dog
performed consecutive periods of trot, canter and stand type
categories of behaviour. Behaviour categories belonging to
parts of the data are indicated above the curves. Insets below
the curves show one second periods of the data with the same
amplitude range as the main plot. Note the non-zero offset of
the acceleration components due to the measured gravity
during “stand”, or the high frequency of the data during active
motion. Data acquisition rate is 100Hz. The colour coding of
the curves refers to the different axes of the tri-axial sensors:
acceleration along and angular velocity (roll, pitch and yaw)
about the x, y and z axis shown with red, green and blue,
respectively.

doi: 10.1371/journal.pone.0077814.g002

video recordings were used as a visual feedback during the
development and testing phases. To further reduce the
possibility of false category assignments, in the final dataset we
used a one second margin on both sides (beginning and end)
of all category definitions (subtitles) that was simply neglected.
SPSS for Windows Version 21 was used for statistical data
analysis.

Supervised learning algorithm

We used the LIBSVM toolkit [44] to implement a support
vector machine (SVM) based supervised learning algorithm for
the dog motion pattern recognition. Each input node was a 126
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Figure 3. Schematic illustration of the procedure and
data analysis (see text for details).
doi: 10.1371/journal.pone.0077814.g003

dimensional feature vector, containing multivariate information
about the last one second of the inertial data, including
average, standard deviation, higher moments, extrema values,
counts and Fast Fourier Transform components of all input
vector components, vector lengths and vector dot products of
the measured linear acceleration, angular velocity, and derived
angular acceleration data and tangents of acceleration (see
Table S2). All features were normalized to the [0, 1] range to
achieve best recognition results.

In the SVM algorithm we used a standard Gaussian kernel.
The two main parameters, soft margin (C) and kernel
parameter (y) were scanned in a wide range with five-fold
cross-validation on several preliminary small datasets to find an
optimal compromise between high performance and low
generalization error. The final selected values for the two main
parameters were C=16 and y=0.001 as reasonably good
general values for real Vvalidation purposes on all
measurements (see Figure S1). Note that these parameters
were fixed prior to the main measurements to prevent over-
optimization and biased data handling.

Training-validation comparisons

Further on by fraining we mean the process of feeding the
supervised learning algorithm with input together with known
output to tune model parameters, and the term validation will
refer to the process of feeding new, unknown input to the
system and comparing its prediction and reliability with known
output. Note that we always separated validation data as a
hold-out set instead of using cross-validation on the training
and validation sets together. Although multifold cross-validation
reduces error variance, using hold-out sets resembles more to
a real scenario in a real-time application, and that is what we
needed to optimize for.
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To test the prediction that behaviour identification is most
successful when training and validation are both done on data
collected from the same subject, and also, that the breed of the
dog might have an influence on the results, we systematically
grouped our data several various ways and carried out
calculations accordingly. Nine different training-validation
groups were created, differing in the nature of relation between
the training and validating data. There were two major groups
based on the number of measurements used for training;
training on data of a single measurement (INS data with the
corresponding subtitle tags, belonging to a single measurement
of an individual) and training on data of multiple measurements
(more INS data with the corresponding subtitle tags, belonging
to different measurements of different individuals).

When training on a single measurement, the validating pair
was either the other measurement of the same individual
(within-dog comparison) or another measurement of a different
individual (between-dog comparison). In the latter case, the
training and validating data pairs belonged to either individuals
from the same breed (infra-breed comparison), or they
belonged to individuals from the two different breeds (inter-
breed comparison).

Training on multiple measurements was performed to test
the efficacy of the present method as means of a more
generalised, not strictly individual-specific automated behaviour
identifying system. We extended the complexity of the training
data by gradually increasing the number of the input
measurements belonging to different individuals, and validated
always on new data from other subjects that were not used in
the training phase. Training and validation comparisons are
illustrated on Figure 4.

We sorted all the single measurements according to the total
number of input training nodes belonging to each of the seven
discriminated behaviour categories. This a priori qualification
was needed because even though the recorded dog activities
followed the same protocol, the dogs were moving freely and
their behaviour was not controlled strictly, resulting in individual
differences in the ratio of the performed behaviours. The two
distinct measurements of all our subjects were discriminated
based on the minimum number of training nodes from all the
seven behaviour categories. The one with higher absolute
minimum was treated as the “more comprehensive”
measurement and was used in all further analysis where
possible. We ranked the more comprehensive measurements
of all individuals as well based on this simple metric, and used
the best twenty (ten Malinois and ten Labradors) for the
selection of the training-validating pairs as described in more
detail in the Supporting Information (Text S1).

Feature importance

To assess and compare the information content of the 126
features extracted from the data, we created a summarized
database of the best twenty (ten Malinois and ten Labradors)
measurements. We calculated the F-score for all features, as a
simple measure of feature importance [45]. Higher F-score
corresponds to more information content. We performed five-
fold cross-validation on the entire data, first with all features
(126), then with features belonging to only the gyroscope (69)
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and only the accelerometer (45). For the availability of all
original data and our analysis code see the Supporting
Information (Text S2).

Intercoder agreement

Besides making a simple comparison of the raw data created
by the main and secondary coders, we also checked how these
data fit together within the training and validation processes.
Ten calculations from the within-dog comparison (using data of
five Labradors and five Malinois) were repeated three times,
each in three different arrangements based on the alternation
of subtitle labels of the main and secondary coders in the
training and validation processes. The outcome of the above
arrangements was compared to the outcome of the same
calculations when both the training and validation phases were
done with subtitle tags of the main coder.

Results

Training on single measurements

Figure 5 illustrates the validation results from the single
within-dog, intra-breed and inter-breed comparisons.
Concerning the perfect matches (in blue), relationship between
the training and the validating individual (i.e., same individual,
same breed or different breed) had a significant effect on
validation success (Mixed Model Analysis, F, ,5,=24.200,
p<0.001). Validation was most successful in the two within-dog
comparisons, when both testing for Malinois and Labradors
resulted in all the seven behavioural categories being identified
correctly in 91.3% and 91.6% respectively. The ratios of correct
identification in both the intra-breed (70.3% for My-M, and
72.6% for Ly-Ly) and inter-breed (73.6% for My-Lx and 73.5%
for Ly-My) comparisons were significantly lower (pairwise
comparisons, p<0.001), while these two latter did not differ
significantly from each other (pairwise comparisons, p=0.514).
The breed of neither the training (Mixed Model Analysis, F;
15.463=0.024, p=0.880) nor the validating (Mixed Model Analysis,
Fi 12656=0.052, p=0.823) individual had an influence the
outcome of the tests.

We divided the non-perfect matches that occurred in
validation into four subgroups. This was done according to an
arbitrary measure based on the previously determined activity
levels of the behavioural elements (see Table S1), as an extent
of the failure (see Figure 5, imperfect match and mismatches).
The interaction between the extent of the failure and the
relationship between the training and validating individuals was
significant (Mixed Model Analysis, F; 1405=5.72, p=0.001). In all
the examined comparisons, the major part of the errors
belonged to the imperfectly matched group, meaning that
although perfect identification failed, the “assigned” behavioural
category (the output) was on similar activity level as the
“actual” input  element. Also, the ratio of failing by only one
activity level (mismatch, AA=1 group) remained always higher
than failing by two or three levels. For a more detailed overview
of the validation results of one of the single, within-dog
comparisons on the level of input and output behavioural
categories, see Figure 6.
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Figure 4. lllustration of the training-validation comparisons procedure. M stands for Malinois, L for Labrador breed, index
numbers represent the individuals, i and j subscripts stand for the two subsequent measurements of the same individual. (A-C) The
procedure of the three different cases of single dog training and validation, where one training process is always done on a single
measurement and the outcome is validated on another independent measurement. Panels A-C only illustrate cases for Malinois as
training and/or validation data, but the same procedures were done using the Labrador data as well. In the within dog comparison
(panel A) the members of the training-validation pairs are two independent measurements of the same dog, one measurement used
for training (My; and Ly;), the other one of validation (M,; and Ly;) and there are ten pairs for both breeds. The intra-breed comparison
(panel B) uses measurements of different individuals from the same breed as training-validation pairs (My—My and Ly—Ly), while
the inter-breed comparison (panel C) uses measurements of dogs from different breeds as training-validation pairs (M—L and
L—M). (D-F) The three cases of multiple training comparisons with joint training data from several measurements. Panel D shows
training with combined data of only two individuals (1My+1Ly), but larger training data sets containing 3+3 (E) or 5+5 (F) individuals
are used as well. Throughout the three multiple cases the process of validation is always done on independent measurements of
the same 5+5 (5M,+5L,) individuals, being different from the ones included in the training.

doi: 10.1371/journal.pone.0077814.9g004

Training on mixed, multiple measurements was 75.7% when training was done on two individuals of
The results of the three different multiple training groups are different breeds ((1My+1Ly)—M,,Ly)). Compared to this,
shown on Figure 7. Increasing the number of training validation success increased significantly to 81.3% (pairwise

measurements had an effect on validation success (Mixed comparisons, p=0.008) and further to 83.3% (pairwise
Model Analysis, F, ,=8.662, p=0.002). The mean ratio of comparisons, p=0.001) by changing the training input data to
correct identification of all the seven behavioural categories six ((3My+3Ly)—My,Ly), and ten individuals ((5My+5Ly)—My,Ly)
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Figure 5. Validation accuracy (%) of within-dog, intra-breed and inter-breed comparisons. Data analysis was carried out by
means of a supervised learning algorithm, using different combinations of independent sensor measurements for training and
validation. The figure illustrates the results of six different training-validation comparisons (N=10 calculations in each comparison).
The columns My—M,; and Ly—Ly; indicate validation accuracies of within-dog, My—M, and Ly—L, intra-breed, M—L and L—M
inter-breed comparisons. M stands for Malinois, L for Labradors, in the index X and Y represent different individuals, Xi and Xj stand
for the two subsequent measurements of the same individual. Single measurements were used either for training (in prefix) or for
validation (in suffix). Successful validation is indicated in blue (perfect match), false validations are further categorized according to
the error in the activity level between the output and the input categories of behaviour (AA, where Ayani=Ai,=As=0, Aua=1, Awo=2,
Aante=Agaiop=3)- Detection rate of all the seven categories (perfect match, in blue) is over 90% in within-dog comparisons, overall

detection rate of the activity level (perfect and imperfect match, blue and green together) is over 90% for all comparisons.

doi: 10.1371/journal.pone.0077814.9g005

respectively. These latter two groups, however, did not differ
significantly from each other (pairwise comparisons, p=0.308).

Concerning validation failures, the major part of the
mismatches belonged to the imperfect group in all the multiple
training groups, as well. Again, the ratio of failing by only
activity level remained higher than failing by two or three levels
(see Figure 7). For a more detailed overview of the validation
results of a multiple training group on the level of input and
output behavioural categories, see Figure 8.

Intercoder agreement

The reliability of the timestamped subtitle database was
checked on twenty measurements that were also coded by a
secondary coder. During the evaluation of the data we used
our standard pre-processing steps as described in the method
section (seven subtitle classes, one second margin etc.). Out of
the total timestamped database of around 125,000 points for
each coder, 20.8% and 18.0% were present in one coder's
database only. This high rate of difference in the input is mostly
due to the effective pre-processing filter on videos with quick
actions. From the remaining 102,813 data points with common
timestamps from both coders, 96.8% were labelled the same

PLOS ONE | www.plosone.org

way. More details about the misclassification are presented in
the Supporting Information (Figure S2).

To test the non-common parts of the coders’ database as
well and thus the robustness of the classification method,
training and validation calculations were performed on the two
coders’ data. No difference was found between the outcome of
the within-dog training-validation comparisons carried out in
four different arrangements, using either the subtitle tags of the
main or the secondary coder for the training and/or the
validation phases (General Linear Model, F; ,,=0.576,
p=0.636)) (see Method and Table S3).

Feature importance

F-scores of all data features calculated on the joint dataset
are shown in Figure 9. According to the F-scores, both
accelerometer and gyroscope data provided useful information.
Standard deviation, minimum and maximum turned out to be
the most relevant feature classes in general, corresponding
mostly to the overall activity level of the behaviours. Features
based on acceleration that describe the static attitude through
the measurement of gravity also performed well, since they can
differentiate between static postures. Figure S3 shows a
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output A=0 A=1 A=2 A=3
input lay sit stand | walk trot canter gallop
lay 89.5% 4.4% 5.9% 0.2% 0.0% 0.0% 0.0%
A=0 sit 4.9% 90.9% 1.9% 0.0% 0.4% 2.0% 0.0%
stand 11.2% 3.5% 83.0% 2.2% 0.1% 0.0% 0.0%
A=1 walk 4.4% 2.3% 0.0% 90.1% 2.7% 0.4% 0.0%
A=2 trot 0.0% 0.0% 0.0% 2.8% 94.8% 2.3% 0.0%
A=3 canter 0.0% 0.0% 0.0% 0.0% 0.3% 72.7% 27.0%
gallop 0.0% 0.0% 0.0% 0.0% 0.0% 9.9% 90.1%

Figure 6. Recognition rate matrix of the within-dog comparison on Malinois (My,—M,;). The figure is a detailed overview of
the validation results of one single, within-dog comparison on Malinois (N=10 calculations) on the level of input and output
behavioural categories. For more details about the given training and validating data see Figure 4 and the Supporting Information
(Text S1). In the matrix, each row represents the training category (input) and each column represents the validation result (output)
on the given training. Recognition rate values (%) are averaged for all calculations, thus they can be treated as probabilities of a
given behavioural category recognized by the system as the same (diagonal) or another (off-diagonal) category (they add up to
100% in each row). Values are colour coded (green=low, yellow=mid-range, red=high recognition rate). Ad hoc activity levels (A) of
all categories are shown on the first row and column. Diagonal elements represent perfect prediction (perfect match), near-diagonal
elements are close to perfect (imperfect match) as they still belong to the same activity level. Mismatch of activity level is almost

negligible.
doi: 10.1371/journal.pone.0077814.9g006

visualization of the value distribution of two useful features.
Cross-validation of the joint dataset resulted in 91.3%
recognition accuracy, using only the accelerometer data
reduced the accuracy to 88.1%, using only the gyroscope data
reduced the accuracy to 75.3%.

Discussion

The goal of the present study was to develop a bio-logging
system capable of automatically differentiating between
qualitatively different behavioural categories of the domestic
dog. By means of a supervised learning algorithm, we
managed to identify seven activities (stand, sit, lay, walk, trot,
canter, gallop) with a considerably high accuracy above 90%
when training and validation were done on the same individual.

Supervised clustering algorithms aim at automatically
unfolding patterns of behaviour based on categories defined by
human observers. This first requires a manual calibration
phase to assign the predictor variables for each category of
behaviour. Therefore it is essential to have an accurate
observer-based behaviour classification in order to reduce the
possibility of implanting errors into the system at first place,
caused by the limitations of human perception and attention.
Thus, an automatic behaviour classifying system based on
manual input cannot be expected to perform more accurately
than a human observer. By comparing our validation results
with the intercoder agreement, it can be concluded that the
system we presented is capable of a performance compatible
with human categorisation in the case of the investigated
behaviour patterns.

An alternative method would be to use unsupervised
clustering algorithms first for automatically classifying
behaviour into distinct units, and associate those with human
categories only afterwards. The latter might be reasonably

PLOS ONE | www.plosone.org

applied to species when direct observation of the animal is not
always possible (e.g., flying, diving free-ranging animals) [13].
Adding a gyroscope besides the accelerometer seems to
improve the effectiveness of our recognition system only
slightly. However, it is likely that including more complex
motion patterns (e.g. spinning around, weltering) in the analysis
would benefit more from having the gyroscope data as well.
Moreover, proceeding towards the development of an attitude
and heading reference system (AHRS) [44] requires both
sensors inter alia. A number of studies focused on data derived
from accelerometers to determine the energy expenditure of
animals due to movement [6,20,21,30]. This has useful
implications from ecologic point of view (e.g., conservation
issues). However, the goal of automated data collection from
ethologic point of view is rather to give the most precise
differentiation  possible between qualitatively different
behaviours. Applying 126 dimensional vectors as input node
instead of the widely used measure of partial and/or overall
DBA [19,25,29] allowed for a more detailed, finer scaled motion
analysis. It might also be possible to optimize the system
further by selecting the most appropriate features with the help
of calculated F-scores or any other measure of feature
importance. Optimization can reduce computation time and
increase effectiveness. Nevertheless, SVM is usually
successful in distinguishing between the input features on the
basis of their usefulness and thus disregarding the least
important ones. Our results (i.e., significant difference
comparing within-dog and between-dog validation success)
also highlight the existence of individual differences in fine-
motion characteristics. Future applications might be able to
take advantage of this and use similar methods for
investigating individual-specificity of some motion patterns in
more detail or recognise individuals based on the specific
movement pattern. Depending on the sensitivity of the sensors
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Figure 7. Validation accuracy (%) of the multiple training comparisons. Data analysis was carried out by means of a
supervised learning algorithm, using different combinations of independent sensor measurements for training and validation. The
complexity of the training data was also extended by gradually increasing the number of the input measurements. The figure
illustrates the results of the three different multiple training comparisons (N=10 calculations in each comparison). The three columns
correspond to the validation results of the three separate multiple training-validation groups constructed from 1My +1Ly, 3My+3Ly
and 5M,+5Ly as training measurements (in prefix). M stands for Malinois, L for Labradors, in the index X and Y represent different
individuals. Validation of each group was carried out on the same ten individual measurements (My, L, in suffix) not used in training.
Successful validation is indicated in blue (perfect match). As the training set gets larger, the model gets more generalized and the
recognition rate increases. False recognitions are further categorized according to activity level, for more details on that see legend
of Figure 5.

doi: 10.1371/journal.pone.0077814.g007

output =0 =1 =2 A=3
input i canter gallop
lay 122,
A= sit

stand 02%| 0.8%
=1 | walk 1.8%|  0.4%
A= trot 12.8%

a=3 | canter | 47%]
gallop 15.5%

Figure 8. Recognition rate matrix of the (5M,+5L,)—M,,L, multiple-training comparison. The figure is a detailed overview of
the validation results of one multiple-training comparison (N=10 calculations) on the level of input and output behavioural categories.
For more details about the given training and validating data see Figure 4 and the Supporting Information (Text S1). For further
description about the structure of the matrix see legend of Figure 6.

doi: 10.1371/journal.pone.0077814.g008
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Figure 9. F-scores of input features. Features are categorized according to the base parameters and the calculated quantities
(see Table S2 for details). Rows are ordered according to the average of the F-scores in them. Colour coding corresponds to F-
scores (higher values are red, lower values are green). Higher F-score value represents higher feature importance (more

information content).
doi: 10.1371/journal.pone.0077814.g009

applied some changes at the individual level of behaviour may
be detected sooner on the basis of bio-logging data then by the
human observer. Moreover, we believe that further
developments of our present model — such as adding additional
sensors (e.g., magnetometer, pressure sensor or microphone)
to the system, or an additional device at a second anatomical
point of the animal — would not only improve behaviour
recognizing success but also allow the widening of the
spectrum of behavioural categories to be identified.

It seems also possible to improve the effectiveness of the
present method as a more generalized behaviour identifying
system by extending the complexity of the input data and
increasing the robustness of the predictor features. This
provides an effective way of compensating for probable error
sources when fine-tuning of the whole system to one specific
individual is not possible (e.g., free-ranging animals). The
roughly similar body conformation of the two dog breeds used
in this study might explain why no inter-breed difference was
detected in the between-dog validations. Testing other dog
breeds with different body conformations would reveal the
feasibility of an expanded behaviour model that could be
applied to this species in general.

The detected behaviour misclassifications were not random,
the majority of the mismatches occurred among pairs of
categories belonging to the same ad hoc activity level. The
most frequent failures were among the behavioural category
pairs of stand-lay and canter-gallop (see Figures 6 and 8).
During standing and laying postures the inertial sensor data
show the same pattern, i.e., negligible angular velocity and
static gravitational acceleration along the dorso-ventral axis,
which can well explain the higher number of errors here.
Canter and gallop are both characterized by very noisy,
dynamic, random data that are hard to differentiate. This
relative large uncertainty in the particular case may be
explained by the difficulty in distinguishing between these two
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categories of fast movement even by human coders. The ratio
of intercoder agreement was the lowest among canter-gallop
pairs (see Figure S2), suggesting that there might have been
be an original higher inaccuracy in the training data concerning
these two behavioural categories, causing a consequential
inaccuracy in validation.

Additional factors behind misclassifications can be the
possibly occurring noises in the sensor signals [46]. These
might be caused, for example, by some behavioural sub-
categories(s) overlapping with the main ones. To reduce this
source of error, our defined categories were all non-
overlapping and only the objectively distinguishable ‘pure’
behaviours were coded, where possible. As for the postures
(sit, lay, stand), however, it was not taken into account whether
the dog was panting meanwhile or not. Panting — especially of
high intensity — results in a constant movement of the dog’s
body, which is well detectable by the sensors thus causing the
above mentioned noise in the signal. One major difficulty with
the accelerometer is that body acceleration and gravity are
measured simultaneously, which becomes a problem when the
logger on the animal is not perfectly fixed, i.e., its attitude
relative to the dog’s back is not constant during or between
measurements, or when the subject is not moving on plain
ground [25]. To decouple gravity from body acceleration,
reliable attitude estimation is needed, but it is not possible in
3D with only a gyroscope and an accelerometer. Therefore, in
our next generation logger a magnetometer will also be
included with which a full attitude and heading reference
system (AHRS) [44] will be available. Experiments under
different environmental (terrain) conditions are targeted as well.
It should also be taken into account that temperature
compensation of the inertial sensors could drastically reduce
their intrinsic noise. Although we have a temperature sensor
included in the current logger and temperature data is available
for all past measurements, we did not carry out the offline
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temperature compensation of the input data yet, because the
demonstration of our method proved successful without
temperature compensation as well.

It is important to note that the quick evaluation of the data by
the supervised learning algorithm opens up additional
possibilities for real-time implementations of the present model.
Along with that, there are several areas that could benefit from
a more detailed automatic analysis of dog behaviour. The
veterinary field has already been experimenting with
accelerometer-based activity detection [21,34-37]. Search and
rescue teams or other professionals working with dogs could
gain objective data on remote dog behaviour, moreover, the
integration of a loudspeaker to the system raises the question
of remote control possibilities of specially trained canines [7].
Besides these, open-field guard or shepherd dog behaviour
could also be analysed without the need for direct human
presence.

The advantages of using bio-logging based behaviour
analysing systems in laboratory animals along with, or instead
of video cameras had already been discussed before [47,33].
The input nodes of the inertial data we used were not
specifically selected for typifying dog movement characteristics,
so it seems feasible to employ the whole system to other
species, too. The device being small and light weight should
not affect the natural way of motion even in animals of smaller
body size and might be able to provide valuable information for
the further enhancement of animal welfare in a wide range of
species and circumstances. All in all, our method is a detailed
and accurate behaviour identifying system compatible with the
abilities of a human observer concerning the investigated
behaviour categories. Furthermore, it opens up new directions
in high-throughput automated ethology.

Supporting Information

Figure S1. Sample cross-validation results of a single
measurement. Cross-validation accuracy (indicated by the
colour of the dots) highly depends on two main SVM kernel
parameters, C and y. Cross-validation of a single measurement
can usually be tuned to achieve close to perfect recognition
(red areas in the figure), but the corresponding parameter
choice is typically over-optimized for that specific
measurement. After testing a couple of initial measurements
we choose C=16 and y=0.001 as a good compromise for most
of the tests and thus providing acceptable generalization
capability.

(TIF)

Figure S2. Intercoder classification distribution. Each row
represents the behaviour category created by the main coder,
each column represents the corresponding category label of
the secondary coder. The percentage values stand for all the
commonly labelled data points of twenty measurements, thus
they can be treated as probabilities of a given behaviour
category of the main coder labelled as the same (diagonal) or
another (off-diagonal) category by the secondary coder (they
add up to 100% in each row). Values are colour coded
(green=low, yellow=mid-range, red=high). Activity levels (A) of
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all categories are shown on the first row and column. Out of the
~125,000 data points 96.8% were classified in perfect
agreement (diagonal elements in red). Moreover, differences
overwhelmingly belong to the same activity level. Note that
these results are similar to the training-validation results of the
within-dog comparisons (see also Figure 6).

(TIF)

Figure S3. lllustration of two features across all behaviour
categories from all measurements. Green dots represent the
normalized values for the standard deviation calculated from
the x axis of the gyroscope (std(w,,); A) and for the minimum
of the ratio between the x and z signals of the accelerometer
(min(ax/a,); B) (within each category the vertical position of the
dots is scattered with a random value for visibility). The
probability density distributions are illustrated by the blue
curves. std(w,,;) has the highest F-score, it provides the best
differentiation between the categories, however it cannot
distinguish between the static ones (A=0). min(ax/a,) has a
best separation for those, as a proxy for attitude.

(TIF)

Table S1. Detailed description of the recorded dog
activities and definitions of the analysed behavioural
categories with their corresponding ad-hoc activity levels
(A).

(DOCX)

Table S2.
algorithm.
(DOCX)

Structure of the input nodes of the SVM

Table S3. Mean validation results (%) from within-dog
comparisons (N=10 calculations in each) carried out in
four different arrangements based on the alternation of
subtitle labels of the main and secondary coder. D,; and Dy;
stand for the two subsequent measurements of an individual
(either Labrador or Malinois) used for either training (in prefix)
or for validation (in suffix). MC indicates behaviour tags of the
main coder while SC stands for behaviour tags of the
secondary coder.

(DOCX)

Text S1. Detailed description of the training-validation
comparisons.

(DOCX)

Text S2. Data availability.
(DOCX)

Video S1. lllustration of the data collecting procedure. The
data collecting procedure consisted of 4 phases; (1)
Preparation, (2) Sensor synchronisation, (3) Behaviour
recording and (4) Sensor synchronisation. This video footage
shows short sections from the Sensor synchronisation and
Behaviour recording phases of one measurement with a
Labrador recorded by a hand-held video camera. The video
starts with the synchronization phase, showing first the time in
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UTC displayed by a laptop screen then the shaking of the
logger on the dog’s back attached to its harness. During the
following scenes the freely moving dog can be seen performing
several different activities (sit, stand, gallop, canter, walk and
trot) under the leadership of its handler. The video ends by
parts from the second synchronisation phase. The added
subtitles always indicate the actual phase, and the illustrated
categories of the recorded behaviours are also marked during
the behaviour recording phase.

(WMV)
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