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Abstract

The purpose of this research is to test the systematic variation in the perception of travel time among travelers and relate
the variation to the underlying street network structure. Travel survey data from the Twin Cities metropolitan area (which
includes the cities of Minneapolis and St. Paul) is used for the analysis. Travelers are classified into two groups based on the
ratio of perceived and estimated commute travel time. The measures of network structure are estimated using the street
network along the identified commute route. T-test comparisons are conducted to identify statistically significant
differences in estimated network measures between the two traveler groups. The combined effect of these estimated
network measures on travel time is then analyzed using regression models. The results from the t-test and regression
analyses confirm the influence of the underlying network structure on the perception of travel time.
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Introduction

Travel demand forecasts are historically inaccurate [1]. There

are many reasons for this, but one explanation is that the models

embedded in the forecasts do not reflect actual behavior of

individuals, or correctly characterize their perceptions. In partic-

ular, models assume individuals estimate travel times as accurately

and consistently as the models themselves when making decisions

(i.e. the estimated true travel time is an input into choice of

destination, mode, and route). However, travelers typically

misestimate travel times between locations, even frequently

traveled locations like home and work, which may explain why

they don’t choose the observed shortest travel time path [2]. This

paper tests whether those misestimations can be systematically

explained by network structure.

The perception or cognition of distance and travel time has a

rich history in behavioral psychology and spatial geography.

Geographers have focused their efforts in understanding the role

of spatial patterns in influencing distance or travel time cognition.

The general layout and topography of a city provides an inherent

legibility [3]. Cities with a formal structure (e.g. London)

characterized by crucial structural elements such as a river, rail

network or road network have less over-estimation in distance

than cities without a formal structure (e.g. Edinburgh). In a recent

experiment, participants estimated a walk in a picturesque village

to be twice as long as an equal-length journey in the city [4]. The

analysis suggested that an individual’s scale of interaction with the

environment influences the judgement of distance.

The factors that affect distance cognition are categorized as

[5,6]:

1. stimulus-centered factors, in which cognitive distance is a function

of environmental features;

2. subject-centered factors, in which cognitive distance is a function of

the individual;

3. subject/stimulus-centered factors, in which cognitive distance is a

function of interactions between the individual and environ-

mental features.

A similar listing of factors that influence an individual’s estimate

of distance within an urban context was provided by [7].

Routes where the change in direction is enforced more often,

e.g. turns, are perceived to be longer [8]. Two structural attributes

along a route, namely angularity effects (right angle turns) and

intersections, increased the perception of traversed distance [9].

These findings were consistent in both laboratory and field

settings, using virtual environmental tools [10]. Distance towards

the city center was estimated to be shorter than distances away

from the city center [11]. Other attributes shown to affect

perceived distance include information along the route (e.g.

number of perceived features, such as buildings) or the visibility of

the destination [12].

Perception of length varies by sex and age [13]. For men, the

number of available routes had no effect on the accuracy of route

length estimates, while the accuracy of length estimates decreased

for women with exposure to multiple routes [14]. There were no

significant differences in the estimation of straight-line distance

between taxi drivers and the general public, however taxi drivers

consistently estimated travel distances to be shorter than the

general public [15].

The research focus in the 1970s was mainly on the cognition of

physical distance between points, typically home and other

locations within the city. The focus on time perception started

later with an understanding that travel time is much more

important for travelers than actual physical distance [6,16]. Time

perception has deep roots in psychological research due to time

being an important aspect of human experience. An individual’s

notion of time applies to two unique concepts: Succession and

Duration. Perception of duration and succession is present very

early in life but the joint functioning of the two concepts is not
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acquired until the age of 7 or 8 when the child is capable of logical

thinking [17].

Time perception is now receiving attention in the travel

behavior research. It is known to vary for transit by elements of

the trips [18] and for highways by type of driving (e.g. stopped at a

ramp meter or traffic signal, free-flow, or stop-and-go conditions)

[19,20]. The results from a Bayesian analysis of the role of travel

time perception in route choice indicated that the individual’s

perception of travel times strongly influenced the convergence of

the traffic system [21]. The accuracy of car drivers’ perception of

public transport travel time affects mode choice [22]. Researchers

have also highlighted the limitations of using observed attribute

values rather than perceived values in estimating the utility

function in mode choice models using simulation experiments

[23].

This paper extends the current research interest to understand

the role of network structure in influencing an individual’s

perception of travel time. The basic question addressed in this

paper is:

Do travelers perceive travel time differently and can the differences in

perceived travel times be attributed to network structure?

Network structure is a measure of the layout, arrangement and

connectivity of the network including characteristics of the

individual elements [24,25]. Transportation geographers in the

1960s viewed transportation network structure as a vital input to

understanding a region’s spatial patterns and economic develop-

ment. Graph theory based approaches were used to quantify and

analyze the underlying network structure and topology [26–29].

However these approaches were limited by data availability and

computing power [30,31].

The interest in understanding the topological properties of

networks has a rich history in a variety of fields including

mathematics, physics, biology and sociology [32]. For example,

sociologists studied the structure and complexity of social networks

to explain the social phenomena in a wide variety of disciplines

from psychology to economics [33]. Similarly computer scientists

used the measures of network structure developed by Kansky [26]

to understand the complexity and reliability of computer networks.

Physicists and mathematicians analyzed network structure to

better understand the small-world properties of complex networks.

Recent advances in spatial techniques and associated improve-

ments in computing power have brought about a renewal of

interest in understanding complex systems such as the internet,

social networks, biological networks, and transportation networks

[34]. These advances in spatial techniques have allowed research-

ers to move away from the traditional representation of complex

networks to developing meaningful representations that help

uncover the underlying topological patterns. Refer to [35] for a

detailed review of the progress in the modeling and analysis of

complex networks.

Many of these new approaches have their roots in space syntax.

Space syntax is an urban analysis technique originally developed

to understand the pedestrian mobility patterns in cities, which has

since been extended to understand other aspects such as modeling

urban traffic, crime mapping, prediction of air pollution levels, etc.

[36]. These approaches are considered to provide a better

understanding of human perception and cognition [37,38].

The current focus on complex systems is geared towards

analyzing not just the underlying topology but their spatial or

geographical aspects as well. This shift is mainly due to the

understanding that the topology of a network is actually correlated

to the underlying spatial structure [31]. For example, in road

networks, the number of links or road segments connected to a

single node or intersection is constrained by the available space.

Similarly the number of connections in the airline networks is a

function of the available space at the airports. Hence a complete

understanding of network structure needs to consider both the

spatial and topological aspects [39].

The understanding of network structure has applications in

numerous fields ranging from urban planning to epidemiology

[31]. Applications include studying the temporal evolution and

growth of transportation networks [40–42]; comparing system

performance [43]; understanding the formation of urban structure

[44]; analyzing knowledge transfer in informal networks [45];

predicting the patterns of global epidemics [46]; comparing the

organization of human brain networks between patient groups

[47].

The role of network structure in influencing travelers’ percep-

tion of travel time is analyzed in this paper. The next section

outlines the data used in the analysis. This is followed by a

discussion of measures of network structure, data analysis, and the

presentation of results.

Methods

Travel Survey and Network Data
The data for the analysis come from the Twin Cities

metropolitan area. The Twin Cities metropolitan area refers to

the seven counties of Anoka, Carver, Dakota, Hennepin, Ramsey,

Scott and Washington and includes the cities of Minneapolis and

Saint Paul.

Dataset I - Travel behavior inventory. The travel data for

this analysis come from two different sources. The first dataset is

the year 2000 Twin Cities Travel Behavior Inventory (TBI). The

TBI is a comprehensive one-day household travel survey

conducted by the Metropolitan Council and the Minnesota

Department of Transportation (Mn/DOT). Survey respondents

maintain a complete record of all trips undertaken on the specified

travel day. In addition respondents also provide relevant

individual and household-level socio-demographic data (ex. age,

gender, household size) [48].

The surveyed sample includes households in the seven counties

within the Twin Cities metropolitan area and twelve adjacent

counties. The final sample consists of 6,219 households comprising

14,671 individuals, totaling 58,345 trips. The data are extracted to

include only those trips that originated from and were destined for

the Twin Cities metropolitan area resulting in 38,432 trips. The

data on commute trips and reported trip arrival and departure

times are most relevant to this analysis.

The dataset of 38,432 trips has been cleaned to remove records

with missing or unreasonable attribute values. Table 1 summarizes

the exclusion rules used to obtain the final dataset. The final

dataset used in this analysis consists of 4,050 records.

Dataset II - Surveys from the I-35W bridge collapse and

reopening. The second dataset comes from a compilation of

surveys conducted during the collapse and subsequent rebuilding

of the Interstate 35W Highway Bridge over the Mississippi River

in Minneapolis. The I-35W bridge collapsed on August 1, 2007

and the newly reconstructed bridge was open to traffic on

September 17, 2008. The surveys were conducted as part of a

research effort at the University of Minnesota to understand the

impacts of the bridge collapse on traveler behavior [49]. The

collected surveys are listed below:

P-2007. A hand-out/mail-back paper survey was conducted

in September 2007, immediately after the collapse of the I-35W

bridge. This was the first survey conducted as part of the research

effort mentioned above. This survey focused mainly on two

communities closest to the I-35W bridge and thus significantly
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affected by the bridge collapse: the downtown area of the City of

Minneapolis and the Minneapolis campus of the University of

Minnesota. Consistent with prior research this survey is denoted as

P-2007.

Respondents were asked to provide relevant information on

home and work locations, commute trip arrival and departure

time, travel mode and socio-demographics. In addition, respon-

dents were asked to draw their actual commute routes on street

maps provided for this purpose. This information was collected for

four phases, namely:

N Phase 1 - Before the bridge collapse (e.g., in July 2007),

N Phase 2 - The second day after the bridge collapse (e.g., August

2, 2007),

N Phase 3 - The following weeks (e.g., Aug. 3 to Aug. 30, 2007),

N Phase 4 - Current status (at the time of the survey).

A total of 1000 surveys were handed out and 141 completed

surveys were received. The analysis in this paper uses auto based

trips from Phase 4 of this survey.

W-2007. A computer-based internet survey was conducted in

September 2007 and administered in eight zip codes in the Twin

Cities area. Consistent with prior research, this survey is denoted

W-2007.

A detailed description of the data collection efforts is provided in

[50]. A recruitment postcard for the online survey was sent out to a

pool of 5,000 individuals. The completed dataset consisted of 215

surveys, of which 167 surveys were usable. The final dataset of

auto based trips, used in this analysis, consisted of 136 records.

The survey explicitly asked respondents to provide their home and

work locations along with an estimate of their travel time for the

commute trip but it did not ask participants to provide their actual

commute routes.

P-2008. A hand-out/mail-back paper survey was conducted

in October 2008, immediately after the opening of the I-35W

replacement bridge. Consistent with prior research, this survey is

denoted P-2008. This survey is an extension of the P-2007 survey

and is similar in terms of the methodology and focused on the

same two communities. A total of 840 surveys were handed out

and 137 completed surveys were received. The information on

commute trips was collected for the following five phases:

N Phase 1 - Before the bridge collapse (e.g., in July 2007),

N Phase 2 - Before the bridge reopening (e.g., September 17,

2008),

N Phase 3 - After the bridge reopening (September 18, 2008),

N Phase 4 - The following weeks (Sept. 19 to Oct. 23, 2008),

N Phase 5 - Current status (at the time of the survey).

The analysis in this paper uses auto based trips from Phase 4 of

the survey.

G-2008. Global positioning systems (GPS) were installed in

subject vehicles and GPS data were collected as part of several

other projects for a time period of thirteen weeks, three weeks

before the reopening of the I-35 W replacement bridge on

September 17, 2008 and between eight to ten weeks after that.

Logging GPS units were installed in subject vehicles and

accurately monitored the travel trajectories of the vehicle at a

frequency of one point every 25 meters [49].

The data downloaded from the GPS units provide information

on the trip origin and destination along with the actual routes and

trip travel times. The information on home and work locations

and reported commute travel time had been previously obtained

as part of the recruitment questionnaire. This information on

home and work locations was used to extract the commute trips

from the GPS dataset. The GPS units were installed in 127

vehicles and the final dataset used here consisted of 72 usable units

with complete information. To ensure consistency with the mail-in

paper survey (P-2008) conducted during the same time period, the

analysis uses only GPS trips recorded in October.

Combining the different I-35W travel surveys into one dataset

helps overcome the limitation of small sample size, especially while

separating the travelers into groups. While each of the above

surveys differed in terms of their focus and the exact wording of

the survey questionnaire, all of them contained information on the

travelers’ reported travel time for the commute trip. Also the use of

two different datasets provided us a larger sample of travelers in

the region. The TBI, while older, has a larger sample size and

covers all the seven counties in the Twin Cities metropolitan area.

On the other hand, the I-35W surveys, while newer, are smaller

and are more specific to communities near the I-35W bridge.

Similar to the TBI dataset, the I-35W travel survey dataset is

cleaned to remove records with missing or unreasonable attribute

values. The final dataset used in this analysis consists of 337

records. Table 2 summarizes the exclusion rules used to obtain this

dataset.

Street network. The street network data for the Twin Cities

were extracted from the year 2000 Census TIGER/Line files. The

Topologically Integrated Geographic Encoding and Referencing

(TIGER) files are developed and maintained by the U.S Census

Bureau. The TIGER files provide information on various features

such as roads, railroads, rivers, as wells as legal and statistical

Table 1. Data exclusion rules - TBI dataset.

No. of observations

Number of initial records in the TBI dataset 38,432

Excluding non-commute trips 32,298

Excluding records using non-auto modes 354

Excluding duplicate records (i.e. trips with the same origin and destination) 1,067

Excluding records with missing data 566

Excluding records with missing or unreasonable network attributes 46

Excluding trips with unreasonable reported times 12

Excluding records with unreasonable tau values 39

Number of records used in the analysis 4,050

doi:10.1371/journal.pone.0077718.t001
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geographic areas [51]. The extracted network was cleaned and

stratified into three main categories, arterials, interstates, and local

streets, based on the Feature Class Codes (FCC) for the roadway

segments provided in the Census TIGER/Line files. The free flow

speeds of the road segments provided in the street network were

updated with actual speeds to better account for congestion. The

average congested speeds in the Twin Cities network were

obtained from a GPS study [49], conducted at the University of

Minnesota before and after the reopening of the new I-35W

bridge.

Data Preparation
Identification of commute route. The first step in the

analysis is to identify the route between the commute trip origin

and destination for respondents in both datasets, with certain

exceptions. For GPS respondents, the raw data obtained from the

GPS units provide a complete recording of vehicle trajectories.

Each vehicle trajectory recording provides information on the

latitude and longitude coordinates, date and time, and the instant

speed of the vehicle. The data are used to identify the actual route

between the commute trip origin and destination. In order to

account for multiple recordings of the same vehicle trajectories,

the most frequently used commute route is identified for each

traveler, using a previously developed algorithm [2]. The P-2007

and P-2008 respondents provided a rendering of their actual

routes on street maps provided for this purpose.

On the other hand, the TBI provides information on the trip

origin and destination but does not necessarily identify the actual

route chosen by the traveler. Similarly the respondents in the W-

2007 survey provided only their home and work locations and did

not provide any information on their actual commute routes.

Hence the fastest path (computed over roadway segments

weighted with average congested speeds derived from the GPS

data) between the given trip origin and destination is identified for

each trip in these two datasets.

Although travelers will not always follow the fastest route, it is a

common route choice criterion for car drivers. The use of the

fastest route or shortest travel time route from origin to destination

is based on existing research on route choice [52]. As [2] point out,

the trip-based modeling paradigm is based on Wardrop’s first

principle, in which ‘‘the journey times in all routes actually used

are equal and less than those which would be experienced by a

single vehicle on any unused route’’ [53]. This assumption has

been countered by research on route choice that argue that travel

time is not the only criterion that travelers use.

Considering the data available, the shortest travel time path is

the best assumption that could be used. Even if the route geometry

deviates from the actually chosen route of a survey respondent, it is

not expected that the network characteristics in the buffers around

these two route alternatives would vary significantly or have a

noticeable impact on the role of the network characteristics.

Estimation of measures of network structure. The next

step is to estimate the trip level measures of network structure

along the identified commute route. As mentioned above, the

actual route is either obtained directly from the surveys (GPS

surveys, P-2007 and P-2008 surveys) or estimated using shortest

path algorithms (TBI, W-2007 surveys). A 1-km buffer is created

around this actual route and various measures of network structure

are estimated within the buffer using the complete street network

(including interstates, arterials, and local streets). A similar analysis

is carried out using a subnetwork, also called arterial network,

consisting of just the interstates and arterials. A 2-km buffer

around the actual route is used in the arterial network to estimate

select measures of network structure.

A VBA script in ESRI’s ArcGIS 10 was used to calculate the

trip level measures of network structure along the commute route.

The buffer size, while admittedly arbitrary, provides a geograph-

ical definition that is required for the estimation of areal network

measures. Various buffer sizes were tested but the final buffer size

(1-km/2-km) selection was based on the ability to capture the

various network measures and the subsequent performance of

these measures in related regression models.

The measures used to quantify network structure within each

commute trip buffer are broadly categorized into four main

categories: hierarchy, topology, morphology, and scale. It is

important to point out that the measures of network structure

developed for this analysis are primarily geometric measures based

on graph theory. The use of geometric measures was based on

data availability and the ease of computation of relevant network

measures.

Table 3 provides a summary of the estimated network measures

within the trip buffer.

Estimation of travel time. The next step in the analysis is

the estimation of travel time (measured and reported) for the

commute trip. The analysis focuses specifically on auto-based

(drive alone or carpool) commute trips. The measured travel time

is calculated along the identified commute route using the

congested speeds in the street network for all respondents (TBI,

P-2007, W-2007 and P-2008), with the exception of GPS

respondents. For GPS respondents, the time data are directly

obtained from the GPS units. The reported travel time is obtained

directly from the surveys for GPS survey respondents and W-2007

respondents. The reported travel time is estimated for TBI

respondents, P-2007 and P-2008 respondents using the reported

trip arrival and departure times. In this analysis, the reported

travel time in the surveys is used as a proxy for perceived travel

time. A summary of the reported and measured travel time for the

two datasets is provided in Tables 4 and 5.

Figures 1 and 2 present a histogram plot of reported and

measured travel times from TBI and the I-35 W surveys. The

histograms show a change in trend at the 26 to 30 minute time

category. For time categories under 25 minutes, the proportion of

travelers is higher for measured commute time than reported

Table 2. Data exclusion rules - I-35W Travel Surveys.

No. of observations

Number of initial records in the I-35W Travel Survey dataset 349

Excluding trips with unreasonable reported times 9

Excluding records with unreasonable tau values 3

Number of records used in the analysis 337

doi:10.1371/journal.pone.0077718.t002
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commute time. For time periods greater than 25 minutes, the

proportion of travelers is higher for reported commute time than

measured commute time. At first glance, it seems that for longer

trips, travelers report the travel time to be higher than for shorter

trips. But closer investigation using histogram plots of the ratio of

reported time to measured time, stratified by measured time,

presented in Figures 3 and 4 show that the proportion of travelers

that overestimate their travel time (reported time is greater than

measured time) is highest for shorter trips and reduces as the trip

duration increases. The trend is clearer for travelers in the TBI

compared to the I-35W surveys but the pattern is consistent

between the two datasets. This is consistent with Vierordt’s Law

which states that within a series of stimulus intervals, longer

intervals tend to be underestimated while shorter intervals tend to

be overestimated [54].

Analysis
This section describes the analyses conducted using the travel

survey and street network data. The first analysis is a statistical t-

test comparison of network measures between two groups of

commuters, namely overestimating commuters and underestimat-

ing commuters. The second analysis is a linear regression model

predicting the ratio of perceived travel time and measured travel

time, using the network measures as independent variables. The

Table 3. Estimation of Network Measures.

Network Measures (Unit) Description Category Equation Notes Reference

Y ’(P)Relative discontinuity, Captures the differentiation
that exists among street
networks.

Hierarchy ya~Dk1{k2 D
Y (P)~

P

aeP

ya

Y ’(P)~Y (P)=l(P)

ya = Discontinuity moving from
an upstream link to downstream
link, ki = Hierarchy of the
link,Y (P) = Discontinuity of the
trip along the shortest path,
l(P) = Total length (km) of trip
along the shortest
path,Y ’(P) = Relative
discontinuity,P = Shortest path.

[59]

Proportion of limited access
roads

Capture the presence of
higher hierarchy links, i.e.
interstates, within each trip buffer.

Hierarchy Llb

Lsb

Llb = Length (km) of the limited
access roads within the trip
buffer,Lsb = Total length (km) of
the street network within the
trip buffer.

Arterial Treeness*, wtree Captures the differences in
topology and connection
patterns that exist in a real-world
street network.

Topology Ltb

Lsb

Ltb = Length (km) of street
segments belonging to a branch
network within the trip buffer

[28,59]

Trip Circuity, Ct Captures the inefficiencies
in the street network from
the viewpoint of the traveler.
The minimum value
of the Ct variable is 1.0.

Topology Dtn

Dte

Dtn = Network distance (km)
between the trip origin and
destination, Dte = Euclidean
distance (km) between the trip
origin and destination.

[60,61]

Street density, rlb (km{1) Captures the intensity of the
street network within the
given area.

Scale Lsb

Ab

Ab = Area (km2) of the trip buffer.

Intersection density, rvb Captures the intensity of the
street network within the
given area.

Scale Vb

Ab

Vb = Number of intersections
within the trip buffer.

P2A, (km{1) Capture the general
impedance of
the street network.

Morphology Pp
2

Ap

Pp = Perimeter (km) of the polygon

enclosed by the street

network,Ap = Area (km2) of the

polygon enclosed by the street
network.

*-Treeness estimated for a subnetwork consisting of interstates and arterials.
doi:10.1371/journal.pone.0077718.t003

Table 4. Summary of reported and measured travel times - TBI, Commute trips.

All commuters
Commuters that overestimate travel
time, Go

Commuters that underestimate travel
time, Gu

Variable (Unit) Mean Std. Dev. Min Max Mean Std. Dev. Min Max Mean Std. Dev. Min Max

Reported time (min) 24.76 14.40 1.00 90.00 25.76 14.45 1.00 90.00 16.81 11.20 1.00 57.00

Measured time (min) 16.00 10.08 0.51 71.51 15.15 9.29 0.51 61.49 22.76 13.12 2.18 71.51

No. of observations 4,050 3,600 450

doi:10.1371/journal.pone.0077718.t004
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t-test comparison analyzes the individual influence of each

network measure while the regression analysis considers the

combined influence of the network measures.

T-test Analysis
Comparison of under and over-estimating commu-

ters. The ratio of perceived travel time and measured travel

time is calculated for each respondent in both datasets.

t~
Tr

Tm

ð1Þ

where,

t = Ratio of perceived (reported) travel time to measured travel

time,

Tr = Perceived (reported) commute travel time, in minutes,

Tm = Measured commute travel time, in minutes.

Travelers are then classified into two groups based on this ratio.

N Overestimating Group, Go : Travelers perceive their commute

travel time to be higher than it actually is,

Go : TrwTm

Go : tw1:0 ð2Þ

N Underestimating Group, Gu: Travelers perceive their com-

mute travel time to be lower than it actually is

Gu : TrvTm

Table 5. Summary of reported and measured travel times - I-35W Travel Surveys, Commute Trips.

All commuters
Commuters that overestimate travel
time, Go

Commuters that underestimate travel
time, Gu

Variable (Unit) Mean Std. Dev. Min Max Mean Std. Dev. Min Max Mean Std. Dev. Min Max

Reported time (min) 27.48 14.72 1.00 90.00 28.33 15.15 4.00 90.00 22.40 10.61 1.00 40.00

Measured time (min) 18.62 10.31 0.65 47.72 17.13 9.21 0.65 47.48 27.58 12.01 5.73 47.72

No. of observations 337 289 48

doi:10.1371/journal.pone.0077718.t005

Figure 1. Frequency plot of reported and measured commute time – TBI.
doi:10.1371/journal.pone.0077718.g001
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Figure 2. Frequency plot of reported and measured commute time - I-35 W surveys.
doi:10.1371/journal.pone.0077718.g002

Figure 3. Frequency plot of the ratio of reported to measured commute time, stratified by measured time – TBI.
doi:10.1371/journal.pone.0077718.g003
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Gu : tv1:0 ð3Þ

A simple comparison of the reported and measured travel time

for the two traveler groups is provided in Tables 4 and 5. The

comparison highlights the differences between the two traveler

groups (G0, Gu). Looking at the TBI dataset presented in Table 4,

we see the mean reported travel time is higher for the travelers in

Go group compared to the Gu group. On the other hand, the

mean measured travel time is lower for the travelers in the Go

traveler group compared to the Gu group. This pattern is seen in

the I-35W travel survey dataset as well.

This step in the analysis compares the trip-level measures of

network structure between the two traveler groups, using the

statistical t-test. The t-test checks if the mean value of a specific

network measure is statistically different between the two traveler

groups. The t-test comparison is conducted separately for each

network measure in both datasets.

NiGo~NiGu ð4Þ

NiGo = Mean of network measure, i, in the overestimating

group, Go,

NiGu = Mean of network measure, i, in the underestimating

group Gu.

Hypotheses. The hypotheses formulated for the t-test anal-

ysis are presented below:

Aspects of network structure (operational variables: Y ’(P)) that

increase travel complexity will increase perceived travel time (Tr).

Hence,

N H1 - The mean of Y ’(P) is higher for travelers in the

overestimating group (Go) compared to travelers in the

underestimating group (Gu).

Aspects of network structure that increase network speed

(operational variables: proportion of limited access roads) will

decrease perceived travel time (Tr). Therefore,

N H2 - The mean of the proportion of limited access roads is

lower for travelers in the overestimating group (Go) compared

to travelers in the underestimating group (Gu).

Aspects of network structure that decrease network speed

(operational variables: rlb, rvb) will increase perceived travel time

(Tr). Thus,

N H3 - The mean of rlb is higher for travelers in the

overestimating group (Go) compared to travelers in the

underestimating group (Gu).

N H4 - The mean of rvb is higher for travelers in the

overestimating group (Go) compared to travelers in the

underestimating group (Gu).

Figure 4. Frequency plot of the ratio of reported to measured commute time, stratified by measured time - I-35 W surveys.
doi:10.1371/journal.pone.0077718.g004
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Aspects of network structure that increase network travel

distance between fixed origins and destinations (operational

variables: wtree, Ct, P2A) will increase perceived travel time (Tr).

Hence,

N H5 - The mean of wtree is higher for travelers in the

overestimating group (Go) compared to travelers in the

underestimating group (Gu).

N H6 - The mean of Ct is higher for travelers in the

overestimating group (Go) compared to travelers in the

underestimating group (Gu).

N H7 - The mean of P2A ratio is higher for travelers in the

overestimating group (Go) compared to travelers in the

underestimating group (Gu).

Regression Analysis
Predicting the ratio of travel time. The above section

presented individual t-test comparisons of network measures

between the two traveler groups. Here, the independent network

measures are combined in regression models that predict the ratio

(t) of perceived travel time (Tr) to measured travel time (Tm).

Network structure is complex and the measures estimated here

capture certain aspects of the structure. How these measures

interact with each other is not easily understood. The t-test

comparisons identify how the measures perform individually while

the regression model looks at the combined effects of these

measures.

The TBI dataset is used to estimate the regression model due to

the sample size. A correlation analysis of the estimated network

measures is conducted to ensure that only independent variables

are included in the regression model. Based on the analysis, the

intersection density variable is dropped from the analysis due to its

high correlation with the street density variable.

The functional form of the regression model is given below:

t~
Tr

Tm

~f (Nb,Xsd ,Accd ,Nb � Rd ) ð5Þ

where,

t = Ratio of perceived (reported) travel time to measured travel

time,

Nb = Measures of street network structure within the trip buffer,

Xsd = Socio-demographic characteristics (e.g. age, household

size, household income),

Accd = Distance based measure of accessibility, estimated as the

straight line distance between the traveler’s residence and the

downtowns of Minneapolis and St. Paul,

Nb*Rd = Interaction of each measure of network structure with

route distance.

The route distance is calculated from the identified commute

route of each respondent. Two regression models are estimated

using the above functional form.

Model 1. The first model (Model 1) uses a reduced version of

the above functional form. This model predicts the ratio of travel

time as a function of just Nb, Xsd and Accd variables. The

interaction of each network measure with route distance (Nb*Rd ) is

not included as an independent variable in the analysis.

Model 2. This model uses the complete function form

provided in equation 5. It includes the interaction terms (Nb*Rd )

in addition to the Nb, Xsd and Accd variables. In order to avoid

collinearity between the variables, the network measures and the

route distance variable are standardized before estimating the

interaction terms. A standardized variable is one that has been

rescaled to a mean of 0 and a standard deviation of 1 [55]. The

standardized interaction terms are included as independent

variables in the regression model predicting the ratio of reported

and measured travel time.

The use of the two models is to better understand the influence

of network measures and to ensure that the performance of the

network measures is not dependent on the actual route length. The

results from the two models are described in the following section.

Results

T-test Analysis
Difference in network structure between under- and over-

estimating commuters. The results of the t-test analysis for

both datasets are presented in Table 6. The results show that most

measures of network structure differ significantly between the two

traveler groups. The measures of relative discontinuity, street

density and intersection density perform as hypothesized. These

measures have a higher mean for travelers in the overestimating

group (Go) and are statistically different compared to travelers in

the underestimating group (Gu). The proportion of limited access

roads has a lower mean for travelers in the overestimating group

(Go) and is statistically different compared to travelers in the

underestimating group (Gu). This is also in line with the hypothesis

but is however seen only in the I-35W travel surveys. The mean of

the arterial treeness measure is statistically different and is lower

for travelers in the overestimating group (Go) compared to the

underestimating group (Gu) in the TBI dataset, contradicting the

hypothesis. It is however is not significant in the I-35W surveys.

The mean of the P2A variable and the measure of trip circuity are

lower for travelers in the overestimating group (Go) compared to

travelers in the underestimating group (Gu) but is statistically

significant only in the TBI dataset.

The two datasets show slight differences in the influence of

network measures. The differences could be attributed to the

differences in the data collection, the time period of the travel

surveys and the methodology used to obtain the actual commute

route and travel time information. However the results are mostly

in line with the hypotheses and show that network measures do

vary between traveler groups.

The results presented in Table 6 are from the t-test analysis for

both datasets, using all data records. An additional t-test

comparison is conducted by stratifying the data for varying route

length/distance. This is done to better understand the behavior of

the network variables and to ensure that difference between the

two travelers groups (Go, Gu) is not due to the actual route length.

As explained before, the route distance is calculated from the

identified commute route for each respondent. The TBI and I-

35W survey datasets are each subdivided into three groups based

on the route distance, namely, route distance less than 20 km,

route distance between 20 km and 40 km and route distance

greater than 40 km. The t-test analysis is then repeated for each of

these subgroups. The results, not presented here, show patterns of

the influence consistent with the t-test analysis presented in

Table 6.

The next section details the results of regression models

estimated using the above mentioned network measures.

Regression Analysis
Predicting the ratio of travel time. The results of the two

linear regression models (Models 1 and 2) and the associated

elasticity estimates are presented in Table 7 and 8. Table 7 shows

the results of the two regression using all the commuters in the TBI

dataset. Table 8 shows the results of the two regression models
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Table 6. T-test comparisons of estimated measures of network structure.

Ho: Difference between means is zero

TBI, Commute trips I-35W Travel Surveys, Commute Trips

Network Variables Mean(Go) Mean(Gu) t Sig Mean(Go) Mean(Gu) t Sig

Relative discontinuity, Y ’P 0.298 0.199 6.796 *** 0.340 0.255 2.126 **

Proportion of limited access
roads

0.055 0.054 0.811 0.081 0.103 22.970 ***

Arterial Treeness, wtree 0.009 0.011 22.043 ** 0.013 0.012 0.370

Trip Circuity, Ct 1.333 1.365 22.293 ** 1.392 1.383 0.127

P2A 24.513 24.906 22.617 *** 23.097 22.873 0.693

Street density, rlb 18.275 15.164 12.627 *** 19.426 15.617 4.913 ***

Intersection density, rvb 28.885 22.374 11.811 *** 40.901 36.133 2.907 ***

Number of observations 3,600 450 289 48

Total observations 4,050 337

Go : Travelers perceive their commute travel time to be higher than measured travel time.
Gu : Travelers perceive their commute travel time to be lower than measured travel time.
*p,.10,
**p,0.05,
***p,.01.
doi:10.1371/journal.pone.0077718.t006

Table 7. Predicting the ratio of reported travel time to measured travel time - TBI, Using all commuters.

Dependent variable, t = Reported travel time (Tr)/Measured travel time (Tm)

Model 1 Model 2

Independent Variables (Unit) Hypothesis Coef. Sig t Elasticity Coef. Sig t Elasticity

Distance to downtown Minneapolis
(km)

20.008 *** 22.882 20.073 20.006 ** 22.207 20.054

Distance to downtown St. Paul (km) 0.003 1.293 0.035 0.002 1.244 0.023

Relative discontinuity, Y ’P (km{1) +S 0.972 *** 8.805 0.152 1.384 *** 18.128 0.217

Proportion of limited access roads 2S 22.032 *** 24.040 20.061 21.996 *** 24.510 20.060

Arterial Treeness, wtree +S 2.239 * 1.958 0.011 1.740 * 1.801 0.009

Trip Circuity, Ct +S 20.096 21.189 20.070 20.055 20.943 20.040

P2A (km{1) 0.006 0.681 0.080 0.014 * 1.946 0.188

Street density, rlb (km{1) +S 0.038 *** 7.087 0.372 0.032 *** 7.020 0.313

Relative discontinuity*Shortest Path
route distance

NA NA NA NA 0.138 *** 4.171 20.032

Proportion of limited access
roads*Shortest Path route distance

NA NA NA NA 0.001 0.077 0.000

Arterial Treeness*Shortest Path route
distance

NA NA NA NA 20.029 * 21.920 0.000

Trip Circuity*Shortest Path route
distance

NA NA NA NA 0.007 0.360 0.000

P2A*Shortest Path route distance NA NA NA NA 0.062 ** 2.193 0.003

Street density*Shortest Path route
distance

NA NA NA NA 20.056 ** 22.568 0.009

Constant 0.983 *** 3.004 0.754 *** 2.844

Number of observations 4,050 4,050

R-squared 0.152 0.162

Adj. R-squared 0.149 0.157

*p,.10,
**p,0.05,
***p,.01.
doi:10.1371/journal.pone.0077718.t007
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using just the travelers that over perceive (G0) their commuter

travel time. Both models include non-network variables as control

variables to see if the influence of network measures exist even in

the presence of these variables. The results from Model 1 and 2

show that the network variables influence the ratio (t) of reported

travel time to measured travel time. For example, refer to Table 7.

The relative discontinuity variable is positive and highly significant

in both models, confirming our hypothesis. Similarly the street

density is positive and significant in both models. This corrobo-

rates the hypothesis that the higher street density in the network

leads travelers to perceive their travel time to be higher resulting in

an increase in the ratio (t). The arterial treeness variable is also

positive and significant, as hypothesized. The proportion of limited

access roads is negative and highly significant in both models as

expected. The P2A variable is positive in both models but is

however significant only in Model 2. The trip circuity variable is

positive in both models contradicting our hypothesis but is not

significant in either models.

The consistency of results in both Model 1 and 2, shown in

Table 7, confirm that the influence of network measure is

independent of the actual route distance. The inclusion of the

route distance via the interaction terms in Model 2 does not

change the influence of the network measures and only results in a

slight increase in the adjusted R2. A similar influence of network

variables on the ratio of travel time (t) is seen in Table 8 as well.

The socio-demographic variables act as control variables in this

analysis and are hence not elaborated here for brevity. The results

confirm a relation between the street network structure and

individual perception of travel time, after controlling for non-

network variables.

Discussion

The objective in this paper is to identify differences in how

travelers perceive their commute travel time. Another objective is

to relate these differences in perception to the underlying measures

of network structure along the commute route. To that effect,

travelers are categorized into two groups, based on the ratio of

their reported travel time and measured travel time. Statistical t-

test comparisons are conducted to identify differences in individual

network measures between the two groups followed by regression

models estimated to analyze the combined effect of these

measures. The t-test analyses presented here identified statistically

significant differences between the two traveler groups and the

regression models confirmed the same.

An understanding of how travelers perceive their travel time is

important due to its effect on actual travel. Recent research efforts

Table 8. Predicting the ratio of reported travel time to measured travel time, controlling for route distance - TBI, using only
commuters that over estimate travel time (Go).

Dependent variable, t = Reported travel time (Tr)/Measured travel time (Tm)

Model 1 Model 2

Independent Variables (Unit) Hypothesis Coef. Sig t Elasticity Coef. Sig t Elasticity

Distance to downtown Minneapolis
(km)

20.007 *** 22.598 20.057 20.007 ** 22.250 20.057

Distance to downtown St. Paul (km) 0.002 0.973 0.021 0.002 0.930 0.021

Relative discontinuity, Y ’P (km{1) +S 0.937 *** 8.135 0.142 1.263 *** 16.016 0.191

Proportion of limited access roads 2S 22.057 *** 23.830 20.058 22.095 *** 24.740 20.059

Arterial Treeness, wtree +S 2.895 ** 2.141 0.013 2.013 * 1.720 0.009

Trip Circuity, Ct +S 20.037 20.303 20.025 0.120 * 1.762 0.081

P2A (km{1) 0.003 0.299 0.037 0.009 1.239 0.112

Street density, rlb (km{1) +S 0.031 *** 5.319 0.288 0.023 *** 5.004 0.214

Relative discontinuity*Shortest Path
route distance

NA NA NA NA 0.107 *** 2.899 20.023

Proportion of limited access
roads*Shortest Path route distance

NA NA NA NA 0.002 0.111 0.000

Arterial Treeness*Shortest Path route
distance

NA NA NA NA 20.030 * 21.650 0.000

Trip Circuity*Shortest Path route
distance

NA NA NA NA 0.042 1.395 20.003

P2A*Shortest Path route distance NA NA NA NA 0.041 1.292 0.002

Street density*Shortest Path route
distance

NA NA NA NA 20.083 *** 23.086 0.011

Constant 1.185 *** 3.240 NA 0.912 *** 3.341 NA

Number of observations 3,600 3,600

R-squared 0.139 0.148

Adj. R-squared 0.136 0.143

*p,.10,
**p,0.05,
***p,.01.
doi:10.1371/journal.pone.0077718.t008
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have confirmed this relation between street network structure and

observed (actual) travel at the individual, household and metro-

politan level [56]. This paper focuses on the underlying theory,

specifically on why network structure influences actual travel. The

hypothesis presented here is that network design influences

traveler perceptions, more specifically the perceptions of dis-

tance/travel time. This perception of distance/travel time in turn

influences the actual travel by affecting choice of destination,

mode, route, and whether to engage in activities.

There are many factors that affect travel in a region. The

simplified models developed here imply that network design

should be one of the tools to be considered in analyzing travel. The

results presented here along with related analyses [56] comple-

ment the role of conventional measures of urban form and the

built environment. This understanding and application of network

structure measures to network design is critical in the design of

new networks, especially in developing countries, and enhance-

ments to existing systems.

The elasticity estimates from the two linear regression models

are presented in both Table 7 and 8. These estimates highlight the

change in the ratio of travel time, t, due to an unit change in the

independent network variable, considering everything else to be

the same. For example, refer again to Table 7. A unit increase in

the relative discontinuity between a commute trip origin and

destination results in a 0.15–0.22 decrease in t. Similarly a unit

increase in the street density results in a 0.31–0.37 increase in t for

the commute trip. The elasticity estimates provide a magnitude of

influence of the independent network variables.

The analyses presented here do have some limitations. The data

analyzed here are compiled from different sources. The compi-

lation helped overcome limitations in sample size. However the

actual wording and format of the survey questionnaire differed

between the various surveys. This resulted in minor differences in

how the perceived and actual route/travel time information was

obtained from travelers. The reported travel time is either

obtained directly (GPS survey, W-2007) or estimated from

reported arrival and departure times (TBI, P-2007 and P-2008).

Similarly the actual route information is either obtained directly

(GPS, P-2007 and P-2008) or identified using shortest path

algorithms (TBI, W-2007). Future extensions would be to collect

relevant survey data on commute routes and travel time.

The analysis currently focuses on auto based commute trips and

the underlying street network structure in the analysis of the

perception of travel time. Research on transit network design

shows that key components of network design have a significant

impact on ridership and transit system performance [57,58]. Thus

to obtain a comprehensive understanding of travel, it is important

to consider other transportation modes and their networks.

The measures of network structure used in this analysis are

graph theory based geometric measures that capture certain

aspects of network structure and design. While the geometric

representation captures the underlying structure or connectivity in

a street network, the use of a true topological approach, which not

only considers each individual element of the network but also

takes into the account inter-relationships between adjacent

network elements, may provide a higher level of abstraction and

variation [57]. Future research could therefore try to relate

topological measures of network structure with travelers percep-

tion of travel time.
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