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Abstract

The relationships among micro RNA-122 (miR-122) expression in the liver, hepatitis C virus (HCV) replication and hepatic
damage were analyzed in three chimpanzees observed for 180 days after inoculation with HCV genotype 1a. Levels of miR-
122 in the liver and serum were measured by real-time RT PCR in serial liver biopsies and serum samples. Hepatic miR-122
levels were normalized separately for each of three chimpanzees with small RNAs and microRNAs that are endogenous to
the liver and are stably expressed. Two- to 4-fold rise in hepatic miR-122 levels was observed at the onset of HCV infection
(the first 4 weeks) when HCV titers in the liver and serum increased rapidly in all three chimpanzees in concordance with in
vitro data indicating the miR-122 significance for HCV replication. Between 10 to 14 weeks after inoculation, when hepatic
and serum HCV RNA titers exceeded 3 logs and alanine aminotransferase (ALT) activity was elevated, hepatic miR-122 levels
were in decline. Cumulative data derived from all three chimpanzees from 180 days of observation documented an inverse
(negative) correlation between hepatic miR-122 and HCV RNA in the liver and serum and positive correlation between level
of serum miR-122 and HCV replication. Subsequent rise of miR-122 level during HCV clearance and ALT normalization
suggested a tri-phasic occurrence of the relationship among hepatic miR-122 expression, HCV replication and hepatic
destruction, which was the most apparent in one chimpanzee but less evident in two other animals. In vivo kinetics of
hepatic and serum miR-122, HCV replication and hepatic destruction reflects complexities of the virus-host interaction
during the acute phase of HCV infection.
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Introduction

More than 170 million people world-wide are estimated to be

chronically infected with HCV, and in the USA, about 25,000

individuals every year are newly infected by HCV. Viral

persistence commonly follows primary infection, which may result

in liver fibrosis, cirrhosis, and hepatocellular carcinoma [1,2].

Among a variety of factors identified to influence HCV

replication, mircoRNA (miR)-122 and miR-199 have been

reported to be of particular significance [3–7]. MicroRNAs are

small, noncoding RNA molecules of 19–22 nucleotides in length

able to repress gene expression of a broad array of targeted

transcripts by either RNA interference or impairment of

translational initiation and elongation. MicroRNAs are implicated

in a wide variety of cellular processes like cell differentiation,

proliferation, and apoptosis [8,9]. miR-122 is specifically and

abundantly expressed in hepatocytes, comprising approximately

70% of total miRNA in the liver [10].

In vitro studies showed high expression of miR-122 in Huh7 cells

hosting HCV replication and documented interaction of miR-122

with the 59-untranslated region (UTR) of the HCV RNA genome

[4,11,12]. Other studies confirmed that miR-122 regulates the

abundance and production of infectious HCV [13]. Although

miR-122 does not directly stimulate HCV RNA synthesis [14], it

facilitates HCV replication by recruiting an RNA-induced

silencing complex (RISC) containing Ago2 (Argonaute-2) protein,

mediating the stabilization of HCV, and slowing the 59 decay of

the viral genome in infected cells [15–17]. Furthermore, it was

suggested that miR-122 triggers HCV replication by post-

transcriptional repression of heme oxygenase enzyme synthesis [7].

In vivo experiments in chronically HCV-infected chimpanzees

treated with antisense miR-122-locked nucleic acids revealed

significant repression of HCV replication and further implicated

miR-122 in virus replication [18]. In view of these findings,

blockage of miR-122 has been considered as a therapeutic

approach against chronic hepatitis C [19]. During acute and

chronic HCV infections, responses from type 1 interferon

[interferon alpha (IFN-a) and interferon beta (IFN-b)] produced

in the liver are a part of the innate immune response against HCV

infection inducing mediators of antiviral responses such as protein

kinase K, the 29 59-oligoadenylase synthetase, the adenosine

deaminase ADR1, and the Mx GTPase [20]. IFN-b treatment can

lead to a significant reduction in the expression of miR-122 levels

in vitro [11], although no significant correlation has been observed

between miR-122 levels and serum HCV RNA titer in chronic

hepatitis C patients with IFN-a therapy [21].

Most of the studies outlined above were conducted using in vitro

models. In this study, hepatic and circulating miR-122 levels were

measured serially in chimpanzees undergoing acute HCV

infection in order to determine the association between miR-122
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expression, HCV replication, and ensuing liver pathology. Critical

to the investigation was the development and application of

protocols for normalizing hepatic miR-122 expression levels using

small RNAs and microRNAs expressed in the liver.

Materials and Methods

HCV infection in chimpanzees
All animal procedures were approved by the Institutional

Animal Care and Use Committee at CDC and in accordance with

the guidelines of the Guide for the Care and use of Laboratory

Animals. CDC primate protocol number: 1363KRACHIC. The

study was done between Sept.23, 2004 and March 22, 2005. The

animals were single or pair housed in accordance with the Guide

for the Care and Use of Laboratory Animals in an AAALAC

accredited facility. Chimpanzees were housed individually for

short periods of time due to the restrictions of the scientific

protocol involving the infectious nature of hepatitis research. A

12:12-h light:dark cycle was used at a room temperature of 17.8 to

28.9uC and a relative humidity of 30% to 70%. Water was

provided ad libitum through an automatic watering system. The

diet consisted of a nonhuman primate chow (Lab Diet High

Protein Monkey Diet 5045, PMI Nutrition International, LLC,

Saint Luis, MO), fruits, and treats (Bio-serv, Frenchtown, NJ).

Environmental enrichment plan for chimpanzees consisted of the

following: social enrichment, structural enrichment, manipulanda,

novel food items/foraging, and sensory enrichment. Potential

suffering during liver biopsy and bleeding procedures was alleviate

using anesthetic medication using ketamine mixture and tiletamine

HCL/Zolazepam HCL (Telazol). None of chimpanzees included

in the study was sacrificed. All chimpanzees (CH6413, CH256 and

CH1541) were inoculated intravenously with HCV genotype 1a,

varying between 103 to 103.5 chimpanzee infectious doses (CID)

[22–24]. Serum samples were obtained every week at baseline and

during 180 days after inoculation. HCV RNA in sera was tested

and quantified by Cobas Amplicor HCV v. 2.0 (Roche Diagnostic

Systems, Branchburg, NJ). The VITROS Anti-HCV assay

(Ortho-Clinical Diagnostics, Rochester, NJ) was used for detection

of anti-HCV IgG, and serum ALT levels were quantified with

colormetric assay (Drew Scientific, Huston, TX). Cut off for

normal ALT activity level values was calculated separately for

each chimpanzee from 9 or 10 weekly serum specimens obtained

before HCV inoculations by adding the mean value to its 3

standard deviations (99.7% confidence interval).

Frozen liver biopsy samples
Liver needle biopsy samples were obtained before inoculation

and every week after inoculation. Samples were frozen in liquid

nitrogen immediately after the biopsy and subsequently stored at -

80uC until further use. For CH256, 6 liver biopsy samples was

obtained before inoculation (256, 244, 237, 231, 224 and 0

days after inoculation [DAI]) and 13 samples after inoculation

(DAIs 4, 12, 32, 40, 53, 75, 82, 95, 103, 124, 145, 152, and 180).

For CH6413, 5 liver samples obtained before inoculation (DAIs

244, 237, 231, 216, and 0) and 14 samples after inoculation

(DAIs 4, 12, 19, 32, 40, 47, 53, 61, 68, 82, 88, 103, 152, and 180)

were used. For CH1541, 5 samples were taken before inoculation

(DAIs 253, 224, 216, 27, and 0) and 11 samples after

inoculation (DAIs 4, 12, 32, 40, 47, 53, 75, 82, 110, 152, and

173). HCV RNA in snap-frozen liver biopsy specimens was

quantified by Taqman real-time PCR using 7900 HT fast real-

time PCR system (Applied Biosystems, Foster City, CA). Primers

and probe sequences were derived from 59 non-coding region of

the HCV genome (forward primer: 59-GTCTGCGGAACCGGT-

GAG-39) reverse primer: 59- CGACCCAACRCTACTCGGC-

TAG-39, probe: 59-ACACCGGAATTGCCAGGACGACC-39).

Real-time PCR for miR-122
Total RNA from the frozen liver specimens was extracted using

the Ribo Pure kit (Ambion, Austin, TX) and 2 pmol of

Caenorhabditis elegans miR-39 (Qiagen, Valencia, CA) was spiked

to total RNA as quality control RNA for real-time PCR. Quality

and quantity of the total RNA was analyzed by the 2100

Bioanalyzer (Agilent Technologies, Santa Clara, CA). Total RNA

was polyadenylated and reverse transcribed in 10 ml volumes using

the miScript reverse transcription (RT) kit (Qiagen, Valencia, CA).

All real-time PCR reactions were performed in triplicate on a 384-

well 7900 HT fast real-time PCR system (Applied Biosystems,

Foster City, CA) including non-template controls. Each real-time

PCR reaction was done twice at different times. The reaction mix

was incubated for 15 min at 95uC and 10 min at 50uC, then

followed by 55 PCR cycles, each cycle comprising 94uC for 15 s,

55uC for 30 s and 70uC for 45 s. Data were analyzed with SDS

Software version 2.3 (Applied Biosystems, Foster City, CA) with

automatic baseline and threshold settings for cycle threshold (Ct)

determination.

For determination of miR-122 levels in serum, total RNA was

extracted from 200 ml of each serum sample by TRI-reagent (Life

Technologies, Grand Island, NY) according to the manufacturer’s

recommendations. Prior to RNA extraction, 2 pmol SV-40

miRNA (Qiagen, Valencia, CA) was added to each serum sample

for normalization. Then, cDNA synthesized from 1/10 of reverse

transcription reaction from serum specimens was used for real-

time PCR using miScript SybrGreen PCR kit (Qiagen, Valencia,

CA) according to the manufacturer’s recommendations.

Normalization of miR-122 results
The NormFinder program [25] was used to select unbiased

endogenous control genes for normalization in both non-infected

and HCV-infected liver tissues separately for each chimpanzee.

Candidate genes used included six small RNAs [RNU6

(MS00033740), SNORD61 (MS00033705), SNORD68

(MS00033712), SNORD96A (MS00033733), SNORD95

(MS00033726), SNORD72 (MS00033719] and six miRNAs

[miR-191 (MS00003682), miR-103a (MS00031241), miR-17

(MS00029274), let-7b (MS00003122), miR-15a (MS00003178),

C. elegans miR-39 (MS000197890)]. All of these candidate control

RNAs have been reported to be expressed in the liver and six

miRNAs were used as endogenous control genes in previous

studies [21,26]. Primers for the small RNAs and miRNAs

including miR-122 (MS00003416) were obtained from Qiagen.

Relative quantification of the miRNA and mRNA expression was

calculated using the 22DDCt method [27]. Greater than 2-fold

increases of genomic expressions were considered to be significant.

miR-122 values in serum samples were normalized by the levels of

added SV40 tracer [28]. miR-122 values in liver tissue and serum

samples obtained before HCV inoculations were used as

calibrators. Two groups of liver samples were included, those

taken before HCV inoculation (n = 6 in CH256, n = 5 in CH6413

and CH1541) and those after HCV inoculation (n = 13 in CH256,

n = 14 in CH6413, and n = 11 in CH1541). For each small RNA

and miRNA control, the Ct values were calculated separately for

each chimpanzee and then the relative quantities (RQ) for each

control gene across all samples were calculated from Ct values

scaled to a calibrator sample (lowest Ct) by using the equation:

RQ = 1/(2(Ct sample2Ct min)) [29]. Only the small RNA or miRNAs

controls with the lowest intergroup variation and intragroup

variation were selected for normalization. Geometric mean Ct

miR-122 In Vivo Kinetics during HCV Infection
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values from these selected control RNAs were calculated and then

subtracted from the miR-122 Ct (DCt miR-122). Liver samples

obtained before HCV inoculation were used as calibrator samples,

and the arithmetic mean Ct of each calibrator sample (n = 6 in

CH256, n = 5 in CH6413 and n = 5 CH1541) was calculated. Fold

change of miR-122 expression relative to the endogenous control

genes was determined by the 22DDCT method. The DDCt was

obtained by mean Ct of the calibrator samples (Ct miR-122 – Ct

endogenous control genes) subtracted from DCt miR-122 (Ct

miR-122 – Ct endogenous control genes).

IFN-a and IFN-b gene expression in the liver
cDNA was synthesized with 1 mg of total RNA using a high

capacity cDNA reverse transcription kit (Applied Biosystems,

Foster City, CA) and used as template for real-time PCR

performed by the TaqMan method. The reaction mix was

incubated for 5 min at 95uC and 10 min at 50uC, followed by

40 PCR cycles, each cycle comprising 95uC for 15 s and 60uC
for 1 min. Glyceraldehyde 3-phosphate dehydrogenase

(GAPDH, 4326317E) was used as internal control and a

preinoculation sample used as calibrator. Primers and internal

probes for IFN-a (Hs00256882_s1) and IFN-b (Hs02621180_s1)

were obtained from Applied Biosystems. All of real-time PCR

reactions were performed in triplicate on the 7900 HT fast real-

time PCR system (Applied Biosystems, Foster City, CA).

Transcripts of each gene were calculated based on the 22DDCT

method [27].

Statistical evaluation
Statistical analyses were carried out using SPSS software 20

(Chicago, IL). Differences were detected using analysis of variance

(ANOVA). A positive or negative correlation was indicated by the

Spearman correlation coefficient and verified by two-tailed

significance test. For all statistical tests, with a p value ,0.05

considered significant. The correlations were calculated separately

for each chimpanzee and also a single analysis was performed with

data from all three animals.

Results

Selection of the endogenous miRNA for miR-122
expression normalization

To identify the most stable endogenous RNA as normalizers in

hepatic miR-122 expression, twelve small RNAs and miRNAs

were selected as candidate endogenous control RNAs. Ct values of

C. elegance miR-39, used as a spike-in RNA control to assess the

quality control and confidence of the real-time PCR performance,

were similar in all samples from all three chimpanzees included in

the study (Table S1). The twelve endogenous control RNAs were

expressed in all samples, with Ct values ranging from 22.36 to

36.74 in CH256, 18.08 to 44.88 in CH6413, and 22.24 to 35.42 in

CH1541. miR-103 was not used for further calculation in CH6413

due to its low expression (from 32.62 to 44.88, average Ct 41.43)

(Table S1). miR-122 Ct values were observed in range from 20.68

to 29.01 for CH256, 23.74 to 29.03 for CH6413, and 22.79 to

27.78 for CH1541, i.e., in range of Ct values of the endogenous

controls. The ANOVA-based model to estimate intra- and inter-

group variation was used to select endogenous control genes for

unbiased normalization across all samples individually in each

chimpanzee [25]. It determined a stability value for each

endogenous control gene and indicated the single most stable

endogenous control for each animal and endogenous control gene

pair for which the stability of the latter was greater than that of the

single endogenous control. Two Ct values of each endogenous

control obtained from two separate reactions were combined and

the mean Ct value was used for calculation. The combination of

SNORD95 and SNORD72 was selected for two chimpanzees,

CH256 and CH6413, and the combination of SNORD95 and

miR-191 was selected for CH1541 (Table 1).

miR-122 expression and HCV RNA titer in the liver and
serum

Normalized levels of miR-122 in the liver increased from 2.2 to

3.9 times those of pre-inoculation samples: from DAIs 4 to 32 for

CH256, DAIs 4 to 19 for CH6413, and on DAI 4 for CH1541

(Fig. 1A). During the peak of HCV replication, miR-122

expression had either decreased or remained unchanged (DAIs

40 to 95 in CH256; DAI 32 to 88 in CH6413; and DAIs 12 to 53

Table 1. Selection of the most stable endogenous control genes for miR-122 results normalization in HCV-inoculated chimpanzees
[25].

CH256 CH6413 CH1541

Rank Gene name Stability value Gene name Stability value Gene name Stability value

Best gene combination SNORD95 and SNORD72 0.245 SNORD95 and SNORD72 0.188 SNORD95 and miR-191 0.112

1 SNORD61 0.315 SNORD96A 0.390 miR-191 0.131

2 SNORD95 0.467 SNORD72 0.412 SNORD95 0.181

3 let-7b 0.467 let-7b 0.414 miR-103 0.206

4 miR-17 0.473 SNORD61 0.417 SNORD72 0.224

5 RNU6 0.607 SNORD95 0.426 let-7b 0.241

6 SNORD72 0.661 RNU6 0.458 SNORD68 0.261

7 miR-15a 0.694 miR-15a 0.550 RNU6 0.273

8 SNORD96A 0.781 miR-191 0.706 SNORD96A 0.292

9 miR-39 0.819 SNORD61 0.383

10 SNORD68 0.832 miR-17 0.443

11 miR-39 0.700

doi:10.1371/journal.pone.0076501.t001
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in CH1541). In all three animals, hepatic miR-122 levels were on

the rise coinciding with the period when HCV RNA titers were

declining (Fig. 1A and B).

All three were HCV RNA-positive in serum from DAIs 4

(CH1541) or 7 (CH256 and CH6413) and viral titers were

maintained until DAI 71 (CH1541) or DAI 95 (CH256 and

CH6413) (Fig. 1B). A similar profile was observed for HCV RNA

in the liver; about 2-log decline in liver viral RNA levels was

detected at DAI 75 (CH1541), 131 (CH256) or 88 (CH6413)

(Fig. 1B). ALT activity was significantly elevated at DAI 71

(CH1541), 95 (CH256) or 75 (CH6413) (Fig. 1C, Table S2). A

statistically significant inverse correlation was found between

hepatic miR-122 expression and liver HCV RNA titers in CH256

and with both liver and serum HCV RNA titers in CH1541

(Fig. 2A, B, and D, Table S3A). A statistically significant negative

correlation between hepatic miR-122 expression and the levels of

serum miR-122 was found in CH1541 (Fig. 2F, Table S3A).

Serum miR-122 levels were positively correlated with serum HCV

RNA titer in CH256 and CH1541 (Fig. 2G and H, Table S3B).

When hepatic and serum miR-122 data and all other parameters

from all three chimpanzees were included in one analysis, a

statistically significant inverse correlation between hepatic miR-

122 and HCV RNA level in the liver and serum was observed

(Fig. 2C and E, Table S3C). Levels of serum miR-122 were

positively correlated with HCV RNA titer in the liver and serum

(Fig. 2I and J, Table S3C). Expression profiles of serum miR-122

detected in three chimpanzees were similar to those of ALT

activity (Fig. 1C); the correlation between those two measures was

statistically significant in CH256 (Fig. 2K, Table S3B).

Type-1 interferon-induced mRNAs in the liver
High levels of hepatic IFN-a and IFN-b mRNAs were detected

during the period when levels of hepatic miR-122 expression were

in decline (Fig. 1D, Table S2). Hepatic IFN-a and IFN-b mRNA

expressions were correlated with hepatic miR-122 levels in CH256

(Fig. 3A and B, Table S3A). In CH6413, the levels of IFN-a and

IFN-b mRNAs were correlated with serum miR-122 levels

(Fig. 3E, F, and Table S3B). When all parameters from all three

chimpanzees were included in one analysis, the moderate, but

statistically significant positive correlation between hepatic IFN-a
and IFN-b mRNA and hepatic miR-122 levels was observed

(Fig. 3C and D, Table S3C).

Discussion

The kinetics of miR-122 in the liver and serum during the acute

phase of HCV infection were determined in chimpanzees

inoculated with HCV genotype 1a. Levels of hepatic miR-122

Figure 1. Acute HCV infection in chimpanzees CH256, CH6413, and CH1541. (A) Hepatic miR-122: red bars - up and down-regulated
expression-fold change .2.0; gray bars -fold change ,2.0. (B) HCV RNA titer in serum and liver: red lines represent serum HCV RNA; green bars
represent HCV RNA titer in the liver. ‘‘+’’ denotes presence and ‘‘–’’ absence of HCV RNA in serum (detection limit 600 IU/ml). (C) Serum miR-122 levels
-blue line; ALT levels- orange line. (D) IFN-a (blue bar), and IFN-b (green bar) mRNA expression.
doi:10.1371/journal.pone.0076501.g001
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genomic expression were evaluated by quantitative real-time RT-

PCR (qRT-PCR) with the values stringently normalized using

selected host genes to correct for biological and experimental bias

and for inter-assay variations in each of these chimpanzee included

in the study [25,29]. The combination of SNORD95/SNORD72

was selected for CH256 and CH6413, and SNORD95 and miR-

191 for CH1541 as the most stable endogenous control genes

(Table 1). The RNU6B (U6) gene used in other studies for

evaluation of miR-122 expression [21,30,31] has proven to be an

unreliable normalizer [26,32,33].

Up-regulated expression of miR-122 in the liver was observed

during the first four weeks after HCV inoculation in all three

chimpanzees, at the beginning of HCV viremia and before any

evidence of liver injury as measured by serum ALT elevation

(Fig. 1A, B, C, and Table S2). Temporal concordance between

increasing levels of miR-122 and rapidly increasing HCV RNA

titer in the liver and blood has been consistent with data obtained

in vitro which showed augmentation of HCV RNA accumulation in

Huh7 cells consequential to expression of miR-122 [3,4]. The

kinetics of miR-122 expression during the acute phase of HCV

infection further may validate positive impact of miR-122 on viral

abundance and its role in the enhancement of HCV replication

and stability. The positive influence of miR-122 on HCV

replication has also been suggested by a study of chronically

HCV-infected chimpanzees who were treated with antisense miR-

122 and then achieved long-lasting suppression of HCV viremia

and chronic hepatitis C patients treated with DNA antisense

nucleotide that sequesters mature miR-122 [18,19].

During the course of acute HCV infection in our chimpanzees,

when hepatic and serum HCV RNA titers had increased 4 to 5

logs, a trend was observed for hepatic miR-122 values either to

have fallen or remain unchanged; for CH1541, the phase of

decline in hepatic levels of miR-122 preceded quite distinctly the

appearance of miR-122 in serum. The inverse relationship

between hepatic miR-122 and hepatic HCV RNA titers was

statistically significant in CH256 and CH1541, and was even more

statistically apparent when data from all three animals were

evaluated in a single analysis (Fig.2 and Table S3C). In addition,

the statistically significant negative correlation between hepatic

miR-122 expression and serum level of HCV RNA was observed

in CH1541. It is conceivable that the decrease of hepatic miR-122

levels could be due to release of proteins from degraded

hepatocytes upon injury as such decrease also coincided with the

rise of ALT activity. An inverse correlation between hepatic miR-

122 and HCV RNA level in serum has previously been reported in

patients with chronic HCV infection [31]. Although a previous in

vitro study documented suppression of miR-122 expression by IFN-

b [11], and interferon repression of miR-122 in the liver was

Figure 2. Acute HCV infection in chimpanzees. Hepatic and serum miR-122 statistically significant correlation with liver, serum HCV
RNA titers, and ALT activity. Hepatic miR-122 vs. HCV RNA titer in the liver in CH256 (A); in CH1541 (B); in CH256, CH6413, CH1541 (C); vs. HCV
RNA titer in serum in CH1541 (D); in CH256, CH6413, CH1541 (E); vs. serum miR-122 in CH1541 (F). Serum miR-122 vs. HCV RNA titer in serum in
CH256 (G); in CH1541 (H); in CH256, CH6413, CH1541 (I); vs. HCV RNA titer in the liver in CH256, CH6413, CH1541 (J); vs. ALT activity in CH256 (K).
doi:10.1371/journal.pone.0076501.g002
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suggested from clinical observations of interferon-treated patients

with chronic hepatitis C [21], the association between decreased

miR-122 and increased genomic expression of IFN-a and IFN-b
in the studied chimpanzees was not found. To the contrary, there

was a statistically significant positive correlation between hepatic

miR-122 and type 1 interferon in CH256 and when all

chimpanzee data were tested in a single analysis (Fig. 3 and Table

S3A, C).

Towards the later phase of the acute HCV infection, hepatic

levels of miR-122 in the chimpanzees were observed to have risen

again, corresponding to the phase of declining HCV RNA titers in

the liver and clearance of HCV RNA from serum (Fig. 1A). The

mechanism underlying the miR-122 kinetics in this phase of acute

infection is unclear. It is also unknown for how long this upsurge of

miR-122 expression in the liver could have been maintained, or

whether these rises predict the development of chronic HCV

infection or resolution of acute infection, as the chimpanzees in

our study were not tested beyond 180 days after HCV inoculation.

In summary, a tri-phasic change in miR-122 levels in the liver

was observed in CH256 and less prominently in two other

chimpanzees during acute HCV infection. During the initial phase

of the infection, rising hepatic miR-122 levels and HCV RNA in

liver and serum likely reflects the phase of infection when miR-122

is participating in the enhancement of HCV replication, as

reported from in vitro studies [4,7,13,15–17]. The second phase,

when miR-122 levels in the liver are in a decline, may correspond

to the phase of destruction of HCV-infected hepatocytes and

release or transport of miR-122 into the plasma. The mechanisms

underlying the third phase, of a renewed upsurge in miR-122

levels in the liver, remain unclear, although it may be related to

the restoration of morphologic integrity of the liver during the

HCV clearance and liver lesions healing. Kinetics of changes in

miR-122 expression in the liver observed in vivo document the

complexities of the virus-host interaction during the acute phase of

HCV infection.
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